File size: 6,571 Bytes
ed955f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import pandas as pd
import numpy as np
import streamlit as st 
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.backends.backend_agg import FigureCanvasAgg
from PIL import Image
from streamlit_image_select import image_select
from tqdm import tqdm
import os
import shutil
from PIL import Image
import torch
import matplotlib.pyplot as plt
from datasets import load_dataset
from transformers import AutoProcessor, AutoModelForMaskGeneration

def show_mask(image, mask, ax=None):
    fig, axes = plt.subplots()
    axes.imshow(np.array(image))
    color = np.array([30/255, 144/255, 255/255, 0.6])
    h, w = mask.shape[-2:]
    mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
    axes.imshow(mask_image)
    canvas = FigureCanvasAgg(fig)
    canvas.draw()
    pil_image = Image.frombytes('RGB', canvas.get_width_height(), canvas.tostring_rgb())
    plt.close(fig) 
    return pil_image 
def get_bounding_box(ground_truth_map):
  y_indices, x_indices = np.where(ground_truth_map > 0)
  x_min, x_max = np.min(x_indices), np.max(x_indices)
  y_min, y_max = np.min(y_indices), np.max(y_indices)
  H, W = ground_truth_map.shape
  x_min = max(0, x_min - np.random.randint(0, 20))
  x_max = min(W, x_max + np.random.randint(0, 20))
  y_min = max(0, y_min - np.random.randint(0, 20))
  y_max = min(H, y_max + np.random.randint(0, 20))
  bbox = [x_min, y_min, x_max, y_max]
  return bbox
def get_output(image,prompt):
  inputs = processor(image,input_boxes=[[prompt]],return_tensors='pt').to(device)
  model.eval()
  with torch.no_grad():
    outputs = model(**inputs,multimask_output=False)
  output_proba = torch.sigmoid(outputs.pred_masks.squeeze(1))
  output_proba = output_proba.cpu().numpy().squeeze()
  output = (output_proba > 0.5).astype(np.uint8)
  return output
def generate_image(np_array):
  return Image.fromarray((np_array*255).astype('uint8'),mode='L')
def iou_calculation(result1, result2):
  intersection = np.logical_and(result1, result2)
  union = np.logical_or(result1, result2)
  iou_score = np.sum(intersection) / np.sum(union)
  iou_score = "{:.4f}".format(iou_score)
  return float(iou_score)
def calculate_pixel_accuracy(image1, image2):
    if image1.size != image2.size or image1.mode != image2.mode:
        image1 = image1.resize(image2.size, Image.BILINEAR)
        if image1.mode != image2.mode:
            image1 = image1.convert(image2.mode)
    width, height = image1.size
    total_pixels = width * height
    image1 = image1.convert("RGB")
    image2 = image2.convert("RGB")
    pixels1 = image1.load()
    pixels2 = image2.load()
    num_correct_pixels = 0
    for y in range(height):
        for x in range(width):
            if pixels1[x, y] == pixels2[x, y]:
                num_correct_pixels += 1
    accuracy = num_correct_pixels / total_pixels
    return accuracy
def calculate_f1_score(image1, image2):
    if image1.size != image2.size or image1.mode != image2.mode:
        image1 = image1.resize(image2.size, Image.BILINEAR)
        if image1.mode != image2.mode:
            image1 = image1.convert(image2.mode)
    width, height = image1.size
    image1 = image1.convert("L")
    image2 = image2.convert("L")
    np_image1 = np.array(image1)
    np_image2 = np.array(image2)
    np_image1_flat = np_image1.flatten()
    np_image2_flat = np_image2.flatten()
    true_positives = np.sum(np.logical_and(np_image1_flat == 255, np_image2_flat == 255))
    false_positives = np.sum(np.logical_and(np_image1_flat != 255, np_image2_flat == 255))
    false_negatives = np.sum(np.logical_and(np_image1_flat == 255, np_image2_flat != 255))
    precision = true_positives / (true_positives + false_positives + 1e-7)
    recall = true_positives / (true_positives + false_negatives + 1e-7)
    f1_score = 2 * (precision * recall) / (precision + recall + 1e-7)
    return f1_score
def calculate_dice_coefficient(image1, image2):
    if image1.size != image2.size or image1.mode != image2.mode:
        image1 = image1.resize(image2.size, Image.BILINEAR)
        if image1.mode != image2.mode:
            image1 = image1.convert(image2.mode)
    width, height = image1.size
    image1 = image1.convert("L")
    image2 = image2.convert("L")
    np_image1 = np.array(image1)
    np_image2 = np.array(image2)
    np_image1_flat = np_image1.flatten()
    np_image2_flat = np_image2.flatten()
    true_positives = np.sum(np.logical_and(np_image1_flat == 255, np_image2_flat == 255))
    false_positives = np.sum(np.logical_and(np_image1_flat != 255, np_image2_flat == 255))
    false_negatives = np.sum(np.logical_and(np_image1_flat == 255, np_image2_flat != 255))
    dice_coefficient = (2 * true_positives) / (2 * true_positives + false_positives + false_negatives)
    return dice_coefficient
device = "cuda" if torch.cuda.is_available() else "cpu"
st.set_page_config(layout='wide')
ds = load_dataset('yanranxiaoxi/skin-lesion-mask',split='train')
s1 = ds[7]['image']
s2 = ds[8]['image']
s3 = ds[9]['image']
s4 = ds[10]['image']
s1_label = ds[7]['label']
s2_label = ds[8]['label']
s3_label = ds[9]['label']
s4_label = ds[10]['label']
image_arr = [s1,s2,s3,s4]
label_arr = [s1_label,s2_label,s3_label,s4_label]
img = image_select(
    label="选择一个皮肤病变图像",
    images=[
        s1,s2,s3,s4
    ],
    captions=["例 1","例 2","例 3","例 4"],
    return_value='index'
)
processor = AutoProcessor.from_pretrained('yanranxiaoxi/skin-lesion-large')
model = AutoModelForMaskGeneration.from_pretrained('yanranxiaoxi/skin-lesion-focalloss-large')
model.to(device)
p = get_bounding_box(np.array(label_arr[img])) 
predicted_mask_array = get_output(image_arr[img],p)
predicted_mask = generate_image(predicted_mask_array)
result_image = show_mask(image_arr[img],predicted_mask_array)
with st.container(): 
    tab1, tab2 = st.tabs(['可视化','指标'])
    with tab1: 
        col1, col2 = st.columns(2) 
        with col1: 
            st.image(image_arr[img],caption='原始皮肤病变图像',use_column_width=True)
        with col2:
                st.image(result_image,caption='叠加标注遮罩区域',use_column_width=True)
    with tab2: 
            st.write(f'IOU 得分:{iou_calculation(label_arr[img],predicted_mask)}')
            st.write(f'像素精确度:{calculate_pixel_accuracy(label_arr[img],predicted_mask)}')
            st.write(f'骰子系数(DC)得分:{calculate_dice_coefficient(label_arr[img],predicted_mask)}')