import os import random import autocuda from pyabsa.utils.pyabsa_utils import fprint from diffusers import ( AutoencoderKL, UNet2DConditionModel, StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, DPMSolverMultistepScheduler, ) import gradio as gr import torch from PIL import Image import utils import datetime import time import psutil from Waifu2x.magnify import ImageMagnifier start_time = time.time() is_colab = utils.is_google_colab() device = autocuda.auto_cuda() magnifier = ImageMagnifier() class Model: def __init__(self, name, path="", prefix=""): self.name = name self.path = path self.prefix = prefix self.pipe_t2i = None self.pipe_i2i = None models = [ # Model("anything v3", "anything-v3.0", "anything v3 style"), Model("anything v3", "Linaqruf/anything-v3.0", "anything v3 style"), ] # Model("Spider-Verse", "nitrosocke/spider-verse-diffusion", "spiderverse style "), # Model("Balloon Art", "Fictiverse/Stable_Diffusion_BalloonArt_Model", "BalloonArt "), # Model("Elden Ring", "nitrosocke/elden-ring-diffusion", "elden ring style "), # Model("Tron Legacy", "dallinmackay/Tron-Legacy-diffusion", "trnlgcy ") # Model("Pokémon", "lambdalabs/sd-pokemon-diffusers", ""), # Model("Pony Diffusion", "AstraliteHeart/pony-diffusion", ""), # Model("Robo Diffusion", "nousr/robo-diffusion", ""), scheduler = DPMSolverMultistepScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, trained_betas=None, predict_epsilon=True, thresholding=False, algorithm_type="dpmsolver++", solver_type="midpoint", lower_order_final=True, ) custom_model = None if is_colab: models.insert(0, Model("Custom model")) custom_model = models[0] last_mode = "txt2img" current_model = models[1] if is_colab else models[0] current_model_path = current_model.path if is_colab: pipe = StableDiffusionPipeline.from_pretrained( current_model.path, torch_dtype=torch.float16, scheduler=scheduler, safety_checker=lambda images, clip_input: (images, False), ) else: # download all models print(f"{datetime.datetime.now()} Downloading vae...") vae = AutoencoderKL.from_pretrained( current_model.path, subfolder="vae", torch_dtype=torch.float16 ) for model in models: try: print(f"{datetime.datetime.now()} Downloading {model.name} model...") unet = UNet2DConditionModel.from_pretrained( model.path, subfolder="unet", torch_dtype=torch.float16 ) model.pipe_t2i = StableDiffusionPipeline.from_pretrained( model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler, ) model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained( model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler, ) except Exception as e: print( f"{datetime.datetime.now()} Failed to load model " + model.name + ": " + str(e) ) models.remove(model) pipe = models[0].pipe_t2i if torch.cuda.is_available(): pipe = pipe.to(device) device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶" def error_str(error, title="Error"): return ( f"""#### {title} {error}""" if error else "" ) def custom_model_changed(path): models[0].path = path global current_model current_model = models[0] def on_model_change(model_name): prefix = ( 'Enter prompt. "' + next((m.prefix for m in models if m.name == model_name), None) + '" is prefixed automatically' if model_name != models[0].name else "Don't forget to use the custom model prefix in the prompt!" ) return gr.update(visible=model_name == models[0].name), gr.update( placeholder=prefix ) def inference( model_name, prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt="", ): print(psutil.virtual_memory()) # print memory usage global current_model for model in models: if model.name == model_name: current_model = model model_path = current_model.path generator = torch.Generator("cuda").manual_seed(seed) if seed != 0 else None try: if img is not None: return ( img_to_img( model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator, ), None, ) else: return ( txt_to_img( model_path, prompt, neg_prompt, guidance, steps, width, height, generator, ), None, ) except Exception as e: fprint(e) return None, error_str(e) def txt_to_img( model_path, prompt, neg_prompt, guidance, steps, width, height, generator ): print(f"{datetime.datetime.now()} txt_to_img, model: {current_model.name}") global last_mode global pipe global current_model_path if model_path != current_model_path or last_mode != "txt2img": current_model_path = model_path if is_colab or current_model == custom_model: pipe = StableDiffusionPipeline.from_pretrained( current_model_path, torch_dtype=torch.float16, scheduler=scheduler, safety_checker=lambda images, clip_input: (images, False), ) else: pipe = pipe.to("cpu") pipe = current_model.pipe_t2i if torch.cuda.is_available(): pipe = pipe.to(device) last_mode = "txt2img" prompt = current_model.prefix + prompt result = pipe( prompt, negative_prompt=neg_prompt, # num_images_per_prompt=n_images, num_inference_steps=int(steps), guidance_scale=guidance, width=width, height=height, generator=generator, ) result.images[0] = magnifier.magnify(result.images[0]) result.images[0] = magnifier.magnify(result.images[0]) # save image result.images[0].save( "{}/{}.{}.{}.{}.{}.{}.{}.{}.png".format( saved_path, datetime.datetime.now().strftime("%Y%m%d-%H%M%S"), model_name, prompt, guidance, steps, width, height, seed, ) ) return replace_nsfw_images(result) def img_to_img( model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator, ): print(f"{datetime.datetime.now()} img_to_img, model: {model_path}") global last_mode global pipe global current_model_path if model_path != current_model_path or last_mode != "img2img": current_model_path = model_path if is_colab or current_model == custom_model: pipe = StableDiffusionImg2ImgPipeline.from_pretrained( current_model_path, torch_dtype=torch.float16, scheduler=scheduler, safety_checker=lambda images, clip_input: (images, False), ) else: pipe = pipe.to("cpu") pipe = current_model.pipe_i2i if torch.cuda.is_available(): pipe = pipe.to(device) last_mode = "img2img" prompt = current_model.prefix + prompt ratio = min(height / img.height, width / img.width) img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS) result = pipe( prompt, negative_prompt=neg_prompt, # num_images_per_prompt=n_images, init_image=img, num_inference_steps=int(steps), strength=strength, guidance_scale=guidance, width=width, height=height, generator=generator, ) result.images[0] = magnifier.magnify(result.images[0]) result.images[0] = magnifier.magnify(result.images[0]) # save image result.images[0].save( "{}/{}.{}.{}.{}.{}.{}.{}.{}.png".format( saved_path, datetime.datetime.now().strftime("%Y%m%d-%H%M%S"), model_name, prompt, guidance, steps, width, height, seed, ) ) return replace_nsfw_images(result) def replace_nsfw_images(results): if is_colab: return results.images[0] for i in range(len(results.images)): if results.nsfw_content_detected[i]: results.images[i] = Image.open("nsfw.png") return results.images[0] if __name__ == "__main__": # inference("DALL-E", "a dog", 0, 1000, 512, 512, 0, None, 0.5, "") model_name = "anything v3" saved_path = r"imgs" if not os.path.exists(saved_path): os.mkdir(saved_path) n = 0 while True: prompt_keys = [ "beautiful eyes", "cumulonimbus clouds", "sky", "detailed fingers", random.choice( [ "white hair", "red hair", "blonde hair", "black hair", "green hair", ] ), random.choice( [ "blue eyes", "green eyes", "red eyes", "black eyes", "yellow eyes", ] ), random.choice(["flower meadow", "garden", "city", "river", "beach"]), random.choice(["Elif", "Angel"]), ] guidance = 7.5 steps = 25 # width = 1024 # height = 1024 # width = 768 # height = 1024 width = 512 height = 888 seed = 0 img = None strength = 0.5 neg_prompt = "" inference( model_name, ".".join(prompt_keys), guidance, steps, width=width, height=height, seed=seed, img=img, strength=strength, neg_prompt=neg_prompt, ) n += 1 fprint(n)