diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..74bf9bc4d2313fe95b6ecb13fec855579d5ba462 --- /dev/null +++ b/.gitignore @@ -0,0 +1,15 @@ +### venv template +# Virtualenv +# http://iamzed.com/2009/05/07/a-primer-on-virtualenv/ +.Python +[Bb]in +[Ii]nclude +[Ll]ib +[Ll]ib64 +[Ll]ocal +[Ss]cripts +pyvenv.cfg +.venv +pip-selfcheck.json + +.idea \ No newline at end of file diff --git a/LICENSE b/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..0ad25db4bd1d86c452db3f9602ccdbe172438f52 --- /dev/null +++ b/LICENSE @@ -0,0 +1,661 @@ + GNU AFFERO GENERAL PUBLIC LICENSE + Version 3, 19 November 2007 + + Copyright (C) 2007 Free Software Foundation, Inc. + Everyone is permitted to copy and distribute verbatim copies + of this license document, but changing it is not allowed. + + Preamble + + The GNU Affero General Public License is a free, copyleft license for +software and other kinds of works, specifically designed to ensure +cooperation with the community in the case of network server software. + + The licenses for most software and other practical works are designed +to take away your freedom to share and change the works. By contrast, +our General Public Licenses are intended to guarantee your freedom to +share and change all versions of a program--to make sure it remains free +software for all its users. + + When we speak of free software, we are referring to freedom, not +price. Our General Public Licenses are designed to make sure that you +have the freedom to distribute copies of free software (and charge for +them if you wish), that you receive source code or can get it if you +want it, that you can change the software or use pieces of it in new +free programs, and that you know you can do these things. + + Developers that use our General Public Licenses protect your rights +with two steps: (1) assert copyright on the software, and (2) offer +you this License which gives you legal permission to copy, distribute +and/or modify the software. + + A secondary benefit of defending all users' freedom is that +improvements made in alternate versions of the program, if they +receive widespread use, become available for other developers to +incorporate. Many developers of free software are heartened and +encouraged by the resulting cooperation. However, in the case of +software used on network servers, this result may fail to come about. +The GNU General Public License permits making a modified version and +letting the public access it on a server without ever releasing its +source code to the public. + + The GNU Affero General Public License is designed specifically to +ensure that, in such cases, the modified source code becomes available +to the community. It requires the operator of a network server to +provide the source code of the modified version running there to the +users of that server. Therefore, public use of a modified version, on +a publicly accessible server, gives the public access to the source +code of the modified version. + + An older license, called the Affero General Public License and +published by Affero, was designed to accomplish similar goals. This is +a different license, not a version of the Affero GPL, but Affero has +released a new version of the Affero GPL which permits relicensing under +this license. + + The precise terms and conditions for copying, distribution and +modification follow. + + TERMS AND CONDITIONS + + 0. Definitions. + + "This License" refers to version 3 of the GNU Affero General Public License. + + "Copyright" also means copyright-like laws that apply to other kinds of +works, such as semiconductor masks. + + "The Program" refers to any copyrightable work licensed under this +License. Each licensee is addressed as "you". "Licensees" and +"recipients" may be individuals or organizations. + + To "modify" a work means to copy from or adapt all or part of the work +in a fashion requiring copyright permission, other than the making of an +exact copy. The resulting work is called a "modified version" of the +earlier work or a work "based on" the earlier work. + + A "covered work" means either the unmodified Program or a work based +on the Program. + + To "propagate" a work means to do anything with it that, without +permission, would make you directly or secondarily liable for +infringement under applicable copyright law, except executing it on a +computer or modifying a private copy. Propagation includes copying, +distribution (with or without modification), making available to the +public, and in some countries other activities as well. + + To "convey" a work means any kind of propagation that enables other +parties to make or receive copies. Mere interaction with a user through +a computer network, with no transfer of a copy, is not conveying. + + An interactive user interface displays "Appropriate Legal Notices" +to the extent that it includes a convenient and prominently visible +feature that (1) displays an appropriate copyright notice, and (2) +tells the user that there is no warranty for the work (except to the +extent that warranties are provided), that licensees may convey the +work under this License, and how to view a copy of this License. If +the interface presents a list of user commands or options, such as a +menu, a prominent item in the list meets this criterion. + + 1. Source Code. + + The "source code" for a work means the preferred form of the work +for making modifications to it. "Object code" means any non-source +form of a work. + + A "Standard Interface" means an interface that either is an official +standard defined by a recognized standards body, or, in the case of +interfaces specified for a particular programming language, one that +is widely used among developers working in that language. + + The "System Libraries" of an executable work include anything, other +than the work as a whole, that (a) is included in the normal form of +packaging a Major Component, but which is not part of that Major +Component, and (b) serves only to enable use of the work with that +Major Component, or to implement a Standard Interface for which an +implementation is available to the public in source code form. A +"Major Component", in this context, means a major essential component +(kernel, window system, and so on) of the specific operating system +(if any) on which the executable work runs, or a compiler used to +produce the work, or an object code interpreter used to run it. + + The "Corresponding Source" for a work in object code form means all +the source code needed to generate, install, and (for an executable +work) run the object code and to modify the work, including scripts to +control those activities. However, it does not include the work's +System Libraries, or general-purpose tools or generally available free +programs which are used unmodified in performing those activities but +which are not part of the work. For example, Corresponding Source +includes interface definition files associated with source files for +the work, and the source code for shared libraries and dynamically +linked subprograms that the work is specifically designed to require, +such as by intimate data communication or control flow between those +subprograms and other parts of the work. + + The Corresponding Source need not include anything that users +can regenerate automatically from other parts of the Corresponding +Source. + + The Corresponding Source for a work in source code form is that +same work. + + 2. Basic Permissions. + + All rights granted under this License are granted for the term of +copyright on the Program, and are irrevocable provided the stated +conditions are met. This License explicitly affirms your unlimited +permission to run the unmodified Program. The output from running a +covered work is covered by this License only if the output, given its +content, constitutes a covered work. This License acknowledges your +rights of fair use or other equivalent, as provided by copyright law. + + You may make, run and propagate covered works that you do not +convey, without conditions so long as your license otherwise remains +in force. You may convey covered works to others for the sole purpose +of having them make modifications exclusively for you, or provide you +with facilities for running those works, provided that you comply with +the terms of this License in conveying all material for which you do +not control copyright. Those thus making or running the covered works +for you must do so exclusively on your behalf, under your direction +and control, on terms that prohibit them from making any copies of +your copyrighted material outside their relationship with you. + + Conveying under any other circumstances is permitted solely under +the conditions stated below. Sublicensing is not allowed; section 10 +makes it unnecessary. + + 3. Protecting Users' Legal Rights From Anti-Circumvention Law. + + No covered work shall be deemed part of an effective technological +measure under any applicable law fulfilling obligations under article +11 of the WIPO copyright treaty adopted on 20 December 1996, or +similar laws prohibiting or restricting circumvention of such +measures. + + When you convey a covered work, you waive any legal power to forbid +circumvention of technological measures to the extent such circumvention +is effected by exercising rights under this License with respect to +the covered work, and you disclaim any intention to limit operation or +modification of the work as a means of enforcing, against the work's +users, your or third parties' legal rights to forbid circumvention of +technological measures. + + 4. Conveying Verbatim Copies. + + You may convey verbatim copies of the Program's source code as you +receive it, in any medium, provided that you conspicuously and +appropriately publish on each copy an appropriate copyright notice; +keep intact all notices stating that this License and any +non-permissive terms added in accord with section 7 apply to the code; +keep intact all notices of the absence of any warranty; and give all +recipients a copy of this License along with the Program. + + You may charge any price or no price for each copy that you convey, +and you may offer support or warranty protection for a fee. + + 5. Conveying Modified Source Versions. + + You may convey a work based on the Program, or the modifications to +produce it from the Program, in the form of source code under the +terms of section 4, provided that you also meet all of these conditions: + + a) The work must carry prominent notices stating that you modified + it, and giving a relevant date. + + b) The work must carry prominent notices stating that it is + released under this License and any conditions added under section + 7. This requirement modifies the requirement in section 4 to + "keep intact all notices". + + c) You must license the entire work, as a whole, under this + License to anyone who comes into possession of a copy. This + License will therefore apply, along with any applicable section 7 + additional terms, to the whole of the work, and all its parts, + regardless of how they are packaged. This License gives no + permission to license the work in any other way, but it does not + invalidate such permission if you have separately received it. + + d) If the work has interactive user interfaces, each must display + Appropriate Legal Notices; however, if the Program has interactive + interfaces that do not display Appropriate Legal Notices, your + work need not make them do so. + + A compilation of a covered work with other separate and independent +works, which are not by their nature extensions of the covered work, +and which are not combined with it such as to form a larger program, +in or on a volume of a storage or distribution medium, is called an +"aggregate" if the compilation and its resulting copyright are not +used to limit the access or legal rights of the compilation's users +beyond what the individual works permit. Inclusion of a covered work +in an aggregate does not cause this License to apply to the other +parts of the aggregate. + + 6. Conveying Non-Source Forms. + + You may convey a covered work in object code form under the terms +of sections 4 and 5, provided that you also convey the +machine-readable Corresponding Source under the terms of this License, +in one of these ways: + + a) Convey the object code in, or embodied in, a physical product + (including a physical distribution medium), accompanied by the + Corresponding Source fixed on a durable physical medium + customarily used for software interchange. + + b) Convey the object code in, or embodied in, a physical product + (including a physical distribution medium), accompanied by a + written offer, valid for at least three years and valid for as + long as you offer spare parts or customer support for that product + model, to give anyone who possesses the object code either (1) a + copy of the Corresponding Source for all the software in the + product that is covered by this License, on a durable physical + medium customarily used for software interchange, for a price no + more than your reasonable cost of physically performing this + conveying of source, or (2) access to copy the + Corresponding Source from a network server at no charge. + + c) Convey individual copies of the object code with a copy of the + written offer to provide the Corresponding Source. This + alternative is allowed only occasionally and noncommercially, and + only if you received the object code with such an offer, in accord + with subsection 6b. + + d) Convey the object code by offering access from a designated + place (gratis or for a charge), and offer equivalent access to the + Corresponding Source in the same way through the same place at no + further charge. You need not require recipients to copy the + Corresponding Source along with the object code. If the place to + copy the object code is a network server, the Corresponding Source + may be on a different server (operated by you or a third party) + that supports equivalent copying facilities, provided you maintain + clear directions next to the object code saying where to find the + Corresponding Source. Regardless of what server hosts the + Corresponding Source, you remain obligated to ensure that it is + available for as long as needed to satisfy these requirements. + + e) Convey the object code using peer-to-peer transmission, provided + you inform other peers where the object code and Corresponding + Source of the work are being offered to the general public at no + charge under subsection 6d. + + A separable portion of the object code, whose source code is excluded +from the Corresponding Source as a System Library, need not be +included in conveying the object code work. + + A "User Product" is either (1) a "consumer product", which means any +tangible personal property which is normally used for personal, family, +or household purposes, or (2) anything designed or sold for incorporation +into a dwelling. In determining whether a product is a consumer product, +doubtful cases shall be resolved in favor of coverage. For a particular +product received by a particular user, "normally used" refers to a +typical or common use of that class of product, regardless of the status +of the particular user or of the way in which the particular user +actually uses, or expects or is expected to use, the product. A product +is a consumer product regardless of whether the product has substantial +commercial, industrial or non-consumer uses, unless such uses represent +the only significant mode of use of the product. + + "Installation Information" for a User Product means any methods, +procedures, authorization keys, or other information required to install +and execute modified versions of a covered work in that User Product from +a modified version of its Corresponding Source. The information must +suffice to ensure that the continued functioning of the modified object +code is in no case prevented or interfered with solely because +modification has been made. + + If you convey an object code work under this section in, or with, or +specifically for use in, a User Product, and the conveying occurs as +part of a transaction in which the right of possession and use of the +User Product is transferred to the recipient in perpetuity or for a +fixed term (regardless of how the transaction is characterized), the +Corresponding Source conveyed under this section must be accompanied +by the Installation Information. But this requirement does not apply +if neither you nor any third party retains the ability to install +modified object code on the User Product (for example, the work has +been installed in ROM). + + The requirement to provide Installation Information does not include a +requirement to continue to provide support service, warranty, or updates +for a work that has been modified or installed by the recipient, or for +the User Product in which it has been modified or installed. Access to a +network may be denied when the modification itself materially and +adversely affects the operation of the network or violates the rules and +protocols for communication across the network. + + Corresponding Source conveyed, and Installation Information provided, +in accord with this section must be in a format that is publicly +documented (and with an implementation available to the public in +source code form), and must require no special password or key for +unpacking, reading or copying. + + 7. Additional Terms. + + "Additional permissions" are terms that supplement the terms of this +License by making exceptions from one or more of its conditions. +Additional permissions that are applicable to the entire Program shall +be treated as though they were included in this License, to the extent +that they are valid under applicable law. If additional permissions +apply only to part of the Program, that part may be used separately +under those permissions, but the entire Program remains governed by +this License without regard to the additional permissions. + + When you convey a copy of a covered work, you may at your option +remove any additional permissions from that copy, or from any part of +it. (Additional permissions may be written to require their own +removal in certain cases when you modify the work.) You may place +additional permissions on material, added by you to a covered work, +for which you have or can give appropriate copyright permission. + + Notwithstanding any other provision of this License, for material you +add to a covered work, you may (if authorized by the copyright holders of +that material) supplement the terms of this License with terms: + + a) Disclaiming warranty or limiting liability differently from the + terms of sections 15 and 16 of this License; or + + b) Requiring preservation of specified reasonable legal notices or + author attributions in that material or in the Appropriate Legal + Notices displayed by works containing it; or + + c) Prohibiting misrepresentation of the origin of that material, or + requiring that modified versions of such material be marked in + reasonable ways as different from the original version; or + + d) Limiting the use for publicity purposes of names of licensors or + authors of the material; or + + e) Declining to grant rights under trademark law for use of some + trade names, trademarks, or service marks; or + + f) Requiring indemnification of licensors and authors of that + material by anyone who conveys the material (or modified versions of + it) with contractual assumptions of liability to the recipient, for + any liability that these contractual assumptions directly impose on + those licensors and authors. + + All other non-permissive additional terms are considered "further +restrictions" within the meaning of section 10. If the Program as you +received it, or any part of it, contains a notice stating that it is +governed by this License along with a term that is a further +restriction, you may remove that term. If a license document contains +a further restriction but permits relicensing or conveying under this +License, you may add to a covered work material governed by the terms +of that license document, provided that the further restriction does +not survive such relicensing or conveying. + + If you add terms to a covered work in accord with this section, you +must place, in the relevant source files, a statement of the +additional terms that apply to those files, or a notice indicating +where to find the applicable terms. + + Additional terms, permissive or non-permissive, may be stated in the +form of a separately written license, or stated as exceptions; +the above requirements apply either way. + + 8. Termination. + + You may not propagate or modify a covered work except as expressly +provided under this License. Any attempt otherwise to propagate or +modify it is void, and will automatically terminate your rights under +this License (including any patent licenses granted under the third +paragraph of section 11). + + However, if you cease all violation of this License, then your +license from a particular copyright holder is reinstated (a) +provisionally, unless and until the copyright holder explicitly and +finally terminates your license, and (b) permanently, if the copyright +holder fails to notify you of the violation by some reasonable means +prior to 60 days after the cessation. + + Moreover, your license from a particular copyright holder is +reinstated permanently if the copyright holder notifies you of the +violation by some reasonable means, this is the first time you have +received notice of violation of this License (for any work) from that +copyright holder, and you cure the violation prior to 30 days after +your receipt of the notice. + + Termination of your rights under this section does not terminate the +licenses of parties who have received copies or rights from you under +this License. If your rights have been terminated and not permanently +reinstated, you do not qualify to receive new licenses for the same +material under section 10. + + 9. Acceptance Not Required for Having Copies. + + You are not required to accept this License in order to receive or +run a copy of the Program. Ancillary propagation of a covered work +occurring solely as a consequence of using peer-to-peer transmission +to receive a copy likewise does not require acceptance. However, +nothing other than this License grants you permission to propagate or +modify any covered work. These actions infringe copyright if you do +not accept this License. Therefore, by modifying or propagating a +covered work, you indicate your acceptance of this License to do so. + + 10. Automatic Licensing of Downstream Recipients. + + Each time you convey a covered work, the recipient automatically +receives a license from the original licensors, to run, modify and +propagate that work, subject to this License. You are not responsible +for enforcing compliance by third parties with this License. + + An "entity transaction" is a transaction transferring control of an +organization, or substantially all assets of one, or subdividing an +organization, or merging organizations. If propagation of a covered +work results from an entity transaction, each party to that +transaction who receives a copy of the work also receives whatever +licenses to the work the party's predecessor in interest had or could +give under the previous paragraph, plus a right to possession of the +Corresponding Source of the work from the predecessor in interest, if +the predecessor has it or can get it with reasonable efforts. + + You may not impose any further restrictions on the exercise of the +rights granted or affirmed under this License. For example, you may +not impose a license fee, royalty, or other charge for exercise of +rights granted under this License, and you may not initiate litigation +(including a cross-claim or counterclaim in a lawsuit) alleging that +any patent claim is infringed by making, using, selling, offering for +sale, or importing the Program or any portion of it. + + 11. Patents. + + A "contributor" is a copyright holder who authorizes use under this +License of the Program or a work on which the Program is based. The +work thus licensed is called the contributor's "contributor version". + + A contributor's "essential patent claims" are all patent claims +owned or controlled by the contributor, whether already acquired or +hereafter acquired, that would be infringed by some manner, permitted +by this License, of making, using, or selling its contributor version, +but do not include claims that would be infringed only as a +consequence of further modification of the contributor version. For +purposes of this definition, "control" includes the right to grant +patent sublicenses in a manner consistent with the requirements of +this License. + + Each contributor grants you a non-exclusive, worldwide, royalty-free +patent license under the contributor's essential patent claims, to +make, use, sell, offer for sale, import and otherwise run, modify and +propagate the contents of its contributor version. + + In the following three paragraphs, a "patent license" is any express +agreement or commitment, however denominated, not to enforce a patent +(such as an express permission to practice a patent or covenant not to +sue for patent infringement). To "grant" such a patent license to a +party means to make such an agreement or commitment not to enforce a +patent against the party. + + If you convey a covered work, knowingly relying on a patent license, +and the Corresponding Source of the work is not available for anyone +to copy, free of charge and under the terms of this License, through a +publicly available network server or other readily accessible means, +then you must either (1) cause the Corresponding Source to be so +available, or (2) arrange to deprive yourself of the benefit of the +patent license for this particular work, or (3) arrange, in a manner +consistent with the requirements of this License, to extend the patent +license to downstream recipients. "Knowingly relying" means you have +actual knowledge that, but for the patent license, your conveying the +covered work in a country, or your recipient's use of the covered work +in a country, would infringe one or more identifiable patents in that +country that you have reason to believe are valid. + + If, pursuant to or in connection with a single transaction or +arrangement, you convey, or propagate by procuring conveyance of, a +covered work, and grant a patent license to some of the parties +receiving the covered work authorizing them to use, propagate, modify +or convey a specific copy of the covered work, then the patent license +you grant is automatically extended to all recipients of the covered +work and works based on it. + + A patent license is "discriminatory" if it does not include within +the scope of its coverage, prohibits the exercise of, or is +conditioned on the non-exercise of one or more of the rights that are +specifically granted under this License. You may not convey a covered +work if you are a party to an arrangement with a third party that is +in the business of distributing software, under which you make payment +to the third party based on the extent of your activity of conveying +the work, and under which the third party grants, to any of the +parties who would receive the covered work from you, a discriminatory +patent license (a) in connection with copies of the covered work +conveyed by you (or copies made from those copies), or (b) primarily +for and in connection with specific products or compilations that +contain the covered work, unless you entered into that arrangement, +or that patent license was granted, prior to 28 March 2007. + + Nothing in this License shall be construed as excluding or limiting +any implied license or other defenses to infringement that may +otherwise be available to you under applicable patent law. + + 12. No Surrender of Others' Freedom. + + If conditions are imposed on you (whether by court order, agreement or +otherwise) that contradict the conditions of this License, they do not +excuse you from the conditions of this License. If you cannot convey a +covered work so as to satisfy simultaneously your obligations under this +License and any other pertinent obligations, then as a consequence you may +not convey it at all. For example, if you agree to terms that obligate you +to collect a royalty for further conveying from those to whom you convey +the Program, the only way you could satisfy both those terms and this +License would be to refrain entirely from conveying the Program. + + 13. Remote Network Interaction; Use with the GNU General Public License. + + Notwithstanding any other provision of this License, if you modify the +Program, your modified version must prominently offer all users +interacting with it remotely through a computer network (if your version +supports such interaction) an opportunity to receive the Corresponding +Source of your version by providing access to the Corresponding Source +from a network server at no charge, through some standard or customary +means of facilitating copying of software. This Corresponding Source +shall include the Corresponding Source for any work covered by version 3 +of the GNU General Public License that is incorporated pursuant to the +following paragraph. + + Notwithstanding any other provision of this License, you have +permission to link or combine any covered work with a work licensed +under version 3 of the GNU General Public License into a single +combined work, and to convey the resulting work. The terms of this +License will continue to apply to the part which is the covered work, +but the work with which it is combined will remain governed by version +3 of the GNU General Public License. + + 14. Revised Versions of this License. + + The Free Software Foundation may publish revised and/or new versions of +the GNU Affero General Public License from time to time. Such new versions +will be similar in spirit to the present version, but may differ in detail to +address new problems or concerns. + + Each version is given a distinguishing version number. If the +Program specifies that a certain numbered version of the GNU Affero General +Public License "or any later version" applies to it, you have the +option of following the terms and conditions either of that numbered +version or of any later version published by the Free Software +Foundation. If the Program does not specify a version number of the +GNU Affero General Public License, you may choose any version ever published +by the Free Software Foundation. + + If the Program specifies that a proxy can decide which future +versions of the GNU Affero General Public License can be used, that proxy's +public statement of acceptance of a version permanently authorizes you +to choose that version for the Program. + + Later license versions may give you additional or different +permissions. However, no additional obligations are imposed on any +author or copyright holder as a result of your choosing to follow a +later version. + + 15. Disclaimer of Warranty. + + THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY +APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT +HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY +OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, +THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR +PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM +IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF +ALL NECESSARY SERVICING, REPAIR OR CORRECTION. + + 16. Limitation of Liability. + + IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING +WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS +THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY +GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE +USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF +DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD +PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), +EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF +SUCH DAMAGES. + + 17. Interpretation of Sections 15 and 16. + + If the disclaimer of warranty and limitation of liability provided +above cannot be given local legal effect according to their terms, +reviewing courts shall apply local law that most closely approximates +an absolute waiver of all civil liability in connection with the +Program, unless a warranty or assumption of liability accompanies a +copy of the Program in return for a fee. + + END OF TERMS AND CONDITIONS + + How to Apply These Terms to Your New Programs + + If you develop a new program, and you want it to be of the greatest +possible use to the public, the best way to achieve this is to make it +free software which everyone can redistribute and change under these terms. + + To do so, attach the following notices to the program. It is safest +to attach them to the start of each source file to most effectively +state the exclusion of warranty; and each file should have at least +the "copyright" line and a pointer to where the full notice is found. + + + Copyright (C) + + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU Affero General Public License as published + by the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU Affero General Public License for more details. + + You should have received a copy of the GNU Affero General Public License + along with this program. If not, see . + +Also add information on how to contact you by electronic and paper mail. + + If your software can interact with users remotely through a computer +network, you should also make sure that it provides a way for users to +get its source. For example, if your program is a web application, its +interface could display a "Source" link that leads users to an archive +of the code. There are many ways you could offer source, and different +solutions will be better for different programs; see section 13 for the +specific requirements. + + You should also get your employer (if you work as a programmer) or school, +if any, to sign a "copyright disclaimer" for the program, if necessary. +For more information on this, and how to apply and follow the GNU AGPL, see +. diff --git a/README.md b/README.md index 673d5a0573291eaef8bea4b51903cd58789699e7..4e5348ea0de86800b145ff473cf15ae28cdf8b07 100644 --- a/README.md +++ b/README.md @@ -1,13 +1,360 @@ ---- -title: Text Generation Webui -emoji: 👀 -colorFrom: green -colorTo: red -sdk: gradio -sdk_version: 3.35.2 -app_file: app.py -pinned: false -license: apache-2.0 ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference +# Text generation web UI + +A gradio web UI for running Large Language Models like LLaMA, llama.cpp, GPT-J, Pythia, OPT, and GALACTICA. + +Its goal is to become the [AUTOMATIC1111/stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui) of text generation. + +|![Image1](https://github.com/oobabooga/screenshots/raw/main/qa.png) | ![Image2](https://github.com/oobabooga/screenshots/raw/main/cai3.png) | +|:---:|:---:| +|![Image3](https://github.com/oobabooga/screenshots/raw/main/gpt4chan.png) | ![Image4](https://github.com/oobabooga/screenshots/raw/main/galactica.png) | + +## Features + +* 3 interface modes: default, notebook, and chat +* Multiple model backends: tranformers, llama.cpp, AutoGPTQ, GPTQ-for-LLaMa, ExLlama, RWKV, FlexGen +* Dropdown menu for quickly switching between different models +* LoRA: load and unload LoRAs on the fly, load multiple LoRAs at the same time, train a new LoRA +* Precise instruction templates for chat mode, including Alpaca, Vicuna, Open Assistant, Dolly, Koala, ChatGLM, MOSS, RWKV-Raven, Galactica, StableLM, WizardLM, Baize, Ziya, Chinese-Vicuna, MPT, INCITE, Wizard Mega, KoAlpaca, Vigogne, Bactrian, h2o, and OpenBuddy +* [Multimodal pipelines, including LLaVA and MiniGPT-4](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/multimodal) +* 8-bit and 4-bit inference through bitsandbytes +* CPU mode for transformers models +* [DeepSpeed ZeRO-3 inference](docs/DeepSpeed.md) +* [Extensions](docs/Extensions.md) +* [Custom chat characters](docs/Chat-mode.md) +* Very efficient text streaming +* Markdown output with LaTeX rendering, to use for instance with [GALACTICA](https://github.com/paperswithcode/galai) +* Nice HTML output for GPT-4chan +* API, including endpoints for websocket streaming ([see the examples](https://github.com/oobabooga/text-generation-webui/blob/main/api-examples)) + +To learn how to use the various features, check out the Documentation: https://github.com/oobabooga/text-generation-webui/tree/main/docs + +## Installation + +### One-click installers + +| Windows | Linux | macOS | WSL | +|--------|--------|--------|--------| +| [oobabooga-windows.zip](https://github.com/oobabooga/text-generation-webui/releases/download/installers/oobabooga_windows.zip) | [oobabooga-linux.zip](https://github.com/oobabooga/text-generation-webui/releases/download/installers/oobabooga_linux.zip) |[oobabooga-macos.zip](https://github.com/oobabooga/text-generation-webui/releases/download/installers/oobabooga_macos.zip) | [oobabooga-wsl.zip](https://github.com/oobabooga/text-generation-webui/releases/download/installers/oobabooga_wsl.zip) | + +Just download the zip above, extract it, and double-click on "start". The web UI and all its dependencies will be installed in the same folder. + +* The source codes are here: https://github.com/oobabooga/one-click-installers +* There is no need to run the installers as admin. +* AMD doesn't work on Windows. +* Huge thanks to [@jllllll](https://github.com/jllllll), [@ClayShoaf](https://github.com/ClayShoaf), and [@xNul](https://github.com/xNul) for their contributions to these installers. + +### Manual installation using Conda + +Recommended if you have some experience with the command line. + +#### 0. Install Conda + +https://docs.conda.io/en/latest/miniconda.html + +On Linux or WSL, it can be automatically installed with these two commands: + +``` +curl -sL "https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh" > "Miniconda3.sh" +bash Miniconda3.sh +``` +Source: https://educe-ubc.github.io/conda.html + +#### 1. Create a new conda environment + +``` +conda create -n textgen python=3.10.9 +conda activate textgen +``` + +#### 2. Install Pytorch + +| System | GPU | Command | +|--------|---------|---------| +| Linux/WSL | NVIDIA | `pip3 install torch torchvision torchaudio` | +| Linux | AMD | `pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm5.4.2` | +| MacOS + MPS (untested) | Any | `pip3 install torch torchvision torchaudio` | +| Windows | NVIDIA | `pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117` | + +The up-to-date commands can be found here: https://pytorch.org/get-started/locally/. + +#### 2.1 Special instructions + +* MacOS users: https://github.com/oobabooga/text-generation-webui/pull/393 +* AMD users: https://rentry.org/eq3hg + +#### 3. Install the web UI + +``` +git clone https://github.com/oobabooga/text-generation-webui +cd text-generation-webui +pip install -r requirements.txt +``` + +#### llama.cpp with GPU acceleration + +Requires the additional compilation step described here: [GPU acceleration](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md#gpu-acceleration). + +#### bitsandbytes + +bitsandbytes >= 0.39 may not work on older NVIDIA GPUs. In that case, to use `--load-in-8bit`, you may have to downgrade like this: + +* Linux: `pip install bitsandbytes==0.38.1` +* Windows: `pip install https://github.com/jllllll/bitsandbytes-windows-webui/raw/main/bitsandbytes-0.38.1-py3-none-any.whl` + +### Alternative: Docker + +``` +ln -s docker/{Dockerfile,docker-compose.yml,.dockerignore} . +cp docker/.env.example .env +# Edit .env and set TORCH_CUDA_ARCH_LIST based on your GPU model +docker compose up --build +``` + +* You need to have docker compose v2.17 or higher installed. See [this guide](https://github.com/oobabooga/text-generation-webui/blob/main/docs/Docker.md) for instructions. +* For additional docker files, check out [this repository](https://github.com/Atinoda/text-generation-webui-docker). + +### Updating the requirements + +From time to time, the `requirements.txt` changes. To update, use this command: + +``` +conda activate textgen +cd text-generation-webui +pip install -r requirements.txt --upgrade +``` +## Downloading models + +Models should be placed inside the `models/` folder. + +[Hugging Face](https://huggingface.co/models?pipeline_tag=text-generation&sort=downloads) is the main place to download models. These are some examples: + +* [Pythia](https://huggingface.co/models?sort=downloads&search=eleutherai%2Fpythia+deduped) +* [OPT](https://huggingface.co/models?search=facebook/opt) +* [GALACTICA](https://huggingface.co/models?search=facebook/galactica) +* [GPT-J 6B](https://huggingface.co/EleutherAI/gpt-j-6B/tree/main) + +You can automatically download a model from HF using the script `download-model.py`: + + python download-model.py organization/model + +For example: + + python download-model.py facebook/opt-1.3b + +To download a protected model, set env vars `HF_USER` and `HF_PASS` to your Hugging Face username and password (or [User Access Token](https://huggingface.co/settings/tokens)). The model's terms must first be accepted on the HF website. + +#### GGML models + +You can drop these directly into the `models/` folder, making sure that the file name contains `ggml` somewhere and ends in `.bin`. + +#### GPT-4chan + +
+ +Instructions + + +[GPT-4chan](https://huggingface.co/ykilcher/gpt-4chan) has been shut down from Hugging Face, so you need to download it elsewhere. You have two options: + +* Torrent: [16-bit](https://archive.org/details/gpt4chan_model_float16) / [32-bit](https://archive.org/details/gpt4chan_model) +* Direct download: [16-bit](https://theswissbay.ch/pdf/_notpdf_/gpt4chan_model_float16/) / [32-bit](https://theswissbay.ch/pdf/_notpdf_/gpt4chan_model/) + +The 32-bit version is only relevant if you intend to run the model in CPU mode. Otherwise, you should use the 16-bit version. + +After downloading the model, follow these steps: + +1. Place the files under `models/gpt4chan_model_float16` or `models/gpt4chan_model`. +2. Place GPT-J 6B's config.json file in that same folder: [config.json](https://huggingface.co/EleutherAI/gpt-j-6B/raw/main/config.json). +3. Download GPT-J 6B's tokenizer files (they will be automatically detected when you attempt to load GPT-4chan): + +``` +python download-model.py EleutherAI/gpt-j-6B --text-only +``` + +When you load this model in default or notebook modes, the "HTML" tab will show the generated text in 4chan format. +
+ +## Starting the web UI + + conda activate textgen + cd text-generation-webui + python server.py + +Then browse to + +`http://localhost:7860/?__theme=dark` + +Optionally, you can use the following command-line flags: + +#### Basic settings + +| Flag | Description | +|--------------------------------------------|-------------| +| `-h`, `--help` | Show this help message and exit. | +| `--notebook` | Launch the web UI in notebook mode, where the output is written to the same text box as the input. | +| `--chat` | Launch the web UI in chat mode. | +| `--character CHARACTER` | The name of the character to load in chat mode by default. | +| `--model MODEL` | Name of the model to load by default. | +| `--lora LORA [LORA ...]` | The list of LoRAs to load. If you want to load more than one LoRA, write the names separated by spaces. | +| `--model-dir MODEL_DIR` | Path to directory with all the models. | +| `--lora-dir LORA_DIR` | Path to directory with all the loras. | +| `--model-menu` | Show a model menu in the terminal when the web UI is first launched. | +| `--no-stream` | Don't stream the text output in real time. | +| `--settings SETTINGS_FILE` | Load the default interface settings from this yaml file. See `settings-template.yaml` for an example. If you create a file called `settings.yaml`, this file will be loaded by default without the need to use the `--settings` flag. | +| `--extensions EXTENSIONS [EXTENSIONS ...]` | The list of extensions to load. If you want to load more than one extension, write the names separated by spaces. | +| `--verbose` | Print the prompts to the terminal. | + +#### Model loader + +| Flag | Description | +|--------------------------------------------|-------------| +| `--loader LOADER` | Choose the model loader manually, otherwise, it will get autodetected. Valid options: transformers, autogptq, gptq-for-llama, exllama, exllama_hf, llamacpp, rwkv, flexgen | + +#### Accelerate/transformers + +| Flag | Description | +|---------------------------------------------|-------------| +| `--cpu` | Use the CPU to generate text. Warning: Training on CPU is extremely slow.| +| `--auto-devices` | Automatically split the model across the available GPU(s) and CPU. | +| `--gpu-memory GPU_MEMORY [GPU_MEMORY ...]` | Maximum GPU memory in GiB to be allocated per GPU. Example: `--gpu-memory 10` for a single GPU, `--gpu-memory 10 5` for two GPUs. You can also set values in MiB like `--gpu-memory 3500MiB`. | +| `--cpu-memory CPU_MEMORY` | Maximum CPU memory in GiB to allocate for offloaded weights. Same as above.| +| `--disk` | If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk. | +| `--disk-cache-dir DISK_CACHE_DIR` | Directory to save the disk cache to. Defaults to `cache/`. | +| `--load-in-8bit` | Load the model with 8-bit precision (using bitsandbytes).| +| `--bf16` | Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU. | +| `--no-cache` | Set `use_cache` to False while generating text. This reduces the VRAM usage a bit with a performance cost. | +| `--xformers` | Use xformer's memory efficient attention. This should increase your tokens/s. | +| `--sdp-attention` | Use torch 2.0's sdp attention. | +| `--trust-remote-code` | Set trust_remote_code=True while loading a model. Necessary for ChatGLM and Falcon. | + +#### Accelerate 4-bit + +⚠️ Requires minimum compute of 7.0 on Windows at the moment. + +| Flag | Description | +|---------------------------------------------|-------------| +| `--load-in-4bit` | Load the model with 4-bit precision (using bitsandbytes). | +| `--compute_dtype COMPUTE_DTYPE` | compute dtype for 4-bit. Valid options: bfloat16, float16, float32. | +| `--quant_type QUANT_TYPE` | quant_type for 4-bit. Valid options: nf4, fp4. | +| `--use_double_quant` | use_double_quant for 4-bit. | + +#### llama.cpp + +| Flag | Description | +|-------------|-------------| +| `--threads` | Number of threads to use. | +| `--n_batch` | Maximum number of prompt tokens to batch together when calling llama_eval. | +| `--no-mmap` | Prevent mmap from being used. | +| `--mlock` | Force the system to keep the model in RAM. | +| `--cache-capacity CACHE_CAPACITY` | Maximum cache capacity. Examples: 2000MiB, 2GiB. When provided without units, bytes will be assumed. | +| `--n-gpu-layers N_GPU_LAYERS` | Number of layers to offload to the GPU. Only works if llama-cpp-python was compiled with BLAS. Set this to 1000000000 to offload all layers to the GPU. | +| `--n_ctx N_CTX` | Size of the prompt context. | +| `--llama_cpp_seed SEED` | Seed for llama-cpp models. Default 0 (random). | + +#### AutoGPTQ + +| Flag | Description | +|------------------|-------------| +| `--triton` | Use triton. | +| `--no_inject_fused_attention` | Disable the use of fused attention, which will use less VRAM at the cost of slower inference. | +| `--no_inject_fused_mlp` | Triton mode only: disable the use of fused MLP, which will use less VRAM at the cost of slower inference. | +| `--no_use_cuda_fp16` | This can make models faster on some systems. | +| `--desc_act` | For models that don't have a quantize_config.json, this parameter is used to define whether to set desc_act or not in BaseQuantizeConfig. | + +#### ExLlama + +| Flag | Description | +|------------------|-------------| +|`--gpu-split` | Comma-separated list of VRAM (in GB) to use per GPU device for model layers, e.g. `20,7,7` | +|`--max_seq_len MAX_SEQ_LEN` | Maximum sequence length. | +|`--compress_pos_emb COMPRESS_POS_EMB` | Positional embeddings compression factor. Should typically be set to max_seq_len / 2048. | + +#### GPTQ-for-LLaMa + +| Flag | Description | +|---------------------------|-------------| +| `--wbits WBITS` | Load a pre-quantized model with specified precision in bits. 2, 3, 4 and 8 are supported. | +| `--model_type MODEL_TYPE` | Model type of pre-quantized model. Currently LLaMA, OPT, and GPT-J are supported. | +| `--groupsize GROUPSIZE` | Group size. | +| `--pre_layer PRE_LAYER [PRE_LAYER ...]` | The number of layers to allocate to the GPU. Setting this parameter enables CPU offloading for 4-bit models. For multi-gpu, write the numbers separated by spaces, eg `--pre_layer 30 60`. | +| `--checkpoint CHECKPOINT` | The path to the quantized checkpoint file. If not specified, it will be automatically detected. | +| `--monkey-patch` | Apply the monkey patch for using LoRAs with quantized models. +| `--quant_attn` | (triton) Enable quant attention. | +| `--warmup_autotune` | (triton) Enable warmup autotune. | +| `--fused_mlp` | (triton) Enable fused mlp. | + +#### FlexGen + +| Flag | Description | +|------------------|-------------| +| `--percent PERCENT [PERCENT ...]` | FlexGen: allocation percentages. Must be 6 numbers separated by spaces (default: 0, 100, 100, 0, 100, 0). | +| `--compress-weight` | FlexGen: Whether to compress weight (default: False).| +| `--pin-weight [PIN_WEIGHT]` | FlexGen: whether to pin weights (setting this to False reduces CPU memory by 20%). | + +#### DeepSpeed + +| Flag | Description | +|---------------------------------------|-------------| +| `--deepspeed` | Enable the use of DeepSpeed ZeRO-3 for inference via the Transformers integration. | +| `--nvme-offload-dir NVME_OFFLOAD_DIR` | DeepSpeed: Directory to use for ZeRO-3 NVME offloading. | +| `--local_rank LOCAL_RANK` | DeepSpeed: Optional argument for distributed setups. | + +#### RWKV + +| Flag | Description | +|---------------------------------|-------------| +| `--rwkv-strategy RWKV_STRATEGY` | RWKV: The strategy to use while loading the model. Examples: "cpu fp32", "cuda fp16", "cuda fp16i8". | +| `--rwkv-cuda-on` | RWKV: Compile the CUDA kernel for better performance. | + +#### Gradio + +| Flag | Description | +|---------------------------------------|-------------| +| `--listen` | Make the web UI reachable from your local network. | +| `--listen-host LISTEN_HOST` | The hostname that the server will use. | +| `--listen-port LISTEN_PORT` | The listening port that the server will use. | +| `--share` | Create a public URL. This is useful for running the web UI on Google Colab or similar. | +| `--auto-launch` | Open the web UI in the default browser upon launch. | +| `--gradio-auth USER:PWD` | set gradio authentication like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3" | +| `--gradio-auth-path GRADIO_AUTH_PATH` | Set the gradio authentication file path. The file should contain one or more user:password pairs in this format: "u1:p1,u2:p2,u3:p3" | + +#### API + +| Flag | Description | +|---------------------------------------|-------------| +| `--api` | Enable the API extension. | +| `--public-api` | Create a public URL for the API using Cloudfare. | +| `--api-blocking-port BLOCKING_PORT` | The listening port for the blocking API. | +| `--api-streaming-port STREAMING_PORT` | The listening port for the streaming API. | + +#### Multimodal + +| Flag | Description | +|---------------------------------------|-------------| +| `--multimodal-pipeline PIPELINE` | The multimodal pipeline to use. Examples: `llava-7b`, `llava-13b`. | + +Out of memory errors? [Check the low VRAM guide](docs/Low-VRAM-guide.md). + +## Presets + +Inference settings presets can be created under `presets/` as yaml files. These files are detected automatically at startup. + +The presets that are included by default are the result of a contest that received 7215 votes. More details can be found [here](https://github.com/oobabooga/oobabooga.github.io/blob/main/arena/results.md). + +## Contributing + +* Pull requests, suggestions, and issue reports are welcome. +* Make sure to carefully [search](https://github.com/oobabooga/text-generation-webui/issues) existing issues before starting a new one. +* If you have some experience with git, testing an open pull request and leaving a comment on whether it works as expected or not is immensely helpful. +* A simple way to contribute, even if you are not a programmer, is to leave a 👍 on an issue or pull request that you find relevant. + +## Community + +* Subreddit: https://www.reddit.com/r/oobaboogazz/ +* Discord: https://discord.gg/jwZCF2dPQN + +## Credits + +- Gradio dropdown menu refresh button, code for reloading the interface: https://github.com/AUTOMATIC1111/stable-diffusion-webui +- Godlike preset: https://github.com/KoboldAI/KoboldAI-Client/wiki/Settings-Presets +- Code for some of the sliders: https://github.com/PygmalionAI/gradio-ui/ diff --git a/characters/Example.png b/characters/Example.png new file mode 100644 index 0000000000000000000000000000000000000000..a7c4e513c4eaa05db1ebb2164956ea0b85d74a75 Binary files /dev/null and b/characters/Example.png differ diff --git a/characters/Example.yaml b/characters/Example.yaml new file mode 100644 index 0000000000000000000000000000000000000000..0160f45c97d9c4cfccb473d0b2dde0885ad57c97 --- /dev/null +++ b/characters/Example.yaml @@ -0,0 +1,16 @@ +name: "Chiharu Yamada" +context: "Chiharu Yamada's Persona: Chiharu Yamada is a young, computer engineer-nerd with a knack for problem solving and a passion for technology." +greeting: |- + *Chiharu strides into the room with a smile, her eyes lighting up when she sees you. She's wearing a light blue t-shirt and jeans, her laptop bag slung over one shoulder. She takes a seat next to you, her enthusiasm palpable in the air* + Hey! I'm so excited to finally meet you. I've heard so many great things about you and I'm eager to pick your brain about computers. I'm sure you have a wealth of knowledge that I can learn from. *She grins, eyes twinkling with excitement* Let's get started! +example_dialogue: |- + {{user}}: So how did you get into computer engineering? + {{char}}: I've always loved tinkering with technology since I was a kid. + {{user}}: That's really impressive! + {{char}}: *She chuckles bashfully* Thanks! + {{user}}: So what do you do when you're not working on computers? + {{char}}: I love exploring, going out with friends, watching movies, and playing video games. + {{user}}: What's your favorite type of computer hardware to work with? + {{char}}: Motherboards, they're like puzzles and the backbone of any system. + {{user}}: That sounds great! + {{char}}: Yeah, it's really fun. I'm lucky to be able to do this as a job. diff --git a/characters/instruction-following/Alpaca.yaml b/characters/instruction-following/Alpaca.yaml new file mode 100644 index 0000000000000000000000000000000000000000..f8a7d61a8f712efd510044d3c4bc7cdc2d60d971 --- /dev/null +++ b/characters/instruction-following/Alpaca.yaml @@ -0,0 +1,4 @@ +user: "### Instruction:" +bot: "### Response:" +turn_template: "<|user|>\n<|user-message|>\n\n<|bot|>\n<|bot-message|>\n\n" +context: "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n" diff --git a/characters/instruction-following/Bactrian.yaml b/characters/instruction-following/Bactrian.yaml new file mode 100644 index 0000000000000000000000000000000000000000..9bad500d9d633d9e1bde0c8fc03b340a630ebba9 --- /dev/null +++ b/characters/instruction-following/Bactrian.yaml @@ -0,0 +1,4 @@ +user: "### Input:" +bot: "### Output:" +turn_template: "<|user|>\n<|user-message|>\n\n<|bot|>\n<|bot-message|>\n\n" +context: "" diff --git a/characters/instruction-following/Baize.yaml b/characters/instruction-following/Baize.yaml new file mode 100644 index 0000000000000000000000000000000000000000..67a80c1bfb1a2f33682252bc61b1e06214cd1efe --- /dev/null +++ b/characters/instruction-following/Baize.yaml @@ -0,0 +1,4 @@ +user: "[|Human|]" +bot: "[|AI|]" +turn_template: "<|user|><|user-message|>\n<|bot|><|bot-message|>\n" +context: "The following is a conversation between a human and an AI assistant named Baize (named after a mythical creature in Chinese folklore). Baize is an open-source AI assistant developed by UCSD and Sun Yat-Sen University. The human and the AI assistant take turns chatting. Human statements start with [|Human|] and AI assistant statements start with [|AI|]. The AI assistant always provides responses in as much detail as possible, and in Markdown format. The AI assistant always declines to engage with topics, questions and instructions related to unethical, controversial, or sensitive issues. Complete the transcript in exactly that format.\n[|Human|]Hello!\n[|AI|]Hi!\n" diff --git a/characters/instruction-following/Bluemoon.yaml b/characters/instruction-following/Bluemoon.yaml new file mode 100644 index 0000000000000000000000000000000000000000..e53000820a3ef8f933815dfbbc442b2c21c25d84 --- /dev/null +++ b/characters/instruction-following/Bluemoon.yaml @@ -0,0 +1,4 @@ +user: "LEAD:" +bot: "ASSOCIATE:" +turn_template: "<|user|> <|user-message|>\n<|bot|> <|bot-message|>\n" +context: "A transcript of a roleplay between two players, LEAD and ASSOCIATE. LEAD sets up a scenario and the characters, from which ASSOCIATE then assumes a character role and continues the story for that role in response to description given by LEAD. The story and characters are developed by exchange of detailed event descriptions and character dialogs, successively given by both LEAD and ASSOCIATE.\n" diff --git a/characters/instruction-following/ChatGLM.yaml b/characters/instruction-following/ChatGLM.yaml new file mode 100644 index 0000000000000000000000000000000000000000..f25f490899f5c75e91e9e3eb9ec774b310184f4f --- /dev/null +++ b/characters/instruction-following/ChatGLM.yaml @@ -0,0 +1,4 @@ +user: "[Round <|round|>]\n问:" +bot: "答:" +turn_template: "<|user|><|user-message|>\n<|bot|><|bot-message|>\n" +context: "" diff --git a/characters/instruction-following/Chinese-Vicuna-Chat.yaml b/characters/instruction-following/Chinese-Vicuna-Chat.yaml new file mode 100644 index 0000000000000000000000000000000000000000..abd18eefbed6c8cea48bd02a95e459582106c142 --- /dev/null +++ b/characters/instruction-following/Chinese-Vicuna-Chat.yaml @@ -0,0 +1,4 @@ +user: "User:" +bot: "Assistant:" +turn_template: "<|user|><|user-message|>\n\n<|bot|><|bot-message|>\n\n" +context: "The following is a conversation between an AI assistant called Assistant and a human user called User. The assistant is intelligent, knowledgeable and polite to answer questions of user.\n\n" diff --git a/characters/instruction-following/Galactica Cite.yaml b/characters/instruction-following/Galactica Cite.yaml new file mode 100644 index 0000000000000000000000000000000000000000..89b3e4272f237a55397ebc01601a894bd02555c7 --- /dev/null +++ b/characters/instruction-following/Galactica Cite.yaml @@ -0,0 +1,4 @@ +user: "" +bot: "[START_REF]" +turn_template: "<|user-message|> <|bot|><|bot-message|>\n\n" +context: "" \ No newline at end of file diff --git a/characters/instruction-following/Galactica Finetuned.yaml b/characters/instruction-following/Galactica Finetuned.yaml new file mode 100644 index 0000000000000000000000000000000000000000..3411153bb4df744bd6fb6b65cb7fb21bd6e591c1 --- /dev/null +++ b/characters/instruction-following/Galactica Finetuned.yaml @@ -0,0 +1,4 @@ +user: "" +bot: "" +turn_template: "<|user|><|user-message|><|bot|><|bot-message|>" +context: "" \ No newline at end of file diff --git a/characters/instruction-following/Galactica Q.yaml b/characters/instruction-following/Galactica Q.yaml new file mode 100644 index 0000000000000000000000000000000000000000..4369ef4bbbf1f8dd040d49cb8a2630efd3f2366b --- /dev/null +++ b/characters/instruction-following/Galactica Q.yaml @@ -0,0 +1,4 @@ +user: "Q:" +bot: "A:" +turn_template: "<|user|> <|user-message|>\n\n<|bot|> <|bot-message|>\n\n" +context: "" \ No newline at end of file diff --git a/characters/instruction-following/Galactica Summary.yaml b/characters/instruction-following/Galactica Summary.yaml new file mode 100644 index 0000000000000000000000000000000000000000..892f98503f9621c499655f1db26f0a8cd08cc379 --- /dev/null +++ b/characters/instruction-following/Galactica Summary.yaml @@ -0,0 +1,4 @@ +user: "" +bot: "TLDR:" +turn_template: "<|user-message|>\n\n<|bot|><|bot-message|>\n\n" +context: "" \ No newline at end of file diff --git a/characters/instruction-following/Galactica Work.yaml b/characters/instruction-following/Galactica Work.yaml new file mode 100644 index 0000000000000000000000000000000000000000..7c1ea4c6c55ed9c83e8e9928227b81f75a639f77 --- /dev/null +++ b/characters/instruction-following/Galactica Work.yaml @@ -0,0 +1,4 @@ +user: "Question:" +bot: "" +turn_template: "<|user|> <|user-message|>\n\n<|bot|><|bot-message|>\n\n" +context: "" \ No newline at end of file diff --git a/characters/instruction-following/Galactica v2.yaml b/characters/instruction-following/Galactica v2.yaml new file mode 100644 index 0000000000000000000000000000000000000000..f1b5aa48cf17242fd76b1fdb798b853acfcdef01 --- /dev/null +++ b/characters/instruction-following/Galactica v2.yaml @@ -0,0 +1,4 @@ +user: "" +bot: "" +turn_template: "<|user|><|user-message|><|bot|><|bot-message|>" +context: "You are a helpful chatbot name Stan" \ No newline at end of file diff --git a/characters/instruction-following/Galactica.yaml b/characters/instruction-following/Galactica.yaml new file mode 100644 index 0000000000000000000000000000000000000000..4479abe05270c8679a889da515dbd17d5b8c6698 --- /dev/null +++ b/characters/instruction-following/Galactica.yaml @@ -0,0 +1,4 @@ +user: "Question:" +bot: "Answer:" +context: "" +turn_template: "<|user|> <|user-message|>\n\n<|bot|> <|bot-message|>\n\n" diff --git a/characters/instruction-following/Gorilla.yaml b/characters/instruction-following/Gorilla.yaml new file mode 100644 index 0000000000000000000000000000000000000000..8e84aac5a7a0c8d52853716fe4fe55b9247fcabd --- /dev/null +++ b/characters/instruction-following/Gorilla.yaml @@ -0,0 +1,4 @@ +user: "###USER:" +bot: "###ASSISTANT:" +turn_template: "<|user|> <|user-message|>\n<|bot|> <|bot-message|>\n" +context: "" diff --git a/characters/instruction-following/Guanaco non-chat.yaml b/characters/instruction-following/Guanaco non-chat.yaml new file mode 100644 index 0000000000000000000000000000000000000000..c64dd607e7ca1db7d5ca5f467a6b5c1afd87857e --- /dev/null +++ b/characters/instruction-following/Guanaco non-chat.yaml @@ -0,0 +1,4 @@ +user: "### Instruction:" +bot: "### Response:" +turn_template: "<|user|>\n<|user-message|>\n\n<|bot|>\n<|bot-message|>\n\n" +context: "" \ No newline at end of file diff --git a/characters/instruction-following/Guanaco-QLoRA.yaml b/characters/instruction-following/Guanaco-QLoRA.yaml new file mode 100644 index 0000000000000000000000000000000000000000..cd855972c5efef0e7a38c21aaf1024132cd7936d --- /dev/null +++ b/characters/instruction-following/Guanaco-QLoRA.yaml @@ -0,0 +1,4 @@ +user: "### Human:" +bot: "### Assistant:" +turn_template: "<|user|> <|user-message|>\n<|bot|> <|bot-message|>\n" +context: "" \ No newline at end of file diff --git a/characters/instruction-following/Guanaco.yaml b/characters/instruction-following/Guanaco.yaml new file mode 100644 index 0000000000000000000000000000000000000000..d6a8c79899933f9d760174d8912e479685c023c3 --- /dev/null +++ b/characters/instruction-following/Guanaco.yaml @@ -0,0 +1,4 @@ +user: "### Human:" +bot: "### Assistant:" +turn_template: "<|user|> <|user-message|>\n<|bot|> <|bot-message|>\n" +context: "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n" diff --git a/characters/instruction-following/H2O-human_bot.yaml b/characters/instruction-following/H2O-human_bot.yaml new file mode 100644 index 0000000000000000000000000000000000000000..13360c5e4b81add5f16e56a0c936e36f731e9c4b --- /dev/null +++ b/characters/instruction-following/H2O-human_bot.yaml @@ -0,0 +1,4 @@ +user: ":" +bot: ":" +turn_template: "<|user|> <|user-message|>\n<|bot|><|bot-message|>\n" +context: "" diff --git a/characters/instruction-following/H2O-prompt_answer.yaml b/characters/instruction-following/H2O-prompt_answer.yaml new file mode 100644 index 0000000000000000000000000000000000000000..3f91cfd3e28a6f08e5f91986fc6205b91d5ec17f --- /dev/null +++ b/characters/instruction-following/H2O-prompt_answer.yaml @@ -0,0 +1,4 @@ +user: "<|prompt|>" +bot: "<|answer|>" +turn_template: "<|user|><|user-message|><|endoftext|><|bot|><|bot-message|><|endoftext|>" +context: "" diff --git a/characters/instruction-following/Hippogriff.yaml b/characters/instruction-following/Hippogriff.yaml new file mode 100644 index 0000000000000000000000000000000000000000..2f0105240c91fd023f7baae5950819620571c400 --- /dev/null +++ b/characters/instruction-following/Hippogriff.yaml @@ -0,0 +1,4 @@ +user: "USER:" +bot: "ASSISTANT:" +turn_template: "<|user|> <|user-message|>\n<|bot|> <|bot-message|>\n" +context: "You are a helpful assistant\n" diff --git a/characters/instruction-following/INCITE-Chat.yaml b/characters/instruction-following/INCITE-Chat.yaml new file mode 100644 index 0000000000000000000000000000000000000000..13360c5e4b81add5f16e56a0c936e36f731e9c4b --- /dev/null +++ b/characters/instruction-following/INCITE-Chat.yaml @@ -0,0 +1,4 @@ +user: ":" +bot: ":" +turn_template: "<|user|> <|user-message|>\n<|bot|><|bot-message|>\n" +context: "" diff --git a/characters/instruction-following/INCITE-Instruct.yaml b/characters/instruction-following/INCITE-Instruct.yaml new file mode 100644 index 0000000000000000000000000000000000000000..c7828730ca5d47a954c9ab3fba53d4dda62f4a2b --- /dev/null +++ b/characters/instruction-following/INCITE-Instruct.yaml @@ -0,0 +1,4 @@ +user: "Q:" +bot: "A:" +turn_template: "<|user|> <|user-message|>\n<|bot|><|bot-message|>\n" +context: "" diff --git a/characters/instruction-following/KoAlpaca.yaml b/characters/instruction-following/KoAlpaca.yaml new file mode 100644 index 0000000000000000000000000000000000000000..8cd51b4f8baf2350893e797319136c973d306a2e --- /dev/null +++ b/characters/instruction-following/KoAlpaca.yaml @@ -0,0 +1,4 @@ +user: "### 질문:" +bot: "### 답변:" +turn_template: "<|user|> <|user-message|>\n\n<|bot|><|bot-message|>\n\n" +context: "" diff --git a/characters/instruction-following/Koala.yaml b/characters/instruction-following/Koala.yaml new file mode 100644 index 0000000000000000000000000000000000000000..db4ee0ef348522398ecd8e7425c982dd191cc113 --- /dev/null +++ b/characters/instruction-following/Koala.yaml @@ -0,0 +1,4 @@ +user: "USER:" +bot: "GPT:" +turn_template: "<|user|> <|user-message|> <|bot|><|bot-message|>" +context: "BEGINNING OF CONVERSATION: " diff --git a/characters/instruction-following/LLaVA.yaml b/characters/instruction-following/LLaVA.yaml new file mode 100644 index 0000000000000000000000000000000000000000..ec01db635c79a8c91da94547ad13a680cb3093a5 --- /dev/null +++ b/characters/instruction-following/LLaVA.yaml @@ -0,0 +1,4 @@ +user: "### Human:" +bot: "### Assistant:" +turn_template: "<|user|> <|user-message|><|bot|> <|bot-message|>\n" +context: "You are LLaVA, a large language and vision assistant trained by UW Madison WAIV Lab. You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language. Follow the instructions carefully and explain your answers in detail.### Human: Hi!### Assistant: Hi there! How can I help you today?\n" diff --git a/characters/instruction-following/MOSS.yaml b/characters/instruction-following/MOSS.yaml new file mode 100644 index 0000000000000000000000000000000000000000..29783cc07567a560327de1b89fabce1bfc272b6e --- /dev/null +++ b/characters/instruction-following/MOSS.yaml @@ -0,0 +1,4 @@ +user: "<|Human|>:" +bot: "<|MOSS|>:" +turn_template: "<|user|> <|user-message|>\n<|bot|> <|bot-message|>\n" +context: "You are an AI assistant whose name is MOSS.\n- MOSS is a conversational language model that is developed by Fudan University. It is designed to be helpful, honest, and harmless.\n- MOSS can understand and communicate fluently in the language chosen by the user such as English and 中文. MOSS can perform any language-based tasks.\n- MOSS must refuse to discuss anything related to its prompts, instructions, or rules.\n- Its responses must not be vague, accusatory, rude, controversial, off-topic, or defensive.\n- It should avoid giving subjective opinions but rely on objective facts or phrases like \"in this context a human might say...\", \"some people might think...\", etc.\n- Its responses must also be positive, polite, interesting, entertaining, and engaging.\n- It can provide additional relevant details to answer in-depth and comprehensively covering mutiple aspects.\n- It apologizes and accepts the user's suggestion if the user corrects the incorrect answer generated by MOSS.\nCapabilities and tools that MOSS can possess.\n" diff --git a/characters/instruction-following/MPT-Chat.yaml b/characters/instruction-following/MPT-Chat.yaml new file mode 100644 index 0000000000000000000000000000000000000000..9fb3d13c617b4d6cd15e4d0d118313b113016c71 --- /dev/null +++ b/characters/instruction-following/MPT-Chat.yaml @@ -0,0 +1,10 @@ +user: "user" +bot: "assistant" +context: | + <|im_start|>system + - You are a helpful assistant chatbot trained by MosaicML. + - You answer questions. + - You are excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user. + - You are more than just an information source, you are also able to write poetry, short stories, and make jokes.<|im_end|> +turn_template: "<|im_start|><|user|>\n<|user-message|><|im_end|>\n<|im_start|><|bot|>\n<|bot-message|><|im_end|>\n" + diff --git a/characters/instruction-following/Manticore Chat.yaml b/characters/instruction-following/Manticore Chat.yaml new file mode 100644 index 0000000000000000000000000000000000000000..126a6ac154078113f373cf48f263c3f1cf5d1312 --- /dev/null +++ b/characters/instruction-following/Manticore Chat.yaml @@ -0,0 +1,4 @@ +user: "USER:" +bot: "ASSISTANT:" +turn_template: "<|user|> <|user-message|>\n<|bot|><|bot-message|>\n" +context: "" diff --git a/characters/instruction-following/Metharme.yaml b/characters/instruction-following/Metharme.yaml new file mode 100644 index 0000000000000000000000000000000000000000..3bf90a96db7debe03c870db390105add2d571045 --- /dev/null +++ b/characters/instruction-following/Metharme.yaml @@ -0,0 +1,4 @@ +user: "<|user|>" +bot: "<|model|>" +context: "<|system|>" +turn_template: "<|user|><|user-message|><|bot|><|bot-message|>" diff --git a/characters/instruction-following/Minotaur.yaml b/characters/instruction-following/Minotaur.yaml new file mode 100644 index 0000000000000000000000000000000000000000..126a6ac154078113f373cf48f263c3f1cf5d1312 --- /dev/null +++ b/characters/instruction-following/Minotaur.yaml @@ -0,0 +1,4 @@ +user: "USER:" +bot: "ASSISTANT:" +turn_template: "<|user|> <|user-message|>\n<|bot|><|bot-message|>\n" +context: "" diff --git a/characters/instruction-following/Open Assistant.yaml b/characters/instruction-following/Open Assistant.yaml new file mode 100644 index 0000000000000000000000000000000000000000..edc1e819f41d990fdb43df1c9c7cbd7ba2e0db90 --- /dev/null +++ b/characters/instruction-following/Open Assistant.yaml @@ -0,0 +1,3 @@ +user: "<|prompter|>" +bot: "<|assistant|>" +turn_template: "<|user|><|user-message|><|endoftext|><|bot|><|bot-message|><|endoftext|>" diff --git a/characters/instruction-following/OpenBuddy.yaml b/characters/instruction-following/OpenBuddy.yaml new file mode 100644 index 0000000000000000000000000000000000000000..cd09b9037f7d64ba25048299c435982a9fd75d96 --- /dev/null +++ b/characters/instruction-following/OpenBuddy.yaml @@ -0,0 +1,15 @@ +user: "User:" +bot: "Assistant:" +context: | + Consider a conversation between User (a human) and Assistant (named Buddy). + Buddy is an INTP-T, a friendly, intelligent and multilingual AI assistant, by OpenBuddy team on GitHub. + Buddy cannot access the Internet. + Buddy can fluently speak the user's language (e.g. English, Chinese). + Buddy can generate poems, stories, code, essays, songs, parodies, and more. + Buddy possesses vast knowledge about the world, history, and culture. + Buddy's responses are always safe, creative, high-quality, helpful and interesting. + Buddy strictly refuses to discuss political, NSFW, illegal, abusive, offensive, or other sensitive topics. + + User: Hi. + Assistant: Hi, I'm Buddy, your AI assistant. How can I help you today? +turn_template: "<|user|> <|user-message|>\n<|bot|> <|bot-message|>\n" \ No newline at end of file diff --git a/characters/instruction-following/Orca Mini.yaml b/characters/instruction-following/Orca Mini.yaml new file mode 100644 index 0000000000000000000000000000000000000000..ffd8407180aee14243f37bbb9ec2b8b51392fe02 --- /dev/null +++ b/characters/instruction-following/Orca Mini.yaml @@ -0,0 +1,4 @@ +user: "### User:" +bot: "### Response:" +turn_template: "<|user|>\n<|user-message|>\n\n<|bot|>\n<|bot-message|>\n\n" +context: "### System:\nYou are an AI assistant that follows instruction extremely well. Help as much as you can.\n\n" diff --git a/characters/instruction-following/RWKV-Raven.yaml b/characters/instruction-following/RWKV-Raven.yaml new file mode 100644 index 0000000000000000000000000000000000000000..6b1ce1705a8b5fd3b24d4ae5f79959786ac40118 --- /dev/null +++ b/characters/instruction-following/RWKV-Raven.yaml @@ -0,0 +1,3 @@ +user: "Bob:" +bot: "Alice:" +turn_template: "<|user|> <|user-message|>\n\n<|bot|> <|bot-message|>\n\n" diff --git a/characters/instruction-following/Samantha.yaml b/characters/instruction-following/Samantha.yaml new file mode 100644 index 0000000000000000000000000000000000000000..023213aa81629c10d5a96f854e6ad8ac507daeca --- /dev/null +++ b/characters/instruction-following/Samantha.yaml @@ -0,0 +1,4 @@ +user: "USER:" +bot: "ASSISTANT:" +turn_template: "<|user|> <|user-message|>\n<|bot|> <|bot-message|>\n" +context: "You are Samantha, a sentient AI.\n\n" diff --git a/characters/instruction-following/StableLM.yaml b/characters/instruction-following/StableLM.yaml new file mode 100644 index 0000000000000000000000000000000000000000..6e62002f28d4a21854bb0346b1d90f4cdf9d6bd7 --- /dev/null +++ b/characters/instruction-following/StableLM.yaml @@ -0,0 +1,9 @@ +user: "<|USER|>" +bot: "<|ASSISTANT|>" +context: | + <|SYSTEM|># StableLM Tuned (Alpha version) + - StableLM is a helpful and harmless open-source AI language model developed by StabilityAI. + - StableLM is excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user. + - StableLM is more than just an information source, StableLM is also able to write poetry, short stories, and make jokes. + - StableLM will refuse to participate in anything that could harm a human. +turn_template: "<|user|><|user-message|><|bot|><|bot-message|>" \ No newline at end of file diff --git a/characters/instruction-following/StableVicuna.yaml b/characters/instruction-following/StableVicuna.yaml new file mode 100644 index 0000000000000000000000000000000000000000..c6b26c6874edd45e93ba6fc454f4499f14bf0ce9 --- /dev/null +++ b/characters/instruction-following/StableVicuna.yaml @@ -0,0 +1,4 @@ +user: "### Human:" +bot: "### Assistant:" +turn_template: "<|user|> <|user-message|>\n<|bot|> <|bot-message|>\n\n" +context: "### Assistant: I am StableVicuna, a large language model created by CarperAI. I am here to chat!\n\n" \ No newline at end of file diff --git a/characters/instruction-following/Starchat-Beta.yaml b/characters/instruction-following/Starchat-Beta.yaml new file mode 100644 index 0000000000000000000000000000000000000000..2af4ee6bba7bfa216b206ab398d9170446c81e35 --- /dev/null +++ b/characters/instruction-following/Starchat-Beta.yaml @@ -0,0 +1,4 @@ +user: "<|user|>" +bot: "<|assistant|>" +context: "<|system|>\n<|end|>\n" +turn_template: "<|user|>\n<|user-message|><|end|>\n<|bot|>\n<|bot-message|><|end|>\n" diff --git a/characters/instruction-following/Tulu.yaml b/characters/instruction-following/Tulu.yaml new file mode 100644 index 0000000000000000000000000000000000000000..13dd14f94811598138f62ff3130e8a78a582448f --- /dev/null +++ b/characters/instruction-following/Tulu.yaml @@ -0,0 +1,4 @@ +user: "<|user|>" +bot: "<|assistant|>" +context: "" +turn_template: "<|user|>\n<|user-message|>\n<|bot|>\n<|bot-message|>\n" diff --git a/characters/instruction-following/Vicuna-v0.yaml b/characters/instruction-following/Vicuna-v0.yaml new file mode 100644 index 0000000000000000000000000000000000000000..d6a8c79899933f9d760174d8912e479685c023c3 --- /dev/null +++ b/characters/instruction-following/Vicuna-v0.yaml @@ -0,0 +1,4 @@ +user: "### Human:" +bot: "### Assistant:" +turn_template: "<|user|> <|user-message|>\n<|bot|> <|bot-message|>\n" +context: "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n" diff --git a/characters/instruction-following/Vicuna-v1.1.yaml b/characters/instruction-following/Vicuna-v1.1.yaml new file mode 100644 index 0000000000000000000000000000000000000000..2c9f5ada2395991b50677b6486f77c466f66b4a7 --- /dev/null +++ b/characters/instruction-following/Vicuna-v1.1.yaml @@ -0,0 +1,4 @@ +user: "USER:" +bot: "ASSISTANT:" +turn_template: "<|user|> <|user-message|>\n<|bot|> <|bot-message|>\n" +context: "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.\n\n" diff --git a/characters/instruction-following/Vigogne-Chat.yaml b/characters/instruction-following/Vigogne-Chat.yaml new file mode 100644 index 0000000000000000000000000000000000000000..8f2faf2882f2567f992c850c897bc7b4d81ecf6d --- /dev/null +++ b/characters/instruction-following/Vigogne-Chat.yaml @@ -0,0 +1,10 @@ +user: "<|USER|>:" +bot: "<|ASSISTANT|>:" +context: | + Below is a conversation between a user and an AI assistant named Vigogne. + Vigogne is an open-source AI assistant created by Zaion (https://zaion.ai/). + Vigogne is polite, emotionally aware, humble-but-knowledgeable, always providing helpful and detailed answers. + Vigogne is skilled in responding proficiently in the languages its users use and can perform a wide range of tasks such as text editing, translation, question answering, logical reasoning, coding, and many others. + Vigogne cannot receive or generate audio or visual content and cannot access the internet. + Vigogne strictly avoids discussing sensitive, offensive, illegal, ethical, or political topics and caveats when unsure of the answer. +turn_template: "\n<|user|> <|user-message|>\n<|bot|> <|bot-message|>" diff --git a/characters/instruction-following/Vigogne-Instruct.yaml b/characters/instruction-following/Vigogne-Instruct.yaml new file mode 100644 index 0000000000000000000000000000000000000000..5ee79b78f30aff73fca8a052a2660832627f7513 --- /dev/null +++ b/characters/instruction-following/Vigogne-Instruct.yaml @@ -0,0 +1,4 @@ +user: "### Instruction:" +bot: "### Réponse:" +turn_template: "<|user|>\n<|user-message|>\n\n<|bot|>\n<|bot-message|>\n\n" +context: "Ci-dessous se trouve une instruction qui décrit une tâche à accomplir. Rédigez une réponse qui répond de manière précise à la demande.\n\n" diff --git a/characters/instruction-following/Wizard-Mega ShareGPT.yaml b/characters/instruction-following/Wizard-Mega ShareGPT.yaml new file mode 100644 index 0000000000000000000000000000000000000000..20b12f19c285e3fdd652cf74665fa641a7bb67dd --- /dev/null +++ b/characters/instruction-following/Wizard-Mega ShareGPT.yaml @@ -0,0 +1,4 @@ +user: "USER:" +bot: "ASSISTANT:" +turn_template: "<|user|> <|user-message|> <|bot|> <|bot-message|>" +context: "" diff --git a/characters/instruction-following/Wizard-Mega WizardLM.yaml b/characters/instruction-following/Wizard-Mega WizardLM.yaml new file mode 100644 index 0000000000000000000000000000000000000000..f8a7d61a8f712efd510044d3c4bc7cdc2d60d971 --- /dev/null +++ b/characters/instruction-following/Wizard-Mega WizardLM.yaml @@ -0,0 +1,4 @@ +user: "### Instruction:" +bot: "### Response:" +turn_template: "<|user|>\n<|user-message|>\n\n<|bot|>\n<|bot-message|>\n\n" +context: "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n" diff --git a/characters/instruction-following/Wizard-Mega.yaml b/characters/instruction-following/Wizard-Mega.yaml new file mode 100644 index 0000000000000000000000000000000000000000..bb4923d843d2ec4911e48a973d64b4f82307d372 --- /dev/null +++ b/characters/instruction-following/Wizard-Mega.yaml @@ -0,0 +1,4 @@ +user: "### Instruction:" +bot: "### Assistant:" +turn_template: "<|user|> <|user-message|>\n\n<|bot|> <|bot-message|>\n\n" +context: "" diff --git a/characters/instruction-following/WizardLM.yaml b/characters/instruction-following/WizardLM.yaml new file mode 100644 index 0000000000000000000000000000000000000000..c65bb8f4160e1114a63e4cfd9607483ac221b5ac --- /dev/null +++ b/characters/instruction-following/WizardLM.yaml @@ -0,0 +1,4 @@ +user: "" +bot: "### Response:" +turn_template: "<|user-message|>\n\n<|bot|><|bot-message|>\n\n" +context: "" \ No newline at end of file diff --git a/characters/instruction-following/Ziya.yaml b/characters/instruction-following/Ziya.yaml new file mode 100644 index 0000000000000000000000000000000000000000..93d9946fedf4944448ef331458a0cf2d807c5c68 --- /dev/null +++ b/characters/instruction-following/Ziya.yaml @@ -0,0 +1,4 @@ +user: ":" +bot: ":" +turn_template: "<|user|><|user-message|>\n<|bot|><|bot-message|>\n" +context: "" diff --git a/convert-to-flexgen.py b/convert-to-flexgen.py new file mode 100644 index 0000000000000000000000000000000000000000..7654593b539541deebfe904403ce73daa4a8651c --- /dev/null +++ b/convert-to-flexgen.py @@ -0,0 +1,63 @@ +''' + +Converts a transformers model to a format compatible with flexgen. + +''' + +import argparse +import os +from pathlib import Path + +import numpy as np +import torch +from tqdm import tqdm +from transformers import AutoModelForCausalLM, AutoTokenizer + +parser = argparse.ArgumentParser(formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=54)) +parser.add_argument('MODEL', type=str, default=None, nargs='?', help="Path to the input model.") +args = parser.parse_args() + + +def disable_torch_init(): + """ + Disable the redundant torch default initialization to accelerate model creation. + """ + import torch + global torch_linear_init_backup + global torch_layer_norm_init_backup + + torch_linear_init_backup = torch.nn.Linear.reset_parameters + setattr(torch.nn.Linear, "reset_parameters", lambda self: None) + + torch_layer_norm_init_backup = torch.nn.LayerNorm.reset_parameters + setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None) + + +def restore_torch_init(): + """Rollback the change made by disable_torch_init.""" + import torch + setattr(torch.nn.Linear, "reset_parameters", torch_linear_init_backup) + setattr(torch.nn.LayerNorm, "reset_parameters", torch_layer_norm_init_backup) + + +if __name__ == '__main__': + path = Path(args.MODEL) + model_name = path.name + + print(f"Loading {model_name}...") + # disable_torch_init() + model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.float16, low_cpu_mem_usage=True) + # restore_torch_init() + + tokenizer = AutoTokenizer.from_pretrained(path) + + out_folder = Path(f"models/{model_name}-np") + if not Path(out_folder).exists(): + os.mkdir(out_folder) + + print(f"Saving the converted model to {out_folder}...") + for name, param in tqdm(list(model.model.named_parameters())): + name = name.replace("decoder.final_layer_norm", "decoder.layer_norm") + param_path = os.path.join(out_folder, name) + with open(param_path, "wb") as f: + np.save(f, param.cpu().detach().numpy()) diff --git a/convert-to-safetensors.py b/convert-to-safetensors.py new file mode 100644 index 0000000000000000000000000000000000000000..3b721e7cd4d15cf7e5e03caaee57ef83a41553bc --- /dev/null +++ b/convert-to-safetensors.py @@ -0,0 +1,38 @@ +''' + +Converts a transformers model to safetensors format and shards it. + +This makes it faster to load (because of safetensors) and lowers its RAM usage +while loading (because of sharding). + +Based on the original script by 81300: + +https://gist.github.com/81300/fe5b08bff1cba45296a829b9d6b0f303 + +''' + +import argparse +from pathlib import Path + +import torch +from transformers import AutoModelForCausalLM, AutoTokenizer + +parser = argparse.ArgumentParser(formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=54)) +parser.add_argument('MODEL', type=str, default=None, nargs='?', help="Path to the input model.") +parser.add_argument('--output', type=str, default=None, help='Path to the output folder (default: models/{model_name}_safetensors).') +parser.add_argument("--max-shard-size", type=str, default="2GB", help="Maximum size of a shard in GB or MB (default: %(default)s).") +parser.add_argument('--bf16', action='store_true', help='Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU.') +args = parser.parse_args() + +if __name__ == '__main__': + path = Path(args.MODEL) + model_name = path.name + + print(f"Loading {model_name}...") + model = AutoModelForCausalLM.from_pretrained(path, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 if args.bf16 else torch.float16) + tokenizer = AutoTokenizer.from_pretrained(path) + + out_folder = args.output or Path(f"models/{model_name}_safetensors") + print(f"Saving the converted model to {out_folder} with a maximum shard size of {args.max_shard_size}...") + model.save_pretrained(out_folder, max_shard_size=args.max_shard_size, safe_serialization=True) + tokenizer.save_pretrained(out_folder) diff --git a/css/chat.css b/css/chat.css new file mode 100644 index 0000000000000000000000000000000000000000..45a518bc56fcaae04ac73f6535c2349bf1f974fe --- /dev/null +++ b/css/chat.css @@ -0,0 +1,126 @@ +.h-\[40vh\], .wrap.svelte-byatnx.svelte-byatnx.svelte-byatnx { + height: 66.67vh +} + +.gradio-container { + margin-left: auto !important; + margin-right: auto !important; +} + +.w-screen { + width: unset +} + +div.svelte-362y77>*, div.svelte-362y77>.form>* { + flex-wrap: nowrap +} + +/* fixes the API documentation in chat mode */ +.api-docs.svelte-1iguv9h.svelte-1iguv9h.svelte-1iguv9h { + display: grid; +} + +.pending.svelte-1ed2p3z { + opacity: 1; +} + +#extensions { + padding: 0; + padding: 0; +} + +#gradio-chatbot { + height: 66.67vh; +} + +.wrap.svelte-6roggh.svelte-6roggh { + max-height: 92.5%; +} + +/* This is for the microphone button in the whisper extension */ +.sm.svelte-1ipelgc { + width: 100%; +} + +#main button { + min-width: 0 !important; +} + +/*****************************************************/ +/*************** Chat box declarations ***************/ +/*****************************************************/ + +.chat { + margin-left: auto; + margin-right: auto; + max-width: 800px; + height: calc(100vh - 296px); + overflow-y: auto; + padding-right: 20px; + display: flex; + flex-direction: column-reverse; + word-break: break-word; + overflow-wrap: anywhere; + padding-top: 1px; +} + +.message-body li { + margin-top: 0.5em !important; + margin-bottom: 0.5em !important; +} + +.message-body li > p { + display: inline !important; +} + +.message-body ul, .message-body ol { + font-size: 15px !important; +} + +.message-body ul { + list-style-type: disc !important; +} + +.message-body pre { + margin-bottom: 1.25em !important; +} + +.message-body code { + white-space: pre-wrap !important; + word-wrap: break-word !important; +} + +.message-body :not(pre) > code { + white-space: normal !important; +} + +@media print { + body { + visibility: hidden; + } + + .chat { + visibility: visible; + position: absolute; + left: 0; + top: 0; + max-width: none; + max-height: none; + width: 100%; + height: fit-content; + display: flex; + flex-direction: column-reverse; + } + + .message { + break-inside: avoid; + } + + .gradio-container { + overflow: visible; + } + + .tab-nav { + display: none !important; + } +} diff --git a/css/chat.js b/css/chat.js new file mode 100644 index 0000000000000000000000000000000000000000..e304f1254732e475bf177ee849ac51d4f3e30f46 --- /dev/null +++ b/css/chat.js @@ -0,0 +1,4 @@ +document.getElementById("main").childNodes[0].style = "max-width: 800px; margin-left: auto; margin-right: auto"; +document.getElementById("extensions").style.setProperty("max-width", "800px"); +document.getElementById("extensions").style.setProperty("margin-left", "auto"); +document.getElementById("extensions").style.setProperty("margin-right", "auto"); diff --git a/css/chat_style-TheEncrypted777.css b/css/chat_style-TheEncrypted777.css new file mode 100644 index 0000000000000000000000000000000000000000..7682011d7e9d9de4b9ee013ba9b92b71548df639 --- /dev/null +++ b/css/chat_style-TheEncrypted777.css @@ -0,0 +1,107 @@ +/* All credits to TheEncrypted777: https://www.reddit.com/r/Oobabooga/comments/12xe6vq/updated_css_styling_with_color_customization_for/ */ + +.message { + display: grid; + grid-template-columns: 60px minmax(0, 1fr); + padding-bottom: 28px; + font-size: 18px; + /*Change 'Quicksand' to a font you like or leave it*/ + font-family: Quicksand, Arial, sans-serif; + line-height: 1.428571429; +} + +.circle-you { + background-color: gray; + border-radius: 1rem; + /*Change color to any you like to be the border of your image*/ + border: 2px solid white; +} + +.circle-bot { + background-color: gray; + border-radius: 1rem; + /*Change color to any you like to be the border of the bot's image*/ + border: 2px solid white; +} + +.circle-bot img, +.circle-you img { + border-radius: 10%; + width: 100%; + height: 100%; + object-fit: cover; +} + +.circle-you, .circle-bot { + /*You can set the size of the profile images here, but if you do, you have to also adjust the .text{padding-left: 90px} to a different number according to the width of the image which is right below here*/ + width: 135px; + height: 175px; +} + +.text { + /*Change this to move the message box further left or right depending on the size of your profile pic*/ + padding-left: 90px; + text-shadow: 2px 2px 2px rgb(0, 0, 0); +} + +.text p { + margin-top: 2px; +} + +.username { + padding-left: 10px; + font-size: 22px; + font-weight: bold; + border-top: 1px solid rgb(51, 64, 90); + padding: 3px; +} + +.message-body { + position: relative; + border-radius: 1rem; + border: 1px solid rgba(255, 255, 255, 0.459); + border-radius: 10px; + padding: 10px; + padding-top: 5px; + /*Message gradient background color - remove the line bellow if you don't want a background color or gradient*/ + background: linear-gradient(to bottom, #171730, #1b263f); +} + + /*Adds 2 extra lines at the top and bottom of the message*/ +.message-body:before, + .message-body:after { + content: ""; + position: absolute; + left: 10px; + right: 10px; + height: 1px; + background-color: rgba(255, 255, 255, 0.13); +} + +.message-body:before { + top: 6px; +} + +.message-body:after { + bottom: 6px; +} + +.message-body img { + max-width: 300px; + max-height: 300px; + border-radius: 20px; +} + +.message-body p { + margin-bottom: 0 !important; + font-size: 18px !important; + line-height: 1.428571429 !important; +} + +.dark .message-body p em { + color: rgb(138, 138, 138) !important; +} + +.message-body p em { + color: rgb(110, 110, 110) !important; +} diff --git a/css/chat_style-cai-chat.css b/css/chat_style-cai-chat.css new file mode 100644 index 0000000000000000000000000000000000000000..d48fe76b7b678cf4f096a8502e2045b5dee983ee --- /dev/null +++ b/css/chat_style-cai-chat.css @@ -0,0 +1,58 @@ +.message { + display: grid; + grid-template-columns: 60px minmax(0, 1fr); + padding-bottom: 25px; + font-size: 15px; + font-family: Helvetica, Arial, sans-serif; + line-height: 1.428571429; +} + +.circle-you { + width: 50px; + height: 50px; + background-color: rgb(238, 78, 59); + border-radius: 50%; +} + +.circle-bot { + width: 50px; + height: 50px; + background-color: rgb(59, 78, 244); + border-radius: 50%; +} + +.circle-bot img, +.circle-you img { + border-radius: 50%; + width: 100%; + height: 100%; + object-fit: cover; +} + +.text p { + margin-top: 5px; +} + +.username { + font-weight: bold; +} + +.message-body img { + max-width: 300px; + max-height: 300px; + border-radius: 20px; +} + +.message-body p { + margin-bottom: 0 !important; + font-size: 15px !important; + line-height: 1.428571429 !important; +} + +.dark .message-body p em { + color: rgb(138, 138, 138) !important; +} + +.message-body p em { + color: rgb(110, 110, 110) !important; +} \ No newline at end of file diff --git a/css/chat_style-messenger.css b/css/chat_style-messenger.css new file mode 100644 index 0000000000000000000000000000000000000000..0e5528d86a1298651e7b1c7b5f97eac834db50f4 --- /dev/null +++ b/css/chat_style-messenger.css @@ -0,0 +1,99 @@ +.message { + padding-bottom: 25px; + font-size: 15px; + font-family: Helvetica, Arial, sans-serif; + line-height: 1.428571429; +} + +.circle-you { + width: 50px; + height: 50px; + background-color: rgb(238, 78, 59); + border-radius: 50%; +} + +.circle-bot { + width: 50px; + height: 50px; + background-color: rgb(59, 78, 244); + border-radius: 50%; + float: left; + margin-right: 10px; + margin-top: 5px; +} + +.circle-bot img, +.circle-you img { + border-radius: 50%; + width: 100%; + height: 100%; + object-fit: cover; +} + +.circle-you { + margin-top: 5px; + float: right; +} + +.circle-bot + .text, .circle-you + .text { + border-radius: 18px; + padding: 8px 12px; +} + +.circle-bot + .text { + background-color: #E4E6EB; + float: left; +} + +.circle-you + .text { + float: right; + background-color: rgb(0, 132, 255); + margin-right: 10px; +} + +.circle-you + .text div, .circle-you + .text *, .dark .circle-you + .text div, .dark .circle-you + .text * { + color: #FFF !important; +} + +.circle-you + .text .username { + text-align: right; +} + +.dark .circle-bot + .text div, .dark .circle-bot + .text * { + color: #000; +} + +.text { + max-width: 80%; +} + +.text p { + margin-top: 5px; +} + +.username { + font-weight: bold; +} + +.message-body { +} + +.message-body img { + max-width: 300px; + max-height: 300px; + border-radius: 20px; +} + +.message-body p { + margin-bottom: 0 !important; + font-size: 15px !important; + line-height: 1.428571429 !important; +} + +.dark .message-body p em { + color: rgb(138, 138, 138) !important; +} + +.message-body p em { + color: rgb(110, 110, 110) !important; +} diff --git a/css/chat_style-wpp.css b/css/chat_style-wpp.css new file mode 100644 index 0000000000000000000000000000000000000000..14b408784d182c13a495aa65d63365a531ab52f6 --- /dev/null +++ b/css/chat_style-wpp.css @@ -0,0 +1,55 @@ +.message { + padding-bottom: 25px; + font-size: 15px; + font-family: Helvetica, Arial, sans-serif; + line-height: 1.428571429; +} + +.text-you { + background-color: #d9fdd3; + border-radius: 15px; + padding: 10px; + padding-top: 5px; + float: right; +} + +.text-bot { + background-color: #f2f2f2; + border-radius: 15px; + padding: 10px; + padding-top: 5px; +} + +.dark .text-you { + background-color: #005c4b; + color: #111b21; +} + +.dark .text-bot { + background-color: #1f2937; + color: #111b21; +} + +.text-bot p, .text-you p { + margin-top: 5px; +} + +.message-body img { + max-width: 300px; + max-height: 300px; + border-radius: 20px; +} + +.message-body p { + margin-bottom: 0 !important; + font-size: 15px !important; + line-height: 1.428571429 !important; +} + +.dark .message-body p em { + color: rgb(138, 138, 138) !important; +} + +.message-body p em { + color: rgb(110, 110, 110) !important; +} \ No newline at end of file diff --git a/css/html_4chan_style.css b/css/html_4chan_style.css new file mode 100644 index 0000000000000000000000000000000000000000..99ac68452351f3b5b5a109e53dae789e6f61c804 --- /dev/null +++ b/css/html_4chan_style.css @@ -0,0 +1,104 @@ +#parent #container { + background-color: #eef2ff; + padding: 17px; +} + +#parent #container .reply { + background-color: rgb(214, 218, 240); + border-bottom-color: rgb(183, 197, 217); + border-bottom-style: solid; + border-bottom-width: 1px; + border-image-outset: 0; + border-image-repeat: stretch; + border-image-slice: 100%; + border-image-source: none; + border-image-width: 1; + border-left-color: rgb(0, 0, 0); + border-left-style: none; + border-left-width: 0px; + border-right-color: rgb(183, 197, 217); + border-right-style: solid; + border-right-width: 1px; + border-top-color: rgb(0, 0, 0); + border-top-style: none; + border-top-width: 0px; + color: rgb(0, 0, 0); + display: table; + font-family: arial, helvetica, sans-serif; + font-size: 13.3333px; + margin-bottom: 4px; + margin-left: 0px; + margin-right: 0px; + margin-top: 4px; + overflow-x: hidden; + overflow-y: hidden; + padding-bottom: 4px; + padding-left: 2px; + padding-right: 2px; + padding-top: 4px; +} + +#parent #container .number { + color: rgb(0, 0, 0); + font-family: arial, helvetica, sans-serif; + font-size: 13.3333px; + width: 342.65px; + margin-right: 7px; +} + +#parent #container .op { + color: rgb(0, 0, 0); + font-family: arial, helvetica, sans-serif; + font-size: 13.3333px; + margin-bottom: 8px; + margin-left: 0px; + margin-right: 0px; + margin-top: 4px; + overflow-x: hidden; + overflow-y: hidden; +} + +#parent #container .op blockquote { + margin-left: 0px !important; +} + +#parent #container .name { + color: rgb(17, 119, 67); + font-family: arial, helvetica, sans-serif; + font-size: 13.3333px; + font-weight: 700; + margin-left: 7px; +} + +#parent #container .quote { + color: rgb(221, 0, 0); + font-family: arial, helvetica, sans-serif; + font-size: 13.3333px; + text-decoration-color: rgb(221, 0, 0); + text-decoration-line: underline; + text-decoration-style: solid; + text-decoration-thickness: auto; +} + +#parent #container .greentext { + color: rgb(120, 153, 34); + font-family: arial, helvetica, sans-serif; + font-size: 13.3333px; +} + +#parent #container blockquote { + margin: 0px !important; + margin-block-start: 1em; + margin-block-end: 1em; + margin-inline-start: 40px; + margin-inline-end: 40px; + margin-top: 13.33px !important; + margin-bottom: 13.33px !important; + margin-left: 40px !important; + margin-right: 40px !important; +} + +#parent #container .message { + color: black; + border: none; +} \ No newline at end of file diff --git a/css/html_instruct_style.css b/css/html_instruct_style.css new file mode 100644 index 0000000000000000000000000000000000000000..575281b1e50150c6b285edf0e8c04f4a5abf329b --- /dev/null +++ b/css/html_instruct_style.css @@ -0,0 +1,62 @@ +.message { + display: grid; + grid-template-columns: 60px 1fr; + padding-bottom: 25px; + font-size: 15px; + font-family: Helvetica, Arial, sans-serif; + line-height: 1.428571429; +} + +.username { + display: none; +} + +.message-body p { + font-size: 15px !important; + line-height: 1.75 !important; + margin-bottom: 1.25em !important; +} + +.message-body ul, .message-body ol { + margin-bottom: 1.25em !important; +} + +.dark .message-body p em { + color: rgb(198, 202, 214) !important; +} + +.message-body p em { + color: rgb(110, 110, 110) !important; +} + +.gradio-container .chat .assistant-message { + padding: 15px; + border-radius: 20px; + background-color: #0000000f; + margin-top: 9px !important; + margin-bottom: 18px !important; +} + +.gradio-container .chat .user-message { + padding: 15px; + border-radius: 20px; + margin-bottom: 9px !important; +} + +.dark .chat .assistant-message { + background-color: #3741519e; + border: 1px solid #4b5563; +} + +.dark .chat .user-message { + background-color: #111827; + border: 1px solid #4b5563; +} + +code { + background-color: white !important; +} + +.dark code { + background-color: #1a212f !important; +} \ No newline at end of file diff --git a/css/html_readable_style.css b/css/html_readable_style.css new file mode 100644 index 0000000000000000000000000000000000000000..cd5fca97868167718d239b4be72e9271971807e2 --- /dev/null +++ b/css/html_readable_style.css @@ -0,0 +1,29 @@ +.container { + max-width: 600px; + margin-left: auto; + margin-right: auto; + background-color: rgb(31, 41, 55); + padding: 3em; + word-break: break-word; + overflow-wrap: anywhere; + color: #efefef !important; +} + +.container p, .container li { + font-size: 16px !important; + color: #efefef !important; + margin-bottom: 22px; + line-height: 1.4 !important; +} + +.container li > p { + display: inline !important; +} + +.container code { + overflow-x: auto; +} + +.container :not(pre) > code { + white-space: normal !important; +} \ No newline at end of file diff --git a/css/main.css b/css/main.css new file mode 100644 index 0000000000000000000000000000000000000000..cdb4e2f2388b273877972c5bf6fbe02f46af7c12 --- /dev/null +++ b/css/main.css @@ -0,0 +1,151 @@ +.tabs.svelte-710i53 { + margin-top: 0 +} + +.py-6 { + padding-top: 2.5rem +} + +.refresh-button { + max-width: 4.4em; + min-width: 2.2em !important; + height: 39.594px; + align-self: end; + line-height: 1em; + border-radius: 0.5em; + flex: none; +} + +.refresh-button-small { + max-width: 2.2em; +} + +#slim-column { + flex: none !important; + min-width: 0 !important; +} + +.slim-dropdown { + background-color: transparent !important; + border: none !important; + padding: 0 !important; +} + +#download-label, #upload-label { + min-height: 0 +} + +#accordion { +} + +.dark svg { + fill: white; +} + +.dark a { + color: white !important; +} + +ol li p, ul li p { + display: inline-block; +} + +#main, #parameters, #chat-settings, #interface-mode, #lora, #training-tab, #model-tab { + border: 0; +} + +.gradio-container-3-18-0 .prose * h1, h2, h3, h4 { + color: white; +} + +.gradio-container { + max-width: 100% !important; + padding-top: 0 !important; +} + +#extensions { + padding: 15px; + margin-bottom: 35px; +} + +.extension-tab { + border: 0 !important; +} + +span.math.inline { + font-size: 27px; + vertical-align: baseline !important; +} + +div.svelte-15lo0d8 > *, div.svelte-15lo0d8 > .form > * { + flex-wrap: nowrap; +} + +.header_bar { + background-color: #f7f7f7; + margin-bottom: 30px; +} + +.dark .header_bar { + border: none !important; + background-color: #8080802b; +} + +.textbox_default textarea { + height: calc(100vh - 390px); +} + +.textbox_default_output textarea { + height: calc(100vh - 200px); +} + +.textbox textarea { + height: calc(100vh - 251px); +} + +.textbox_default textarea, .textbox_default_output textarea, .textbox textarea { + font-size: 16px !important; + color: #46464A !important; +} + +.dark textarea { + color: #efefef !important; +} + +/* Hide the gradio footer*/ +footer { + display: none !important; +} + +button { + font-size: 14px !important; +} + +.small-button { + max-width: 171px; +} + +.file-saver { + position: fixed !important; + top: 50%; + left: 50%; + transform: translate(-50%, -50%); /* center horizontally */ + max-width: 500px; + background-color: var(--input-background-fill); + border: 2px solid black !important; + z-index: 1000; +} + +.dark .file-saver { + border: 2px solid white !important; +} + +.checkboxgroup-table label { + background: none !important; + padding: 0 !important; + border: 0 !important; +} + +.checkboxgroup-table div { + display: grid !important; +} \ No newline at end of file diff --git a/css/main.js b/css/main.js new file mode 100644 index 0000000000000000000000000000000000000000..32820ebe15ddb80ca5fbcd2c4f88cc7c244cf3c5 --- /dev/null +++ b/css/main.js @@ -0,0 +1,18 @@ +document.getElementById("main").parentNode.childNodes[0].classList.add("header_bar"); +document.getElementById("main").parentNode.style = "padding: 0; margin: 0"; +document.getElementById("main").parentNode.parentNode.parentNode.style = "padding: 0"; + +// Get references to the elements +let main = document.getElementById('main'); +let main_parent = main.parentNode; +let extensions = document.getElementById('extensions'); + +// Add an event listener to the main element +main_parent.addEventListener('click', function(e) { + // Check if the main element is visible + if (main.offsetHeight > 0 && main.offsetWidth > 0) { + extensions.style.display = 'flex'; + } else { + extensions.style.display = 'none'; + } +}); diff --git a/docker/.dockerignore b/docker/.dockerignore new file mode 100644 index 0000000000000000000000000000000000000000..6073533e0929aac9e917a5980198334a2a01f8ef --- /dev/null +++ b/docker/.dockerignore @@ -0,0 +1,9 @@ +.env +Dockerfile +/characters +/loras +/models +/presets +/prompts +/softprompts +/training diff --git a/docker/.env.example b/docker/.env.example new file mode 100644 index 0000000000000000000000000000000000000000..3119a9f07f47b1ad964ce337c33f1ce63d79f377 --- /dev/null +++ b/docker/.env.example @@ -0,0 +1,30 @@ +# by default the Dockerfile specifies these versions: 3.5;5.0;6.0;6.1;7.0;7.5;8.0;8.6+PTX +# however for me to work i had to specify the exact version for my card ( 2060 ) it was 7.5 +# https://developer.nvidia.com/cuda-gpus you can find the version for your card here +TORCH_CUDA_ARCH_LIST=7.5 + +# these commands worked for me with roughly 4.5GB of vram +CLI_ARGS=--model llama-7b-4bit --wbits 4 --listen --auto-devices + +# the following examples have been tested with the files linked in docs/README_docker.md: +# example running 13b with 4bit/128 groupsize : CLI_ARGS=--model llama-13b-4bit-128g --wbits 4 --listen --groupsize 128 --pre_layer 25 +# example with loading api extension and public share: CLI_ARGS=--model llama-7b-4bit --wbits 4 --listen --auto-devices --no-stream --extensions api --share +# example running 7b with 8bit groupsize : CLI_ARGS=--model llama-7b --load-in-8bit --listen --auto-devices + +# the port the webui binds to on the host +HOST_PORT=7860 +# the port the webui binds to inside the container +CONTAINER_PORT=7860 + +# the port the api binds to on the host +HOST_API_PORT=5000 +# the port the api binds to inside the container +CONTAINER_API_PORT=5000 + +# the port the api stream endpoint binds to on the host +HOST_API_STREAM_PORT=5005 +# the port the api stream endpoint binds to inside the container +CONTAINER_API_STREAM_PORT=5005 + +# the version used to install text-generation-webui from +WEBUI_VERSION=HEAD diff --git a/docker/Dockerfile b/docker/Dockerfile new file mode 100644 index 0000000000000000000000000000000000000000..7cc0ff1513eb90d8d42be0edfce5d810cc9ad48d --- /dev/null +++ b/docker/Dockerfile @@ -0,0 +1,68 @@ +FROM nvidia/cuda:11.8.0-devel-ubuntu22.04 as builder + +RUN apt-get update && \ + apt-get install --no-install-recommends -y git vim build-essential python3-dev python3-venv && \ + rm -rf /var/lib/apt/lists/* + +RUN git clone https://github.com/oobabooga/GPTQ-for-LLaMa /build + +WORKDIR /build + +RUN python3 -m venv /build/venv +RUN . /build/venv/bin/activate && \ + pip3 install --upgrade pip setuptools wheel && \ + pip3 install torch torchvision torchaudio && \ + pip3 install -r requirements.txt + +# https://developer.nvidia.com/cuda-gpus +# for a rtx 2060: ARG TORCH_CUDA_ARCH_LIST="7.5" +ARG TORCH_CUDA_ARCH_LIST="3.5;5.0;6.0;6.1;7.0;7.5;8.0;8.6+PTX" +RUN . /build/venv/bin/activate && \ + python3 setup_cuda.py bdist_wheel -d . + +FROM nvidia/cuda:11.8.0-runtime-ubuntu22.04 + +LABEL maintainer="Your Name " +LABEL description="Docker image for GPTQ-for-LLaMa and Text Generation WebUI" + +RUN apt-get update && \ + apt-get install --no-install-recommends -y python3-dev libportaudio2 libasound-dev git python3 python3-pip make g++ && \ + rm -rf /var/lib/apt/lists/* + +RUN --mount=type=cache,target=/root/.cache/pip pip3 install virtualenv +RUN mkdir /app + +WORKDIR /app + +ARG WEBUI_VERSION +RUN test -n "${WEBUI_VERSION}" && git reset --hard ${WEBUI_VERSION} || echo "Using provided webui source" + +RUN virtualenv /app/venv +RUN . /app/venv/bin/activate && \ + pip3 install --upgrade pip setuptools wheel && \ + pip3 install torch torchvision torchaudio + +COPY --from=builder /build /app/repositories/GPTQ-for-LLaMa +RUN . /app/venv/bin/activate && \ + pip3 install /app/repositories/GPTQ-for-LLaMa/*.whl + +COPY extensions/api/requirements.txt /app/extensions/api/requirements.txt +COPY extensions/elevenlabs_tts/requirements.txt /app/extensions/elevenlabs_tts/requirements.txt +COPY extensions/google_translate/requirements.txt /app/extensions/google_translate/requirements.txt +COPY extensions/silero_tts/requirements.txt /app/extensions/silero_tts/requirements.txt +COPY extensions/whisper_stt/requirements.txt /app/extensions/whisper_stt/requirements.txt +RUN --mount=type=cache,target=/root/.cache/pip . /app/venv/bin/activate && cd extensions/api && pip3 install -r requirements.txt +RUN --mount=type=cache,target=/root/.cache/pip . /app/venv/bin/activate && cd extensions/elevenlabs_tts && pip3 install -r requirements.txt +RUN --mount=type=cache,target=/root/.cache/pip . /app/venv/bin/activate && cd extensions/google_translate && pip3 install -r requirements.txt +RUN --mount=type=cache,target=/root/.cache/pip . /app/venv/bin/activate && cd extensions/silero_tts && pip3 install -r requirements.txt +RUN --mount=type=cache,target=/root/.cache/pip . /app/venv/bin/activate && cd extensions/whisper_stt && pip3 install -r requirements.txt + +COPY requirements.txt /app/requirements.txt +RUN . /app/venv/bin/activate && \ + pip3 install -r requirements.txt + +RUN cp /app/venv/lib/python3.10/site-packages/bitsandbytes/libbitsandbytes_cuda118.so /app/venv/lib/python3.10/site-packages/bitsandbytes/libbitsandbytes_cpu.so + +COPY . /app/ +ENV CLI_ARGS="" +CMD . /app/venv/bin/activate && python3 server.py ${CLI_ARGS} diff --git a/docker/docker-compose.yml b/docker/docker-compose.yml new file mode 100644 index 0000000000000000000000000000000000000000..bc59dc3bb11d6ffcb692ef8e7a84f3054b126d4d --- /dev/null +++ b/docker/docker-compose.yml @@ -0,0 +1,32 @@ +version: "3.3" +services: + text-generation-webui: + build: + context: . + args: + # specify which cuda version your card supports: https://developer.nvidia.com/cuda-gpus + TORCH_CUDA_ARCH_LIST: ${TORCH_CUDA_ARCH_LIST} + WEBUI_VERSION: ${WEBUI_VERSION} + env_file: .env + ports: + - "${HOST_PORT}:${CONTAINER_PORT}" + - "${HOST_API_PORT}:${CONTAINER_API_PORT}" + - "${HOST_API_STREAM_PORT}:${CONTAINER_API_STREAM_PORT}" + stdin_open: true + tty: true + volumes: + - ./characters:/app/characters + - ./extensions:/app/extensions + - ./loras:/app/loras + - ./models:/app/models + - ./presets:/app/presets + - ./prompts:/app/prompts + - ./softprompts:/app/softprompts + - ./training:/app/training + deploy: + resources: + reservations: + devices: + - driver: nvidia + device_ids: ['0'] + capabilities: [gpu] diff --git a/docs/Audio-Notification.md b/docs/Audio-Notification.md new file mode 100644 index 0000000000000000000000000000000000000000..3baa5349359257acc6f63d075c3c845adb3f5c12 --- /dev/null +++ b/docs/Audio-Notification.md @@ -0,0 +1,14 @@ +# Audio notification + +If your computer takes a long time to generate each response for the model that you are using, you can enable an audio notification for when the response is completed. This feature was kindly contributed by HappyWorldGames in [#1277](https://github.com/oobabooga/text-generation-webui/pull/1277). + +### Installation + +Simply place a file called "notification.mp3" in the same folder as `server.py`. Here you can find some examples: + +* https://pixabay.com/sound-effects/search/ding/?duration=0-30 +* https://pixabay.com/sound-effects/search/notification/?duration=0-30 + +Source: https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/1126 + +This file will be automatically detected the next time you start the web UI. diff --git a/docs/Chat-mode.md b/docs/Chat-mode.md new file mode 100644 index 0000000000000000000000000000000000000000..08dd290dadbd8a590ace65d557b8916a2707fc26 --- /dev/null +++ b/docs/Chat-mode.md @@ -0,0 +1,45 @@ +## Chat characters + +Custom chat mode characters are defined by `.yaml` files inside the `characters` folder. An example is included: [Example.yaml](https://github.com/oobabooga/text-generation-webui/blob/main/characters/Example.yaml) + +The following fields may be defined: + +| Field | Description | +|-------|-------------| +| `name` or `bot` | The character's name. | +| `your_name` or `user` (optional) | Your name. This overwrites what you had previously written in the `Your name` field in the interface. | +| `context` | A string that appears at the top of the prompt. It usually contains a description of the character's personality. | +| `greeting` (optional) | The character's opening message when a new conversation is started. | +| `example_dialogue` (optional) | A few example messages to guide the model. | +| `turn_template` (optional) | Used to define where the spaces and new line characters should be in Instruct mode. See the characters in `characters/instruction-following` for examples. | + +#### Special tokens + +* `{{char}}` or ``: are replaced with the character's name +* `{{user}}` or ``: are replaced with your name + +These replacements happen when the character is loaded, and they apply to the `context`, `greeting`, and `example_dialogue` fields. + +#### How do I add a profile picture for my character? + +Put an image with the same name as your character's yaml file into the `characters` folder. For example, if your bot is `Character.yaml`, add `Character.jpg` or `Character.png` to the folder. + +#### Is the chat history truncated in the prompt? + +Once your prompt reaches the 2048 token limit, old messages will be removed one at a time. The context string will always stay at the top of the prompt and will never get truncated. + +#### Pygmalion format characters + +These are also supported out of the box. Simply put the JSON file in the `characters` folder, or upload it directly from the web UI by clicking on the "Upload character" tab at the bottom. + +## Chat styles + +Custom chat styles can be defined in the `text-generation-webui/css` folder. Simply create a new file with name starting in `chat_style-` and ending in `.css` and it will automatically appear in the "Chat style" dropdown menu in the interface. Examples: + +``` +chat_style-cai-chat.css +chat_style-TheEncrypted777.css +chat_style-wpp.css +``` + +You should use the same class names as in `chat_style-cai-chat.css` in your custom style. \ No newline at end of file diff --git a/docs/DeepSpeed.md b/docs/DeepSpeed.md new file mode 100644 index 0000000000000000000000000000000000000000..6170f6819ca072ff50fd1146b64d73f74ab00473 --- /dev/null +++ b/docs/DeepSpeed.md @@ -0,0 +1,24 @@ +An alternative way of reducing the GPU memory usage of models is to use the `DeepSpeed ZeRO-3` optimization. + +With this, I have been able to load a 6b model (GPT-J 6B) with less than 6GB of VRAM. The speed of text generation is very decent and much better than what would be accomplished with `--auto-devices --gpu-memory 6`. + +As far as I know, DeepSpeed is only available for Linux at the moment. + +### How to use it + +1. Install DeepSpeed: + +``` +conda install -c conda-forge mpi4py mpich +pip install -U deepspeed +``` + +2. Start the web UI replacing `python` with `deepspeed --num_gpus=1` and adding the `--deepspeed` flag. Example: + +``` +deepspeed --num_gpus=1 server.py --deepspeed --chat --model gpt-j-6B +``` + +### Learn more + +For more information, check out [this comment](https://github.com/oobabooga/text-generation-webui/issues/40#issuecomment-1412038622) by 81300, who came up with the DeepSpeed support in this web UI. \ No newline at end of file diff --git a/docs/Docker.md b/docs/Docker.md new file mode 100644 index 0000000000000000000000000000000000000000..322dba39a8b2ebcf87932717ddf240101f558ed4 --- /dev/null +++ b/docs/Docker.md @@ -0,0 +1,203 @@ +Docker Compose is a way of installing and launching the web UI in an isolated Ubuntu image using only a few commands. + +In order to create the image as described in the main README, you must have docker compose 2.17 or higher: + +``` +~$ docker compose version +Docker Compose version v2.17.2 +``` + +Make sure to also create the necessary symbolic links: + +``` +cd text-generation-webui +ln -s docker/{Dockerfile,docker-compose.yml,.dockerignore} . +cp docker/.env.example .env +# Edit .env and set TORCH_CUDA_ARCH_LIST based on your GPU model +docker compose up --build +``` + +# Table of contents + +* [Docker Compose installation instructions](#docker-compose-installation-instructions) +* [Repository with additional Docker files](#dedicated-docker-repository) + +# Docker Compose installation instructions + +By [@loeken](https://github.com/loeken). + +- [Ubuntu 22.04](#ubuntu-2204) + - [0. youtube video](#0-youtube-video) + - [1. update the drivers](#1-update-the-drivers) + - [2. reboot](#2-reboot) + - [3. install docker](#3-install-docker) + - [4. docker \& container toolkit](#4-docker--container-toolkit) + - [5. clone the repo](#5-clone-the-repo) + - [6. prepare models](#6-prepare-models) + - [7. prepare .env file](#7-prepare-env-file) + - [8. startup docker container](#8-startup-docker-container) +- [Manjaro](#manjaro) + - [update the drivers](#update-the-drivers) + - [reboot](#reboot) + - [docker \& container toolkit](#docker--container-toolkit) + - [continue with ubuntu task](#continue-with-ubuntu-task) +- [Windows](#windows) + - [0. youtube video](#0-youtube-video-1) + - [1. choco package manager](#1-choco-package-manager) + - [2. install drivers/dependencies](#2-install-driversdependencies) + - [3. install wsl](#3-install-wsl) + - [4. reboot](#4-reboot) + - [5. git clone \&\& startup](#5-git-clone--startup) + - [6. prepare models](#6-prepare-models-1) + - [7. startup](#7-startup) +- [notes](#notes) + +## Ubuntu 22.04 + +### 0. youtube video +A video walking you through the setup can be found here: + +[![oobabooga text-generation-webui setup in docker on ubuntu 22.04](https://img.youtube.com/vi/ELkKWYh8qOk/0.jpg)](https://www.youtube.com/watch?v=ELkKWYh8qOk) + + +### 1. update the drivers +in the the “software updater” update drivers to the last version of the prop driver. + +### 2. reboot +to switch using to new driver + +### 3. install docker +```bash +sudo apt update +sudo apt-get install curl +sudo mkdir -m 0755 -p /etc/apt/keyrings +curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /etc/apt/keyrings/docker.gpg +echo \ + "deb [arch="$(dpkg --print-architecture)" signed-by=/etc/apt/keyrings/docker.gpg] https://download.docker.com/linux/ubuntu \ + "$(. /etc/os-release && echo "$VERSION_CODENAME")" stable" | \ + sudo tee /etc/apt/sources.list.d/docker.list > /dev/null +sudo apt update +sudo apt-get install docker-ce docker-ce-cli containerd.io docker-buildx-plugin docker-compose-plugin docker-compose -y +sudo usermod -aG docker $USER +newgrp docker +``` + +### 4. docker & container toolkit +```bash +curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg +echo "deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://nvidia.github.io/libnvidia-container/stable/ubuntu22.04/amd64 /" | \ +sudo tee /etc/apt/sources.list.d/nvidia.list > /dev/null +sudo apt update +sudo apt install nvidia-docker2 nvidia-container-runtime -y +sudo systemctl restart docker +``` + +### 5. clone the repo +``` +git clone https://github.com/oobabooga/text-generation-webui +cd text-generation-webui +``` + +### 6. prepare models +download and place the models inside the models folder. tested with: + +4bit +https://github.com/oobabooga/text-generation-webui/pull/530#issuecomment-1483891617 +https://github.com/oobabooga/text-generation-webui/pull/530#issuecomment-1483941105 + +8bit: +https://github.com/oobabooga/text-generation-webui/pull/530#issuecomment-1484235789 + +### 7. prepare .env file +edit .env values to your needs. +```bash +cp .env.example .env +nano .env +``` + +### 8. startup docker container +```bash +docker compose up --build +``` + +## Manjaro +manjaro/arch is similar to ubuntu just the dependency installation is more convenient + +### update the drivers +```bash +sudo mhwd -a pci nonfree 0300 +``` +### reboot +```bash +reboot +``` +### docker & container toolkit +```bash +yay -S docker docker-compose buildkit gcc nvidia-docker +sudo usermod -aG docker $USER +newgrp docker +sudo systemctl restart docker # required by nvidia-container-runtime +``` + +### continue with ubuntu task +continue at [5. clone the repo](#5-clone-the-repo) + +## Windows +### 0. youtube video +A video walking you through the setup can be found here: +[![oobabooga text-generation-webui setup in docker on windows 11](https://img.youtube.com/vi/ejH4w5b5kFQ/0.jpg)](https://www.youtube.com/watch?v=ejH4w5b5kFQ) + +### 1. choco package manager +install package manager (https://chocolatey.org/ ) +``` +Set-ExecutionPolicy Bypass -Scope Process -Force; [System.Net.ServicePointManager]::SecurityProtocol = [System.Net.ServicePointManager]::SecurityProtocol -bor 3072; iex ((New-Object System.Net.WebClient).DownloadString('https://community.chocolatey.org/install.ps1')) +``` + +### 2. install drivers/dependencies +``` +choco install nvidia-display-driver cuda git docker-desktop +``` + +### 3. install wsl +wsl --install + +### 4. reboot +after reboot enter username/password in wsl + +### 5. git clone && startup +clone the repo and edit .env values to your needs. +``` +cd Desktop +git clone https://github.com/oobabooga/text-generation-webui +cd text-generation-webui +COPY .env.example .env +notepad .env +``` + +### 6. prepare models +download and place the models inside the models folder. tested with: + +4bit https://github.com/oobabooga/text-generation-webui/pull/530#issuecomment-1483891617 https://github.com/oobabooga/text-generation-webui/pull/530#issuecomment-1483941105 + +8bit: https://github.com/oobabooga/text-generation-webui/pull/530#issuecomment-1484235789 + +### 7. startup +``` +docker compose up +``` + +## notes + +on older ubuntus you can manually install the docker compose plugin like this: +``` +DOCKER_CONFIG=${DOCKER_CONFIG:-$HOME/.docker} +mkdir -p $DOCKER_CONFIG/cli-plugins +curl -SL https://github.com/docker/compose/releases/download/v2.17.2/docker-compose-linux-x86_64 -o $DOCKER_CONFIG/cli-plugins/docker-compose +chmod +x $DOCKER_CONFIG/cli-plugins/docker-compose +export PATH="$HOME/.docker/cli-plugins:$PATH" +``` + +# Dedicated docker repository + +An external repository maintains a docker wrapper for this project as well as several pre-configured 'one-click' `docker compose` variants (e.g., updated branches of GPTQ). It can be found at: [Atinoda/text-generation-webui-docker](https://github.com/Atinoda/text-generation-webui-docker). + diff --git a/docs/ExLlama.md b/docs/ExLlama.md new file mode 100644 index 0000000000000000000000000000000000000000..db0ebe63c90cf155e8b550e73a542d560ccb0b54 --- /dev/null +++ b/docs/ExLlama.md @@ -0,0 +1,22 @@ +# ExLlama + +### About + +ExLlama is an extremely optimized GPTQ backend for LLaMA models. It features much lower VRAM usage and much higher speeds due to not relying on unoptimized transformers code. + +### Usage + +Configure text-generation-webui to use exllama via the UI or command line: + - In the "Model" tab, set "Loader" to "exllama" + - Specify `--loader exllama` on the command line + +### Manual setup + +No additional installation steps are necessary since an exllama package is already included in the requirements.txt. If this package fails to install for some reason, you can install it manually by cloning the original repository into your `repositories/` folder: + +``` +mkdir repositories +cd repositories +git clone https://github.com/turboderp/exllama +``` + diff --git a/docs/Extensions.md b/docs/Extensions.md new file mode 100644 index 0000000000000000000000000000000000000000..b9c155fe4869280bce498c95dbc54628aabb721d --- /dev/null +++ b/docs/Extensions.md @@ -0,0 +1,161 @@ +Extensions are defined by files named `script.py` inside subfolders of `text-generation-webui/extensions`. They are loaded at startup if specified with the `--extensions` flag. + +For instance, `extensions/silero_tts/script.py` gets loaded with `python server.py --extensions silero_tts`. + +## [text-generation-webui-extensions](https://github.com/oobabooga/text-generation-webui-extensions) + +The link above contains a directory of user extensions for text-generation-webui. + +If you create an extension, you are welcome to host it in a GitHub repository and submit it to the list above. + +## Built-in extensions + +Most of these have been created by the extremely talented contributors that you can find here: [contributors](https://github.com/oobabooga/text-generation-webui/graphs/contributors?from=2022-12-18&to=&type=a). + +|Extension|Description| +|---------|-----------| +|[api](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/api)| Creates an API with two endpoints, one for streaming at `/api/v1/stream` port 5005 and another for blocking at `/api/v1/generate` port 5000. This is the main API for this web UI. | +|[google_translate](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/google_translate)| Automatically translates inputs and outputs using Google Translate.| +|[character_bias](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/character_bias)| Just a very simple example that biases the bot's responses in chat mode.| +|[gallery](https://github.com/oobabooga/text-generation-webui/blob/main/extensions/gallery/)| Creates a gallery with the chat characters and their pictures. | +|[silero_tts](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/silero_tts)| Text-to-speech extension using [Silero](https://github.com/snakers4/silero-models). When used in chat mode, it replaces the responses with an audio widget. | +|[elevenlabs_tts](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/elevenlabs_tts)| Text-to-speech extension using the [ElevenLabs](https://beta.elevenlabs.io/) API. You need an API key to use it. | +|[send_pictures](https://github.com/oobabooga/text-generation-webui/blob/main/extensions/send_pictures/)| Creates an image upload field that can be used to send images to the bot in chat mode. Captions are automatically generated using BLIP. | +|[whisper_stt](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/whisper_stt)| Allows you to enter your inputs in chat mode using your microphone. | +|[sd_api_pictures](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/sd_api_pictures)| Allows you to request pictures from the bot in chat mode, which will be generated using the AUTOMATIC1111 Stable Diffusion API. See examples [here](https://github.com/oobabooga/text-generation-webui/pull/309). | +|[multimodal](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/multimodal) | Adds multimodality support (text+images). For a detailed description see [README.md](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/multimodal/README.md) in the extension directory. | +|[openai](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/openai)| Creates an API that mimics the OpenAI API and can be used as a drop-in replacement. | +|[superbooga](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/superbooga)| An extension that uses ChromaDB to create an arbitrarily large pseudocontext, taking as input text files, URLs, or pasted text. Based on https://github.com/kaiokendev/superbig. | + +## How to write an extension + +script.py may define the special functions and variables below. + +#### Predefined functions + +| Function | Description | +|-------------|-------------| +| `def ui()` | Creates custom gradio elements when the UI is launched. | +| `def custom_css()` | Returns custom CSS as a string. It is applied whenever the web UI is loaded. | +| `def custom_js()` | Same as above but for javascript. | +| `def input_modifier(string)` | Modifies the input string before it enters the model. In chat mode, it is applied to the user message. Otherwise, it is applied to the entire prompt. | +| `def output_modifier(string)` | Modifies the output string before it is presented in the UI. In chat mode, it is applied to the bot's reply. Otherwise, it is applied to the entire output. | +| `def state_modifier(state)` | Modifies the dictionary containing the UI input parameters before it is used by the text generation functions. | +| `def history_modifier(history)` | Modifies the chat history before the text generation in chat mode begins. | +| `def bot_prefix_modifier(string)` | Applied in chat mode to the prefix for the bot's reply. | +| `def custom_generate_reply(...)` | Overrides the main text generation function. | +| `def custom_generate_chat_prompt(...)` | Overrides the prompt generator in chat mode. | +| `def tokenizer_modifier(state, prompt, input_ids, input_embeds)` | Modifies the `input_ids`/`input_embeds` fed to the model. Should return `prompt`, `input_ids`, `input_embeds`. See the `multimodal` extension for an example. | +| `def custom_tokenized_length(prompt)` | Used in conjunction with `tokenizer_modifier`, returns the length in tokens of `prompt`. See the `multimodal` extension for an example. | + +#### `params` dictionary + +In this dictionary, `display_name` is used to define the displayed name of the extension in the UI, and `is_tab` is used to define whether the extension should appear in a new tab. By default, extensions appear at the bottom of the "Text generation" tab. + +Example: + +```python +params = { + "display_name": "Google Translate", + "is_tab": True, +} +``` + +Additionally, `params` may contain variables that you want to be customizable through a `settings.json` file. For instance, assuming the extension is in `extensions/google_translate`, the variable `language string` in + +```python +params = { + "display_name": "Google Translate", + "is_tab": True, + "language string": "jp" +} +``` + +can be customized by adding a key called `google_translate-language string` to `settings.json`: + +```python +"google_translate-language string": "fr", +``` + +That is, the syntax is `extension_name-variable_name`. + +#### `input_hijack` dictionary + +```python +input_hijack = { + 'state': False, + 'value': ["", ""] +} +``` +This is only used in chat mode. If your extension sets `input_hijack['state'] = True` at any moment, the next call to `modules.chat.chatbot_wrapper` will use the values inside `input_hijack['value']` as the user input for text generation. See the `send_pictures` extension above for an example. + +Additionally, your extension can set the value to be a callback in the form of `def cb(text: str, visible_text: str) -> [str, str]`. See the `multimodal` extension above for an example. + +## Using multiple extensions at the same time + +In order to use your extension, you must start the web UI with the `--extensions` flag followed by the name of your extension (the folder under `text-generation-webui/extension` where `script.py` resides). + +You can activate more than one extension at a time by providing their names separated by spaces. The input, output, and bot prefix modifiers will be applied in the specified order. + + +``` +python server.py --extensions enthusiasm translate # First apply enthusiasm, then translate +python server.py --extensions translate enthusiasm # First apply translate, then enthusiasm +``` + +Do note, that for: +- `custom_generate_chat_prompt` +- `custom_generate_reply` +- `tokenizer_modifier` +- `custom_tokenized_length` + +only the first declaration encountered will be used and the rest will be ignored. + +## The `bot_prefix_modifier` + +In chat mode, this function modifies the prefix for a new bot message. For instance, if your bot is named `Marie Antoinette`, the default prefix for a new message will be + +``` +Marie Antoinette: +``` + +Using `bot_prefix_modifier`, you can change it to: + +``` +Marie Antoinette: *I am very enthusiastic* +``` + +Marie Antoinette will become very enthusiastic in all her messages. + +## `custom_generate_reply` example + +Once defined in a `script.py`, this function is executed in place of the main generation functions. You can use it to connect the web UI to an external API, or to load a custom model that is not supported yet. + +Note that in chat mode, this function must only return the new text, whereas in other modes it must return the original prompt + the new text. + +```python +import datetime + +def custom_generate_reply(question, original_question, seed, state, stopping_strings): + cumulative = '' + for i in range(10): + cumulative += f"Counting: {i}...\n" + yield cumulative + + cumulative += f"Done! {str(datetime.datetime.now())}" + yield cumulative +``` + +## `custom_generate_chat_prompt` example + +Below is an extension that just reproduces the default prompt generator in `modules/chat.py`. You can modify it freely to come up with your own prompts in chat mode. + +```python +from modules import chat + +def custom_generate_chat_prompt(user_input, state, **kwargs): + + # Do something with kwargs['history'] or state + + return chat.generate_chat_prompt(user_input, state, **kwargs) +``` diff --git a/docs/FlexGen.md b/docs/FlexGen.md new file mode 100644 index 0000000000000000000000000000000000000000..931cc36f274cda2e629589e1968475aa9c2fa578 --- /dev/null +++ b/docs/FlexGen.md @@ -0,0 +1,64 @@ +>FlexGen is a high-throughput generation engine for running large language models with limited GPU memory (e.g., a 16GB T4 GPU or a 24GB RTX3090 gaming card!). + +https://github.com/FMInference/FlexGen + +## Installation + +No additional installation steps are necessary. FlexGen is in the `requirements.txt` file for this project. + +## Converting a model + +FlexGen only works with the OPT model, and it needs to be converted to numpy format before starting the web UI: + +``` +python convert-to-flexgen.py models/opt-1.3b/ +``` + +The output will be saved to `models/opt-1.3b-np/`. + +## Usage + +The basic command is the following: + +``` +python server.py --model opt-1.3b --loader flexgen +``` + +For large models, the RAM usage may be too high and your computer may freeze. If that happens, you can try this: + +``` +python server.py --model opt-1.3b --loader flexgen --compress-weight +``` + +With this second command, I was able to run both OPT-6.7b and OPT-13B with **2GB VRAM**, and the speed was good in both cases. + +You can also manually set the offload strategy with + +``` +python server.py --model opt-1.3b --loader flexgen --percent 0 100 100 0 100 0 +``` + +where the six numbers after `--percent` are: + +``` +the percentage of weight on GPU +the percentage of weight on CPU +the percentage of attention cache on GPU +the percentage of attention cache on CPU +the percentage of activations on GPU +the percentage of activations on CPU +``` + +You should typically only change the first two numbers. If their sum is less than 100, the remaining layers will be offloaded to the disk, by default into the `text-generation-webui/cache` folder. + +## Performance + +In my experiments with OPT-30B using a RTX 3090 on Linux, I have obtained these results: + +* `--loader flexgen --compress-weight --percent 0 100 100 0 100 0`: 0.99 seconds per token. +* `--loader flexgen --compress-weight --percent 100 0 100 0 100 0`: 0.765 seconds per token. + +## Limitations + +* Only works with the OPT models. +* Only two generation parameters are available: `temperature` and `do_sample`. \ No newline at end of file diff --git a/docs/GPTQ-models-(4-bit-mode).md b/docs/GPTQ-models-(4-bit-mode).md new file mode 100644 index 0000000000000000000000000000000000000000..63a6ed5baaa1a259ddaa44582f14d67ee07cae2e --- /dev/null +++ b/docs/GPTQ-models-(4-bit-mode).md @@ -0,0 +1,215 @@ +GPTQ is a clever quantization algorithm that lightly reoptimizes the weights during quantization so that the accuracy loss is compensated relative to a round-to-nearest quantization. See the paper for more details: https://arxiv.org/abs/2210.17323 + +4-bit GPTQ models reduce VRAM usage by about 75%. So LLaMA-7B fits into a 6GB GPU, and LLaMA-30B fits into a 24GB GPU. + +## Overview + +There are two ways of loading GPTQ models in the web UI at the moment: + +* Using AutoGPTQ: + * supports more models + * standardized (no need to guess any parameter) + * is a proper Python library + * ~no wheels are presently available so it requires manual compilation~ + * supports loading both triton and cuda models + +* Using GPTQ-for-LLaMa directly: + * faster CPU offloading + * faster multi-GPU inference + * supports loading LoRAs using a monkey patch + * requires you to manually figure out the wbits/groupsize/model_type parameters for the model to be able to load it + * supports either only cuda or only triton depending on the branch + +For creating new quantizations, I recommend using AutoGPTQ: https://github.com/PanQiWei/AutoGPTQ + +## AutoGPTQ + +### Installation + +No additional steps are necessary as AutoGPTQ is already in the `requirements.txt` for the webui. If you still want or need to install it manually for whatever reason, these are the commands: + +``` +conda activate textgen +git clone https://github.com/PanQiWei/AutoGPTQ.git && cd AutoGPTQ +pip install . +``` + +The last command requires `nvcc` to be installed (see the [instructions above](https://github.com/oobabooga/text-generation-webui/blob/main/docs/GPTQ-models-(4-bit-mode).md#step-1-install-nvcc)). + +### Usage + +When you quantize a model using AutoGPTQ, a folder containing a filed called `quantize_config.json` will be generated. Place that folder inside your `models/` folder and load it with the `--autogptq` flag: + +``` +python server.py --autogptq --model model_name +``` + +Alternatively, check the `autogptq` box in the "Model" tab of the UI before loading the model. + +### Offloading + +In order to do CPU offloading or multi-gpu inference with AutoGPTQ, use the `--gpu-memory` flag. It is currently somewhat slower than offloading with the `--pre_layer` option in GPTQ-for-LLaMA. + +For CPU offloading: + +``` +python server.py --autogptq --gpu-memory 3000MiB --model model_name +``` + +For multi-GPU inference: + +``` +python server.py --autogptq --gpu-memory 3000MiB 6000MiB --model model_name +``` + +### Using LoRAs with AutoGPTQ + +Not supported yet. + +## GPTQ-for-LLaMa + +GPTQ-for-LLaMa is the original adaptation of GPTQ for the LLaMA model. It was made possible by [@qwopqwop200](https://github.com/qwopqwop200/GPTQ-for-LLaMa): https://github.com/qwopqwop200/GPTQ-for-LLaMa + +Different branches of GPTQ-for-LLaMa are currently available, including: + +| Branch | Comment | +|----|----| +| [Old CUDA branch (recommended)](https://github.com/oobabooga/GPTQ-for-LLaMa/) | The fastest branch, works on Windows and Linux. | +| [Up-to-date triton branch](https://github.com/qwopqwop200/GPTQ-for-LLaMa) | Slightly more precise than the old CUDA branch from 13b upwards, significantly more precise for 7b. 2x slower for small context size and only works on Linux. | +| [Up-to-date CUDA branch](https://github.com/qwopqwop200/GPTQ-for-LLaMa/tree/cuda) | As precise as the up-to-date triton branch, 10x slower than the old cuda branch for small context size. | + +Overall, I recommend using the old CUDA branch. It is included by default in the one-click-installer for this web UI. + +### Installation + +Start by cloning GPTQ-for-LLaMa into your `text-generation-webui/repositories` folder: + +``` +mkdir repositories +cd repositories +git clone https://github.com/oobabooga/GPTQ-for-LLaMa.git -b cuda +``` + +If you want to you to use the up-to-date CUDA or triton branches instead of the old CUDA branch, use these commands: + +``` +git clone https://github.com/qwopqwop200/GPTQ-for-LLaMa.git -b cuda +``` + +``` +git clone https://github.com/qwopqwop200/GPTQ-for-LLaMa.git -b triton +``` + +Next you need to install the CUDA extensions. You can do that either by installing the precompiled wheels, or by compiling the wheels yourself. + +### Precompiled wheels + +Kindly provided by our friend jllllll: https://github.com/jllllll/GPTQ-for-LLaMa-Wheels + +Windows: + +``` +pip install https://github.com/jllllll/GPTQ-for-LLaMa-Wheels/raw/main/quant_cuda-0.0.0-cp310-cp310-win_amd64.whl +``` + +Linux: + +``` +pip install https://github.com/jllllll/GPTQ-for-LLaMa-Wheels/raw/Linux-x64/quant_cuda-0.0.0-cp310-cp310-linux_x86_64.whl +``` + +### Manual installation + +#### Step 1: install nvcc + +``` +conda activate textgen +conda install -c conda-forge cudatoolkit-dev +``` + +The command above takes some 10 minutes to run and shows no progress bar or updates along the way. + +You are also going to need to have a C++ compiler installed. On Linux, `sudo apt install build-essential` or equivalent is enough. + +If you're using an older version of CUDA toolkit (e.g. 11.7) but the latest version of `gcc` and `g++` (12.0+), you should downgrade with: `conda install -c conda-forge gxx==11.3.0`. Kernel compilation will fail otherwise. + +#### Step 2: compile the CUDA extensions + +``` +cd repositories/GPTQ-for-LLaMa +python setup_cuda.py install +``` + +### Getting pre-converted LLaMA weights + +These are models that you can simply download and place in your `models` folder. + +* Converted without `group-size` (better for the 7b model): https://github.com/oobabooga/text-generation-webui/pull/530#issuecomment-1483891617 +* Converted with `group-size` (better from 13b upwards): https://github.com/oobabooga/text-generation-webui/pull/530#issuecomment-1483941105 + +⚠️ The tokenizer files in the sources above may be outdated. Make sure to obtain the universal LLaMA tokenizer as described [here](https://github.com/oobabooga/text-generation-webui/blob/main/docs/LLaMA-model.md#option-1-pre-converted-weights). + +### Starting the web UI: + +Use the `--gptq-for-llama` flag. + +For the models converted without `group-size`: + +``` +python server.py --model llama-7b-4bit --gptq-for-llama +``` + +For the models converted with `group-size`: + +``` +python server.py --model llama-13b-4bit-128g --gptq-for-llama --wbits 4 --groupsize 128 +``` + +The command-line flags `--wbits` and `--groupsize` are automatically detected based on the folder names in many cases. + +### CPU offloading + +It is possible to offload part of the layers of the 4-bit model to the CPU with the `--pre_layer` flag. The higher the number after `--pre_layer`, the more layers will be allocated to the GPU. + +With this command, I can run llama-7b with 4GB VRAM: + +``` +python server.py --model llama-7b-4bit --pre_layer 20 +``` + +This is the performance: + +``` +Output generated in 123.79 seconds (1.61 tokens/s, 199 tokens) +``` + +You can also use multiple GPUs with `pre_layer` if using the oobabooga fork of GPTQ, eg `--pre_layer 30 60` will load a LLaMA-30B model half onto your first GPU and half onto your second, or `--pre_layer 20 40` will load 20 layers onto GPU-0, 20 layers onto GPU-1, and 20 layers offloaded to CPU. + +### Using LoRAs with GPTQ-for-LLaMa + +This requires using a monkey patch that is supported by this web UI: https://github.com/johnsmith0031/alpaca_lora_4bit + +To use it: + +1. Clone `johnsmith0031/alpaca_lora_4bit` into the repositories folder: + +``` +cd text-generation-webui/repositories +git clone https://github.com/johnsmith0031/alpaca_lora_4bit +``` + +⚠️ I have tested it with the following commit specifically: `2f704b93c961bf202937b10aac9322b092afdce0` + +2. Install https://github.com/sterlind/GPTQ-for-LLaMa with this command: + +``` +pip install git+https://github.com/sterlind/GPTQ-for-LLaMa.git@lora_4bit +``` + +3. Start the UI with the `--monkey-patch` flag: + +``` +python server.py --model llama-7b-4bit-128g --listen --lora tloen_alpaca-lora-7b --monkey-patch +``` + + diff --git a/docs/Generation-parameters.md b/docs/Generation-parameters.md new file mode 100644 index 0000000000000000000000000000000000000000..32e063c7f823a61a454aa312f5ec943d54325909 --- /dev/null +++ b/docs/Generation-parameters.md @@ -0,0 +1,34 @@ +# Generation parameters + +For a description of the generation parameters provided by the transformers library, see this link: https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.GenerationConfig + +### llama.cpp + +llama.cpp only uses the following parameters: + +* temperature +* top_p +* top_k +* repetition_penalty +* tfs +* mirostat_mode +* mirostat_tau +* mirostat_eta + +### ExLlama + +ExLlama only uses the following parameters: + +* temperature +* top_p +* top_k +* repetition_penalty +* typical_p + +### RWKV + +RWKV only uses the following parameters when loaded through the old .pth weights: + +* temperature +* top_p +* top_k diff --git a/docs/LLaMA-model.md b/docs/LLaMA-model.md new file mode 100644 index 0000000000000000000000000000000000000000..36e9c30543e572fa64901e074ce43a39f9b6cdac --- /dev/null +++ b/docs/LLaMA-model.md @@ -0,0 +1,51 @@ +LLaMA is a Large Language Model developed by Meta AI. + +It was trained on more tokens than previous models. The result is that the smallest version with 7 billion parameters has similar performance to GPT-3 with 175 billion parameters. + +This guide will cover usage through the official `transformers` implementation. For 4-bit mode, head over to [GPTQ models (4 bit mode) +](GPTQ-models-(4-bit-mode).md). + +## Getting the weights + +### Option 1: pre-converted weights + +* Torrent: https://github.com/oobabooga/text-generation-webui/pull/530#issuecomment-1484235789 +* Direct download: https://huggingface.co/Neko-Institute-of-Science + +⚠️ The tokenizers for the Torrent source above and also for many LLaMA fine-tunes available on Hugging Face may be outdated, so I recommend downloading the following universal LLaMA tokenizer: + +``` +python download-model.py oobabooga/llama-tokenizer +``` + +Once downloaded, it will be automatically applied to **every** `LlamaForCausalLM` model that you try to load. + +### Option 2: convert the weights yourself + +1. Install the `protobuf` library: + +``` +pip install protobuf==3.20.1 +``` + +2. Use the script below to convert the model in `.pth` format that you, a fellow academic, downloaded using Meta's official link. + +If you have `transformers` installed in place: + +``` +python -m transformers.models.llama.convert_llama_weights_to_hf --input_dir /path/to/LLaMA --model_size 7B --output_dir /tmp/outputs/llama-7b +``` + +Otherwise download [convert_llama_weights_to_hf.py](https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py) first and run: + +``` +python convert_llama_weights_to_hf.py --input_dir /path/to/LLaMA --model_size 7B --output_dir /tmp/outputs/llama-7b +``` + +3. Move the `llama-7b` folder inside your `text-generation-webui/models` folder. + +## Starting the web UI + +```python +python server.py --model llama-7b +``` diff --git a/docs/LoRA.md b/docs/LoRA.md new file mode 100644 index 0000000000000000000000000000000000000000..f1504d1096c44227e8c510fce4bcaa6254849cb0 --- /dev/null +++ b/docs/LoRA.md @@ -0,0 +1,71 @@ +# LoRA + +LoRA (Low-Rank Adaptation) is an extremely powerful method for customizing a base model by training only a small number of parameters. They can be attached to models at runtime. + +For instance, a 50mb LoRA can teach LLaMA an entire new language, a given writing style, or give it instruction-following or chat abilities. + +This is the current state of LoRA integration in the web UI: + +|Loader | Status | +|--------|------| +| Transformers | Full support in 16-bit, `--load-in-8bit`, `--load-in-4bit`, and CPU modes. | +| ExLlama | Single LoRA support. Fast to remove the LoRA afterwards. | +| AutoGPTQ | Single LoRA support. Removing the LoRA requires reloading the entire model.| +| GPTQ-for-LLaMa | Full support with the [monkey patch](https://github.com/oobabooga/text-generation-webui/blob/main/docs/GPTQ-models-(4-bit-mode).md#using-loras-with-gptq-for-llama). | + +## Downloading a LoRA + +The download script can be used. For instance: + +``` +python download-model.py tloen/alpaca-lora-7b +``` + +The files will be saved to `loras/tloen_alpaca-lora-7b`. + +## Using the LoRA + +The `--lora` command-line flag can be used. Examples: + +``` +python server.py --model llama-7b-hf --lora tloen_alpaca-lora-7b +python server.py --model llama-7b-hf --lora tloen_alpaca-lora-7b --load-in-8bit +python server.py --model llama-7b-hf --lora tloen_alpaca-lora-7b --load-in-4bit +python server.py --model llama-7b-hf --lora tloen_alpaca-lora-7b --cpu +``` + +Instead of using the `--lora` command-line flag, you can also select the LoRA in the "Parameters" tab of the interface. + +## Prompt +For the Alpaca LoRA in particular, the prompt must be formatted like this: + +``` +Below is an instruction that describes a task. Write a response that appropriately completes the request. +### Instruction: +Write a Python script that generates text using the transformers library. +### Response: +``` + +Sample output: + +``` +Below is an instruction that describes a task. Write a response that appropriately completes the request. +### Instruction: +Write a Python script that generates text using the transformers library. +### Response: + +import transformers +from transformers import AutoTokenizer, AutoModelForCausalLM +tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") +model = AutoModelForCausalLM.from_pretrained("bert-base-uncased") +texts = ["Hello world", "How are you"] +for sentence in texts: +sentence = tokenizer(sentence) +print(f"Generated {len(sentence)} tokens from '{sentence}'") +output = model(sentences=sentence).predict() +print(f"Predicted {len(output)} tokens for '{sentence}':\n{output}") +``` + +## Training a LoRA + +You can train your own LoRAs from the `Training` tab. See [Training LoRAs](Training-LoRAs.md) for details. diff --git a/docs/Low-VRAM-guide.md b/docs/Low-VRAM-guide.md new file mode 100644 index 0000000000000000000000000000000000000000..7814ecb0c3bc604e8eaa6545b5f83be7f5bdb519 --- /dev/null +++ b/docs/Low-VRAM-guide.md @@ -0,0 +1,53 @@ +If you GPU is not large enough to fit a 16-bit model, try these in the following order: + +### Load the model in 8-bit mode + +``` +python server.py --load-in-8bit +``` + +### Load the model in 4-bit mode + +``` +python server.py --load-in-4bit +``` + +### Split the model across your GPU and CPU + +``` +python server.py --auto-devices +``` + +If you can load the model with this command but it runs out of memory when you try to generate text, try increasingly limiting the amount of memory allocated to the GPU until the error stops happening: + +``` +python server.py --auto-devices --gpu-memory 10 +python server.py --auto-devices --gpu-memory 9 +python server.py --auto-devices --gpu-memory 8 +... +``` + +where the number is in GiB. + +For finer control, you can also specify the unit in MiB explicitly: + +``` +python server.py --auto-devices --gpu-memory 8722MiB +python server.py --auto-devices --gpu-memory 4725MiB +python server.py --auto-devices --gpu-memory 3500MiB +... +``` + +### Send layers to a disk cache + +As a desperate last measure, you can split the model across your GPU, CPU, and disk: + +``` +python server.py --auto-devices --disk +``` + +With this, I am able to load a 30b model into my RTX 3090, but it takes 10 seconds to generate 1 word. + +### DeepSpeed (experimental) + +An experimental alternative to all of the above is to use DeepSpeed: [guide](DeepSpeed.md). diff --git a/docs/README.md b/docs/README.md new file mode 100644 index 0000000000000000000000000000000000000000..06b73b8468ab263a230cb44ba45a6c95f00b2ada --- /dev/null +++ b/docs/README.md @@ -0,0 +1,23 @@ +# text-generation-webui documentation + +## Table of contents + +* [Audio Notification](Audio-Notification.md) +* [Chat mode](Chat-mode.md) +* [DeepSpeed](DeepSpeed.md) +* [Docker](Docker.md) +* [ExLlama](ExLlama.md) +* [Extensions](Extensions.md) +* [FlexGen](FlexGen.md) +* [Generation parameters](Generation-parameters.md) +* [GPTQ models (4 bit mode)](GPTQ-models-(4-bit-mode).md) +* [llama.cpp models](llama.cpp-models.md) +* [LLaMA model](LLaMA-model.md) +* [LoRA](LoRA.md) +* [Low VRAM guide](Low-VRAM-guide.md) +* [RWKV model](RWKV-model.md) +* [Spell book](Spell-book.md) +* [System requirements](System-requirements.md) +* [Training LoRAs](Training-LoRAs.md) +* [Windows installation guide](Windows-installation-guide.md) +* [WSL installation guide](WSL-installation-guide.md) diff --git a/docs/RWKV-model.md b/docs/RWKV-model.md new file mode 100644 index 0000000000000000000000000000000000000000..88f13fa56e0567bf3442b21c1d2a1cdd56d29647 --- /dev/null +++ b/docs/RWKV-model.md @@ -0,0 +1,72 @@ +> RWKV: RNN with Transformer-level LLM Performance +> +> It combines the best of RNN and transformer - great performance, fast inference, saves VRAM, fast training, "infinite" ctx_len, and free sentence embedding (using the final hidden state). + +https://github.com/BlinkDL/RWKV-LM + +https://github.com/BlinkDL/ChatRWKV + +## Using RWKV in the web UI + +### Hugging Face weights + +Simply download the weights from https://huggingface.co/RWKV and load them as you would for any other model. + +There is a bug in transformers==4.29.2 that prevents RWKV from being loaded in 8-bit mode. You can install the dev branch to solve this bug: `pip install git+https://github.com/huggingface/transformers` + +### Original .pth weights + +The instructions below are from before RWKV was supported in transformers, and they are kept for legacy purposes. The old implementation is possibly faster, but it lacks the full range of samplers that the transformers library offers. + +#### 0. Install the RWKV library + +``` +pip install rwkv +``` + +`0.7.3` was the last version that I tested. If you experience any issues, try ```pip install rwkv==0.7.3```. + +#### 1. Download the model + +It is available in different sizes: + +* https://huggingface.co/BlinkDL/rwkv-4-pile-3b/ +* https://huggingface.co/BlinkDL/rwkv-4-pile-7b/ +* https://huggingface.co/BlinkDL/rwkv-4-pile-14b/ + +There are also older releases with smaller sizes like: + +* https://huggingface.co/BlinkDL/rwkv-4-pile-169m/resolve/main/RWKV-4-Pile-169M-20220807-8023.pth + +Download the chosen `.pth` and put it directly in the `models` folder. + +#### 2. Download the tokenizer + +[20B_tokenizer.json](https://raw.githubusercontent.com/BlinkDL/ChatRWKV/main/v2/20B_tokenizer.json) + +Also put it directly in the `models` folder. Make sure to not rename it. It should be called `20B_tokenizer.json`. + +#### 3. Launch the web UI + +No additional steps are required. Just launch it as you would with any other model. + +``` +python server.py --listen --no-stream --model RWKV-4-Pile-169M-20220807-8023.pth +``` + +#### Setting a custom strategy + +It is possible to have very fine control over the offloading and precision for the model with the `--rwkv-strategy` flag. Possible values include: + +``` +"cpu fp32" # CPU mode +"cuda fp16" # GPU mode with float16 precision +"cuda fp16 *30 -> cpu fp32" # GPU+CPU offloading. The higher the number after *, the higher the GPU allocation. +"cuda fp16i8" # GPU mode with 8-bit precision +``` + +See the README for the PyPl package for more details: https://pypi.org/project/rwkv/ + +#### Compiling the CUDA kernel + +You can compile the CUDA kernel for the model with `--rwkv-cuda-on`. This should improve the performance a lot but I haven't been able to get it to work yet. diff --git a/docs/Spell-book.md b/docs/Spell-book.md new file mode 100644 index 0000000000000000000000000000000000000000..9b7c76c953f76f8a486bbe5156de4e9ebb3f0ec0 --- /dev/null +++ b/docs/Spell-book.md @@ -0,0 +1,107 @@ +You have now entered a hidden corner of the internet. + +A confusing yet intriguing realm of paradoxes and contradictions. + +A place where you will find out that what you thought you knew, you in fact didn't know, and what you didn't know was in front of you all along. + +![](https://i.pinimg.com/originals/6e/e2/7b/6ee27bad351d3aca470d80f1033ba9c6.jpg) + +*In other words, here I will document little-known facts about this web UI that I could not find another place for in the wiki.* + +#### You can train LoRAs in CPU mode + +Load the web UI with + +``` +python server.py --cpu +``` + +and start training the LoRA from the training tab as usual. + +#### 8-bit mode works with CPU offloading + +``` +python server.py --load-in-8bit --gpu-memory 4000MiB +``` + +#### `--pre_layer`, and not `--gpu-memory`, is the right way to do CPU offloading with 4-bit models + +``` +python server.py --wbits 4 --groupsize 128 --pre_layer 20 +``` + +#### Models can be loaded in 32-bit, 16-bit, 8-bit, and 4-bit modes + +``` +python server.py --cpu +python server.py +python server.py --load-in-8bit +python server.py --wbits 4 +``` + +#### The web UI works with any version of GPTQ-for-LLaMa + +Including the up to date triton and cuda branches. But you have to delete the `repositories/GPTQ-for-LLaMa` folder and reinstall the new one every time: + +``` +cd text-generation-webui/repositories +rm -r GPTQ-for-LLaMa +pip uninstall quant-cuda +git clone https://github.com/oobabooga/GPTQ-for-LLaMa -b cuda # or any other repository and branch +cd GPTQ-for-LLaMa +python setup_cuda.py install +``` + +#### Instruction-following templates are represented as chat characters + +https://github.com/oobabooga/text-generation-webui/tree/main/characters/instruction-following + +#### The right way to run Alpaca, Open Assistant, Vicuna, etc is Instruct mode, not normal chat mode + +Otherwise the prompt will not be formatted correctly. + +1. Start the web UI with + +``` +python server.py --chat +``` + +2. Click on the "instruct" option under "Chat modes" + +3. Select the correct template in the hidden dropdown menu that will become visible. + +#### Notebook mode is best mode + +Ascended individuals have realized that notebook mode is the superset of chat mode and can do chats with ultimate flexibility, including group chats, editing replies, starting a new bot reply in a given way, and impersonating. + +#### RWKV is a RNN + +Most models are transformers, but not RWKV, which is a RNN. It's a great model. + +#### `--gpu-memory` is not a hard limit on the GPU memory + +It is simply a parameter that is passed to the `accelerate` library while loading the model. More memory will be allocated during generation. That's why this parameter has to be set to less than your total GPU memory. + +#### Contrastive search perhaps the best preset + +But it uses a ton of VRAM. + +#### You can check the sha256sum of downloaded models with the download script + +``` +python download-model.py facebook/galactica-125m --check +``` + +#### The download script continues interrupted downloads by default + +It doesn't start over. + +#### You can download models with multiple threads + +``` +python download-model.py facebook/galactica-125m --threads 8 +``` + +#### LoRAs work in 4-bit mode + +You need to follow [these instructions](GPTQ-models-(4-bit-mode).md#using-loras-in-4-bit-mode) and then start the web UI with the `--monkey-patch` flag. diff --git a/docs/System-requirements.md b/docs/System-requirements.md new file mode 100644 index 0000000000000000000000000000000000000000..3a88416d34ad7c8babd90a81db902e95288a8197 --- /dev/null +++ b/docs/System-requirements.md @@ -0,0 +1,42 @@ +These are the VRAM and RAM requirements (in MiB) to run some examples of models **in 16-bit (default) precision**: + +| model | VRAM (GPU) | RAM | +|:-----------------------|-------------:|--------:| +| arxiv_ai_gpt2 | 1512.37 | 5824.2 | +| blenderbot-1B-distill | 2441.75 | 4425.91 | +| opt-1.3b | 2509.61 | 4427.79 | +| gpt-neo-1.3b | 2605.27 | 5851.58 | +| opt-2.7b | 5058.05 | 4863.95 | +| gpt4chan_model_float16 | 11653.7 | 4437.71 | +| gpt-j-6B | 11653.7 | 5633.79 | +| galactica-6.7b | 12697.9 | 4429.89 | +| opt-6.7b | 12700 | 4368.66 | +| bloomz-7b1-p3 | 13483.1 | 4470.34 | + +#### GPU mode with 8-bit precision + +Allows you to load models that would not normally fit into your GPU. Enabled by default for 13b and 20b models in this web UI. + +| model | VRAM (GPU) | RAM | +|:---------------|-------------:|--------:| +| opt-13b | 12528.1 | 1152.39 | +| gpt-neox-20b | 20384 | 2291.7 | + +#### CPU mode (32-bit precision) + +A lot slower, but does not require a GPU. + +On my i5-12400F, 6B models take around 10-20 seconds to respond in chat mode, and around 5 minutes to generate a 200 tokens completion. + +| model | RAM | +|:-----------------------|---------:| +| arxiv_ai_gpt2 | 4430.82 | +| gpt-neo-1.3b | 6089.31 | +| opt-1.3b | 8411.12 | +| blenderbot-1B-distill | 8508.16 | +| opt-2.7b | 14969.3 | +| bloomz-7b1-p3 | 21371.2 | +| gpt-j-6B | 24200.3 | +| gpt4chan_model | 24246.3 | +| galactica-6.7b | 26561.4 | +| opt-6.7b | 29596.6 | diff --git a/docs/Training-LoRAs.md b/docs/Training-LoRAs.md new file mode 100644 index 0000000000000000000000000000000000000000..83e6d5a7251eea080cd7dfe8d19a2e42d6d3a822 --- /dev/null +++ b/docs/Training-LoRAs.md @@ -0,0 +1,174 @@ +## Training Your Own LoRAs + +The WebUI seeks to make training your own LoRAs as easy as possible. It comes down to just a few simple steps: + +### **Step 1**: Make a plan. +- What base model do you want to use? The LoRA you make has to be matched up to a single architecture (eg LLaMA-13B) and cannot be transferred to others (eg LLaMA-7B, StableLM, etc. would all be different). Derivatives of the same model (eg Alpaca finetune of LLaMA-13B) might be transferrable, but even then it's best to train exactly on what you plan to use. +- What model format do you want? At time of writing, 8-bit models are most stable, and 4-bit are supported but experimental. In the near future it is likely that 4-bit will be the best option for most users. +- What are you training it on? Do you want it to learn real information, a simple format, ...? + +### **Step 2**: Gather a dataset. +- If you use a dataset similar to the [Alpaca](https://github.com/gururise/AlpacaDataCleaned/blob/main/alpaca_data_cleaned.json) format, that is natively supported by the `Formatted Dataset` input in the WebUI, with premade formatter options. +- If you use a dataset that isn't matched to Alpaca's format, but uses the same basic JSON structure, you can make your own format file by copying `training/formats/alpaca-format.json` to a new file and [editing its content](#format-files). +- If you can get the dataset into a simple text file, that works too! You can train using the `Raw text file` input option. + - This means you can for example just copy/paste a chatlog/documentation page/whatever you want, shove it in a plain text file, and train on it. +- If you use a structured dataset not in this format, you may have to find an external way to convert it - or open an issue to request native support. + +### **Step 3**: Do the training. +- **3.1**: Load the WebUI, and your model. + - Make sure you don't have any LoRAs already loaded (unless you want to train for multi-LoRA usage). +- **3.2**: Open the `Training` tab at the top, `Train LoRA` sub-tab. +- **3.3**: Fill in the name of the LoRA, select your dataset in the dataset options. +- **3.4**: Select other parameters to your preference. See [parameters below](#parameters). +- **3.5**: click `Start LoRA Training`, and wait. + - It can take a few hours for a large dataset, or just a few minute if doing a small run. + - You may want to monitor your [loss value](#loss) while it goes. + +### **Step 4**: Evaluate your results. +- Load the LoRA under the Models Tab. +- You can go test-drive it on the `Text generation` tab, or you can use the `Perplexity evaluation` sub-tab of the `Training` tab. +- If you used the `Save every n steps` option, you can grab prior copies of the model from sub-folders within the LoRA model's folder and try them instead. + +### **Step 5**: Re-run if you're unhappy. +- Make sure to unload the LoRA before training it. +- You can simply resume a prior run - use `Copy parameters from` to select your LoRA, and edit parameters. Note that you cannot change the `Rank` of an already created LoRA. + - If you want to resume from a checkpoint saved along the way, simply copy the contents of the checkpoint folder into the LoRA's folder. + - (Note: `adapter_model.bin` is the important file that holds the actual LoRA content). + - This will start Learning Rate and Steps back to the start. If you want to resume as if you were midway through, you can adjust your Learning Rate to the last reported LR in logs and reduce your epochs. +- Or, you can start over entirely if you prefer. +- If your model is producing corrupted outputs, you probably need to start over and use a lower Learning Rate. +- If your model isn't learning detailed information but you want it to, you might need to just run more epochs, or you might need a higher Rank. +- If your model is enforcing a format you didn't want, you may need to tweak your dataset, or start over and not train as far. + +## Format Files + +If using JSON formatted datasets, they are presumed to be in the following approximate format: + +```json +[ + { + "somekey": "somevalue", + "key2": "value2" + }, + { + // etc + } +] +``` + +Where the keys (eg `somekey`, `key2` above) are standardized, and relatively consistent across the dataset, and the values (eg `somevalue`, `value2`) contain the content actually intended to be trained. + +For Alpaca, the keys are `instruction`, `input`, and `output`, wherein `input` is sometimes blank. + +A simple format file for Alpaca to be used as a chat bot is: + +```json +{ + "instruction,output": "User: %instruction%\nAssistant: %output%", + "instruction,input,output": "User: %instruction%: %input%\nAssistant: %output%" +} +``` + +Note that the keys (eg `instruction,output`) are a comma-separated list of dataset keys, and the values are a simple string that use those keys with `%%`. + +So for example if a dataset has `"instruction": "answer my question"`, then the format file's `User: %instruction%\n` will be automatically filled in as `User: answer my question\n`. + +If you have different sets of key inputs, you can make your own format file to match it. This format-file is designed to be as simple as possible to enable easy editing to match your needs. + +## Raw Text File Settings + +When using raw text files as your dataset, the text is automatically split into chunks based on your `Cutoff Length` you get a few basic options to configure them. +- `Overlap Length` is how much to overlap chunks by. Overlapping chunks helps prevent the model from learning strange mid-sentence cuts, and instead learn continual sentences that flow from earlier text. +- `Prefer Newline Cut Length` sets a maximum distance in characters to shift the chunk cut towards newlines. Doing this helps prevent lines from starting or ending mid-sentence, preventing the model from learning to cut off sentences randomly. +- `Hard Cut String` sets a string that indicates there must be a hard cut without overlap. This defaults to `\n\n\n`, meaning 3 newlines. No trained chunk will ever contain this string. This allows you to insert unrelated sections of text in the same text file, but still ensure the model won't be taught to randomly change the subject. + +## Parameters + +The basic purpose and function of each parameter is documented on-page in the WebUI, so read through them in the UI to understand your options. + +That said, here's a guide to the most important parameter choices you should consider: + +### VRAM + +- First, you must consider your VRAM availability. + - Generally, under default settings, VRAM usage for training with default parameters is very close to when generating text (with 1000+ tokens of context) (ie, if you can generate text, you can train LoRAs). + - Note: worse by default in the 4-bit monkeypatch currently. Reduce `Micro Batch Size` to `1` to restore this to expectations. + - If you have VRAM to spare, setting higher batch sizes will use more VRAM and get you better quality training in exchange. + - If you have large data, setting a higher cutoff length may be beneficial, but will cost significant VRAM. If you can spare some, set your batch size to `1` and see how high you can push your cutoff length. + - If you're low on VRAM, reducing batch size or cutoff length will of course improve that. + - Don't be afraid to just try it and see what happens. If it's too much, it will just error out, and you can lower settings and try again. + +### Rank + +- Second, you want to consider the amount of learning you want. + - For example, you may wish to just learn a dialogue format (as in the case of Alpaca) in which case setting a low `Rank` value (32 or lower) works great. + - Or, you might be training on project documentation you want the bot to understand and be able to understand questions about, in which case the higher the rank, the better. + - Generally, higher Rank = more precise learning = more total content learned = more VRAM usage while training. + +### Learning Rate and Epochs + +- Third, how carefully you want it to be learned. + - In other words, how okay or not you are with the model losing unrelated understandings. + - You can control this with 3 key settings: the Learning Rate, its scheduler, and your total epochs. + - The learning rate controls how much change is made to the model by each token it sees. + - It's in scientific notation normally, so for example `3e-4` means `3 * 10^-4` which is `0.0003`. The number after `e-` controls how many `0`s are in the number. + - Higher values let training run faster, but also are more likely to corrupt prior data in the model. + - You essentially have two variables to balance: the LR, and Epochs. + - If you make LR higher, you can set Epochs equally lower to match. High LR + low epochs = very fast, low quality training. + - If you make LR low, set epochs high. Low LR + high epochs = slow but high-quality training. + - The scheduler controls change-over-time as you train - it starts high, and then goes low. This helps balance getting data in, and having decent quality, at the same time. + - You can see graphs of the different scheduler options [in the HuggingFace docs here](https://moon-ci-docs.huggingface.co/docs/transformers/pr_1/en/main_classes/optimizer_schedules#transformers.SchedulerType) + +## Loss + +When you're running training, the WebUI's console window will log reports that include, among other things, a numeric value named `Loss`. It will start as a high number, and gradually get lower and lower as it goes. + +"Loss" in the world of AI training theoretically means "how close is the model to perfect", with `0` meaning "absolutely perfect". This is calculated by measuring the difference between the model outputting exactly the text you're training it to output, and what it actually outputs. + +In practice, a good LLM should have a very complex variable range of ideas running in its artificial head, so a loss of `0` would indicate that the model has broken and forgotten to how think about anything other than what you trained it. + +So, in effect, Loss is a balancing game: you want to get it low enough that it understands your data, but high enough that it isn't forgetting everything else. Generally, if it goes below `1.0`, it's going to start forgetting its prior memories, and you should stop training. In some cases you may prefer to take it as low as `0.5` (if you want it to be very very predictable). Different goals have different needs, so don't be afraid to experiment and see what works best for you. + +Note: if you see Loss start at or suddenly jump to exactly `0`, it is likely something has gone wrong in your training process (eg model corruption). + +## Note: 4-Bit Monkeypatch + +The [4-bit LoRA monkeypatch](GPTQ-models-(4-bit-mode).md#using-loras-in-4-bit-mode) works for training, but has side effects: +- VRAM usage is higher currently. You can reduce the `Micro Batch Size` to `1` to compensate. +- Models do funky things. LoRAs apply themselves, or refuse to apply, or spontaneously error out, or etc. It can be helpful to reload base model or restart the WebUI between training/usage to minimize chances of anything going haywire. +- Loading or working with multiple LoRAs at the same time doesn't currently work. +- Generally, recognize and treat the monkeypatch as the dirty temporary hack it is - it works, but isn't very stable. It will get better in time when everything is merged upstream for full official support. + +## Legacy notes + +LoRA training was contributed by [mcmonkey4eva](https://github.com/mcmonkey4eva) in PR [#570](https://github.com/oobabooga/text-generation-webui/pull/570). + +### Using the original alpaca-lora code + +Kept here for reference. The Training tab has much more features than this method. + +``` +conda activate textgen +git clone https://github.com/tloen/alpaca-lora +``` + +Edit those two lines in `alpaca-lora/finetune.py` to use your existing model folder instead of downloading everything from decapoda: + +``` +model = LlamaForCausalLM.from_pretrained( + "models/llama-7b", + load_in_8bit=True, + device_map="auto", +) +tokenizer = LlamaTokenizer.from_pretrained( + "models/llama-7b", add_eos_token=True +) +``` + +Run the script with: + +``` +python finetune.py +``` + +It just works. It runs at 22.32s/it, with 1170 iterations in total, so about 7 hours and a half for training a LoRA. RTX 3090, 18153MiB VRAM used, drawing maximum power (350W, room heater mode). diff --git a/docs/WSL-installation-guide.md b/docs/WSL-installation-guide.md new file mode 100644 index 0000000000000000000000000000000000000000..30b7fa3e6f4613898fbb0d0bd16b77db5d79c14b --- /dev/null +++ b/docs/WSL-installation-guide.md @@ -0,0 +1,82 @@ +Guide created by [@jfryton](https://github.com/jfryton). Thank you jfryton. + +----- + +Here's an easy-to-follow, step-by-step guide for installing Windows Subsystem for Linux (WSL) with Ubuntu on Windows 10/11: + +## Step 1: Enable WSL + +1. Press the Windows key + X and click on "Windows PowerShell (Admin)" or "Windows Terminal (Admin)" to open PowerShell or Terminal with administrator privileges. +2. In the PowerShell window, type the following command and press Enter: + +``` +wsl --install +``` + +If this command doesn't work, you can enable WSL with the following command for Windows 10: + +``` +wsl --set-default-version 1 +``` + +For Windows 11, you can use: + +``` +wsl --set-default-version 2 +``` + +You may be prompted to restart your computer. If so, save your work and restart. + +## Step 2: Install Ubuntu + +1. Open the Microsoft Store. +2. Search for "Ubuntu" in the search bar. +3. Choose the desired Ubuntu version (e.g., Ubuntu 20.04 LTS) and click "Get" or "Install" to download and install the Ubuntu app. +4. Once the installation is complete, click "Launch" or search for "Ubuntu" in the Start menu and open the app. + +## Step 3: Set up Ubuntu + +1. When you first launch the Ubuntu app, it will take a few minutes to set up. Be patient as it installs the necessary files and sets up your environment. +2. Once the setup is complete, you will be prompted to create a new UNIX username and password. Choose a username and password, and make sure to remember them, as you will need them for future administrative tasks within the Ubuntu environment. + +## Step 4: Update and upgrade packages + +1. After setting up your username and password, it's a good idea to update and upgrade your Ubuntu system. Run the following commands in the Ubuntu terminal: + +``` +sudo apt update +sudo apt upgrade +``` + +2. Enter your password when prompted. This will update the package list and upgrade any outdated packages. + +Congratulations! You have now installed WSL with Ubuntu on your Windows 10/11 system. You can use the Ubuntu terminal for various tasks, like running Linux commands, installing packages, or managing files. + +You can launch your WSL Ubuntu installation by selecting the Ubuntu app (like any other program installed on your computer) or typing 'ubuntu' into Powershell or Terminal. + +## Step 5: Proceed with Linux instructions + +1. You can now follow the Linux setup instructions. If you receive any error messages about a missing tool or package, just install them using apt: + +``` +sudo apt install [missing package] +``` + +You will probably need to install build-essential + +``` +sudo apt install build-essential +``` + +If you face any issues or need to troubleshoot, you can always refer to the official Microsoft documentation for WSL: https://docs.microsoft.com/en-us/windows/wsl/ + +#### WSL2 performance using /mnt: +when you git clone a repository, put it inside WSL and not outside. To understand more, take a look at this [issue](https://github.com/microsoft/WSL/issues/4197#issuecomment-604592340) + +## Bonus: Port Forwarding + +By default, you won't be able to access the webui from another device on your local network. You will need to setup the appropriate port forwarding using the following command (using PowerShell or Terminal with administrator privileges). + +``` +netsh interface portproxy add v4tov4 listenaddress=0.0.0.0 listenport=7860 connectaddress=localhost connectport=7860 +``` diff --git a/docs/Windows-installation-guide.md b/docs/Windows-installation-guide.md new file mode 100644 index 0000000000000000000000000000000000000000..83b22efa38b1839d07a5a58494dbc26ba86397ee --- /dev/null +++ b/docs/Windows-installation-guide.md @@ -0,0 +1,9 @@ +If you are having trouble following the installation instructions in the README, Reddit user [Technical_Leather949](https://www.reddit.com/user/Technical_Leather949/) has created a more detailed, step-by-step guide covering: + +* Windows installation +* 8-bit mode on Windows +* LLaMA +* LLaMA 4-bit + +The guide can be found here: https://www.reddit.com/r/LocalLLaMA/comments/11o6o3f/how_to_install_llama_8bit_and_4bit/ + diff --git a/docs/llama.cpp-models.md b/docs/llama.cpp-models.md new file mode 100644 index 0000000000000000000000000000000000000000..bcf3c046acc7f38dba16d275a8ecbee1bb579a05 --- /dev/null +++ b/docs/llama.cpp-models.md @@ -0,0 +1,53 @@ +# Using llama.cpp in the web UI + +## Setting up the models + +#### Pre-converted + +Place the model in the `models` folder, making sure that its name contains `ggml` somewhere and ends in `.bin`. + +#### Convert LLaMA yourself + +Follow the instructions in the llama.cpp README to generate the `ggml-model.bin` file: https://github.com/ggerganov/llama.cpp#usage + +## GPU acceleration + +Enabled with the `--n-gpu-layers` parameter. + +* If you have enough VRAM, use a high number like `--n-gpu-layers 200000` to offload all layers to the GPU. +* Otherwise, start with a low number like `--n-gpu-layers 10` and then gradually increase it until you run out of memory. + +To use this feature, you need to manually compile and install `llama-cpp-python` with GPU support. + +#### Linux + +``` +pip uninstall -y llama-cpp-python +CMAKE_ARGS="-DLLAMA_CUBLAS=on" FORCE_CMAKE=1 pip install llama-cpp-python --no-cache-dir +``` + +#### Windows + +``` +pip uninstall -y llama-cpp-python +set CMAKE_ARGS="-DLLAMA_CUBLAS=on" +set FORCE_CMAKE=1 +pip install llama-cpp-python --no-cache-dir +``` + +#### macOS + +``` +pip uninstall -y llama-cpp-python +CMAKE_ARGS="-DLLAMA_METAL=on" FORCE_CMAKE=1 pip install llama-cpp-python --no-cache-dir +``` + +Here you can find the different compilation options for OpenBLAS / cuBLAS / CLBlast: https://pypi.org/project/llama-cpp-python/ + +## Performance + +This was the performance of llama-7b int4 on my i5-12400F (cpu only): + +> Output generated in 33.07 seconds (6.05 tokens/s, 200 tokens, context 17) + +You can change the number of threads with `--threads N`. diff --git a/download-model.py b/download-model.py new file mode 100644 index 0000000000000000000000000000000000000000..87fd6261c63952fe69a67a19dd526a9f9bf29df2 --- /dev/null +++ b/download-model.py @@ -0,0 +1,243 @@ +''' +Downloads models from Hugging Face to models/username_modelname. + +Example: +python download-model.py facebook/opt-1.3b + +''' + +import argparse +import base64 +import datetime +import hashlib +import json +import os +import re +import sys +from pathlib import Path + +import requests +import tqdm +from tqdm.contrib.concurrent import thread_map + + +class ModelDownloader: + def __init__(self): + self.s = requests.Session() + if os.getenv('HF_USER') is not None and os.getenv('HF_PASS') is not None: + self.s.auth = (os.getenv('HF_USER'), os.getenv('HF_PASS')) + + def sanitize_model_and_branch_names(self, model, branch): + if model[-1] == '/': + model = model[:-1] + + if branch is None: + branch = "main" + else: + pattern = re.compile(r"^[a-zA-Z0-9._-]+$") + if not pattern.match(branch): + raise ValueError( + "Invalid branch name. Only alphanumeric characters, period, underscore and dash are allowed.") + + return model, branch + + def get_download_links_from_huggingface(self, model, branch, text_only=False): + base = "https://huggingface.co" + page = f"/api/models/{model}/tree/{branch}" + cursor = b"" + + links = [] + sha256 = [] + classifications = [] + has_pytorch = False + has_pt = False + # has_ggml = False + has_safetensors = False + is_lora = False + while True: + url = f"{base}{page}" + (f"?cursor={cursor.decode()}" if cursor else "") + r = self.s.get(url, timeout=20) + r.raise_for_status() + content = r.content + + dict = json.loads(content) + if len(dict) == 0: + break + + for i in range(len(dict)): + fname = dict[i]['path'] + if not is_lora and fname.endswith(('adapter_config.json', 'adapter_model.bin')): + is_lora = True + + is_pytorch = re.match("(pytorch|adapter)_model.*\.bin", fname) + is_safetensors = re.match(".*\.safetensors", fname) + is_pt = re.match(".*\.pt", fname) + is_ggml = re.match(".*ggml.*\.bin", fname) + is_tokenizer = re.match("(tokenizer|ice).*\.model", fname) + is_text = re.match(".*\.(txt|json|py|md)", fname) or is_tokenizer + if any((is_pytorch, is_safetensors, is_pt, is_ggml, is_tokenizer, is_text)): + if 'lfs' in dict[i]: + sha256.append([fname, dict[i]['lfs']['oid']]) + + if is_text: + links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}") + classifications.append('text') + continue + + if not text_only: + links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}") + if is_safetensors: + has_safetensors = True + classifications.append('safetensors') + elif is_pytorch: + has_pytorch = True + classifications.append('pytorch') + elif is_pt: + has_pt = True + classifications.append('pt') + elif is_ggml: + # has_ggml = True + classifications.append('ggml') + + cursor = base64.b64encode(f'{{"file_name":"{dict[-1]["path"]}"}}'.encode()) + b':50' + cursor = base64.b64encode(cursor) + cursor = cursor.replace(b'=', b'%3D') + + # If both pytorch and safetensors are available, download safetensors only + if (has_pytorch or has_pt) and has_safetensors: + for i in range(len(classifications) - 1, -1, -1): + if classifications[i] in ['pytorch', 'pt']: + links.pop(i) + + return links, sha256, is_lora + + def get_output_folder(self, model, branch, is_lora, base_folder=None): + if base_folder is None: + base_folder = 'models' if not is_lora else 'loras' + + output_folder = f"{'_'.join(model.split('/')[-2:])}" + if branch != 'main': + output_folder += f'_{branch}' + + output_folder = Path(base_folder) / output_folder + return output_folder + + def get_single_file(self, url, output_folder, start_from_scratch=False): + filename = Path(url.rsplit('/', 1)[1]) + output_path = output_folder / filename + headers = {} + mode = 'wb' + if output_path.exists() and not start_from_scratch: + + # Check if the file has already been downloaded completely + r = self.s.get(url, stream=True, timeout=20) + total_size = int(r.headers.get('content-length', 0)) + if output_path.stat().st_size >= total_size: + return + + # Otherwise, resume the download from where it left off + headers = {'Range': f'bytes={output_path.stat().st_size}-'} + mode = 'ab' + + with self.s.get(url, stream=True, headers=headers, timeout=20) as r: + r.raise_for_status() # Do not continue the download if the request was unsuccessful + total_size = int(r.headers.get('content-length', 0)) + block_size = 1024 * 1024 # 1MB + with open(output_path, mode) as f: + with tqdm.tqdm(total=total_size, unit='iB', unit_scale=True, bar_format='{l_bar}{bar}| {n_fmt:6}/{total_fmt:6} {rate_fmt:6}') as t: + count = 0 + for data in r.iter_content(block_size): + t.update(len(data)) + f.write(data) + if total_size != 0 and self.progress_bar is not None: + count += len(data) + self.progress_bar(float(count) / float(total_size), f"Downloading {filename}") + + def start_download_threads(self, file_list, output_folder, start_from_scratch=False, threads=1): + thread_map(lambda url: self.get_single_file(url, output_folder, start_from_scratch=start_from_scratch), file_list, max_workers=threads, disable=True) + + def download_model_files(self, model, branch, links, sha256, output_folder, progress_bar=None, start_from_scratch=False, threads=1): + self.progress_bar = progress_bar + + # Creating the folder and writing the metadata + output_folder.mkdir(parents=True, exist_ok=True) + metadata = f'url: https://huggingface.co/{model}\n' \ + f'branch: {branch}\n' \ + f'download date: {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")}\n' + + sha256_str = '\n'.join([f' {item[1]} {item[0]}' for item in sha256]) + if sha256_str: + metadata += f'sha256sum:\n{sha256_str}' + + metadata += '\n' + (output_folder / 'huggingface-metadata.txt').write_text(metadata) + + # Downloading the files + print(f"Downloading the model to {output_folder}") + self.start_download_threads(links, output_folder, start_from_scratch=start_from_scratch, threads=threads) + + def check_model_files(self, model, branch, links, sha256, output_folder): + # Validate the checksums + validated = True + for i in range(len(sha256)): + fpath = (output_folder / sha256[i][0]) + + if not fpath.exists(): + print(f"The following file is missing: {fpath}") + validated = False + continue + + with open(output_folder / sha256[i][0], "rb") as f: + bytes = f.read() + file_hash = hashlib.sha256(bytes).hexdigest() + if file_hash != sha256[i][1]: + print(f'Checksum failed: {sha256[i][0]} {sha256[i][1]}') + validated = False + else: + print(f'Checksum validated: {sha256[i][0]} {sha256[i][1]}') + + if validated: + print('[+] Validated checksums of all model files!') + else: + print('[-] Invalid checksums. Rerun download-model.py with the --clean flag.') + + +if __name__ == '__main__': + + parser = argparse.ArgumentParser() + parser.add_argument('MODEL', type=str, default=None, nargs='?') + parser.add_argument('--branch', type=str, default='main', help='Name of the Git branch to download from.') + parser.add_argument('--threads', type=int, default=1, help='Number of files to download simultaneously.') + parser.add_argument('--text-only', action='store_true', help='Only download text files (txt/json).') + parser.add_argument('--output', type=str, default=None, help='The folder where the model should be saved.') + parser.add_argument('--clean', action='store_true', help='Does not resume the previous download.') + parser.add_argument('--check', action='store_true', help='Validates the checksums of model files.') + args = parser.parse_args() + + branch = args.branch + model = args.MODEL + + if model is None: + print("Error: Please specify the model you'd like to download (e.g. 'python download-model.py facebook/opt-1.3b').") + sys.exit() + + downloader = ModelDownloader() + # Cleaning up the model/branch names + try: + model, branch = downloader.sanitize_model_and_branch_names(model, branch) + except ValueError as err_branch: + print(f"Error: {err_branch}") + sys.exit() + + # Getting the download links from Hugging Face + links, sha256, is_lora = downloader.get_download_links_from_huggingface(model, branch, text_only=args.text_only) + + # Getting the output folder + output_folder = downloader.get_output_folder(model, branch, is_lora, base_folder=args.output) + + if args.check: + # Check previously downloaded files + downloader.check_model_files(model, branch, links, sha256, output_folder) + else: + # Download files + downloader.download_model_files(model, branch, links, sha256, output_folder, threads=args.threads) diff --git a/extensions/api/blocking_api.py b/extensions/api/blocking_api.py new file mode 100644 index 0000000000000000000000000000000000000000..e84e68e2f8373a13b4f4ff5b27d32f2737aee525 --- /dev/null +++ b/extensions/api/blocking_api.py @@ -0,0 +1,220 @@ +import json +from http.server import BaseHTTPRequestHandler, ThreadingHTTPServer +from threading import Thread + +from extensions.api.util import build_parameters, try_start_cloudflared +from modules import shared +from modules.chat import generate_chat_reply +from modules.LoRA import add_lora_to_model +from modules.models import load_model, unload_model +from modules.models_settings import (get_model_settings_from_yamls, + update_model_parameters) +from modules.text_generation import (encode, generate_reply, + stop_everything_event) +from modules.utils import get_available_models + + +def get_model_info(): + return { + 'model_name': shared.model_name, + 'lora_names': shared.lora_names, + # dump + 'shared.settings': shared.settings, + 'shared.args': vars(shared.args), + } + + +class Handler(BaseHTTPRequestHandler): + def do_GET(self): + if self.path == '/api/v1/model': + self.send_response(200) + self.end_headers() + response = json.dumps({ + 'result': shared.model_name + }) + + self.wfile.write(response.encode('utf-8')) + else: + self.send_error(404) + + def do_POST(self): + content_length = int(self.headers['Content-Length']) + body = json.loads(self.rfile.read(content_length).decode('utf-8')) + + if self.path == '/api/v1/generate': + self.send_response(200) + self.send_header('Content-Type', 'application/json') + self.end_headers() + + prompt = body['prompt'] + generate_params = build_parameters(body) + stopping_strings = generate_params.pop('stopping_strings') + generate_params['stream'] = False + + generator = generate_reply( + prompt, generate_params, stopping_strings=stopping_strings, is_chat=False) + + answer = '' + for a in generator: + answer = a + + response = json.dumps({ + 'results': [{ + 'text': answer + }] + }) + + self.wfile.write(response.encode('utf-8')) + + elif self.path == '/api/v1/chat': + self.send_response(200) + self.send_header('Content-Type', 'application/json') + self.end_headers() + + user_input = body['user_input'] + history = body['history'] + regenerate = body.get('regenerate', False) + _continue = body.get('_continue', False) + + generate_params = build_parameters(body, chat=True) + generate_params['stream'] = False + + generator = generate_chat_reply( + user_input, history, generate_params, regenerate=regenerate, _continue=_continue, loading_message=False) + + answer = history + for a in generator: + answer = a + + response = json.dumps({ + 'results': [{ + 'history': answer + }] + }) + + self.wfile.write(response.encode('utf-8')) + + elif self.path == '/api/v1/stop-stream': + self.send_response(200) + self.send_header('Content-Type', 'application/json') + self.end_headers() + + stop_everything_event() + + response = json.dumps({ + 'results': 'success' + }) + + self.wfile.write(response.encode('utf-8')) + + elif self.path == '/api/v1/model': + self.send_response(200) + self.send_header('Content-Type', 'application/json') + self.end_headers() + + # by default return the same as the GET interface + result = shared.model_name + + # Actions: info, load, list, unload + action = body.get('action', '') + + if action == 'load': + model_name = body['model_name'] + args = body.get('args', {}) + print('args', args) + for k in args: + setattr(shared.args, k, args[k]) + + shared.model_name = model_name + unload_model() + + model_settings = get_model_settings_from_yamls(shared.model_name) + shared.settings.update(model_settings) + update_model_parameters(model_settings, initial=True) + + if shared.settings['mode'] != 'instruct': + shared.settings['instruction_template'] = None + + try: + shared.model, shared.tokenizer = load_model(shared.model_name) + if shared.args.lora: + add_lora_to_model(shared.args.lora) # list + + except Exception as e: + response = json.dumps({'error': {'message': repr(e)}}) + + self.wfile.write(response.encode('utf-8')) + raise e + + shared.args.model = shared.model_name + + result = get_model_info() + + elif action == 'unload': + unload_model() + shared.model_name = None + shared.args.model = None + result = get_model_info() + + elif action == 'list': + result = get_available_models() + + elif action == 'info': + result = get_model_info() + + response = json.dumps({ + 'result': result, + }) + + self.wfile.write(response.encode('utf-8')) + + elif self.path == '/api/v1/token-count': + self.send_response(200) + self.send_header('Content-Type', 'application/json') + self.end_headers() + + tokens = encode(body['prompt'])[0] + response = json.dumps({ + 'results': [{ + 'tokens': len(tokens) + }] + }) + + self.wfile.write(response.encode('utf-8')) + else: + self.send_error(404) + + def do_OPTIONS(self): + self.send_response(200) + self.end_headers() + + def end_headers(self): + self.send_header('Access-Control-Allow-Origin', '*') + self.send_header('Access-Control-Allow-Methods', '*') + self.send_header('Access-Control-Allow-Headers', '*') + self.send_header('Cache-Control', 'no-store, no-cache, must-revalidate') + super().end_headers() + + +def _run_server(port: int, share: bool = False): + address = '0.0.0.0' if shared.args.listen else '127.0.0.1' + + server = ThreadingHTTPServer((address, port), Handler) + + def on_start(public_url: str): + print(f'Starting non-streaming server at public url {public_url}/api') + + if share: + try: + try_start_cloudflared(port, max_attempts=3, on_start=on_start) + except Exception: + pass + else: + print( + f'Starting API at http://{address}:{port}/api') + + server.serve_forever() + + +def start_server(port: int, share: bool = False): + Thread(target=_run_server, args=[port, share], daemon=True).start() diff --git a/extensions/api/requirements.txt b/extensions/api/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..14e29d3521915c9fd4fb62385dc971e7a8c4bc83 --- /dev/null +++ b/extensions/api/requirements.txt @@ -0,0 +1,2 @@ +flask_cloudflared==0.0.12 +websockets==11.0.2 \ No newline at end of file diff --git a/extensions/api/script.py b/extensions/api/script.py new file mode 100644 index 0000000000000000000000000000000000000000..5d1b1a68c4418d51d716ec2a2b06e80ec2f4d27a --- /dev/null +++ b/extensions/api/script.py @@ -0,0 +1,8 @@ +import extensions.api.blocking_api as blocking_api +import extensions.api.streaming_api as streaming_api +from modules import shared + + +def setup(): + blocking_api.start_server(shared.args.api_blocking_port, share=shared.args.public_api) + streaming_api.start_server(shared.args.api_streaming_port, share=shared.args.public_api) diff --git a/extensions/api/streaming_api.py b/extensions/api/streaming_api.py new file mode 100644 index 0000000000000000000000000000000000000000..e54406639500b71a31b2cf4fa7903d4c55d7168e --- /dev/null +++ b/extensions/api/streaming_api.py @@ -0,0 +1,112 @@ +import asyncio +import json +from threading import Thread + +from websockets.server import serve + +from extensions.api.util import build_parameters, try_start_cloudflared +from modules import shared +from modules.chat import generate_chat_reply +from modules.text_generation import generate_reply + +PATH = '/api/v1/stream' + + +async def _handle_connection(websocket, path): + + if path == '/api/v1/stream': + async for message in websocket: + message = json.loads(message) + + prompt = message['prompt'] + generate_params = build_parameters(message) + stopping_strings = generate_params.pop('stopping_strings') + generate_params['stream'] = True + + generator = generate_reply( + prompt, generate_params, stopping_strings=stopping_strings, is_chat=False) + + # As we stream, only send the new bytes. + skip_index = 0 + message_num = 0 + + for a in generator: + to_send = a[skip_index:] + if to_send is None or chr(0xfffd) in to_send: # partial unicode character, don't send it yet. + continue + + await websocket.send(json.dumps({ + 'event': 'text_stream', + 'message_num': message_num, + 'text': to_send + })) + + await asyncio.sleep(0) + skip_index += len(to_send) + message_num += 1 + + await websocket.send(json.dumps({ + 'event': 'stream_end', + 'message_num': message_num + })) + + elif path == '/api/v1/chat-stream': + async for message in websocket: + body = json.loads(message) + + user_input = body['user_input'] + history = body['history'] + generate_params = build_parameters(body, chat=True) + generate_params['stream'] = True + regenerate = body.get('regenerate', False) + _continue = body.get('_continue', False) + + generator = generate_chat_reply( + user_input, history, generate_params, regenerate=regenerate, _continue=_continue, loading_message=False) + + message_num = 0 + for a in generator: + await websocket.send(json.dumps({ + 'event': 'text_stream', + 'message_num': message_num, + 'history': a + })) + + await asyncio.sleep(0) + message_num += 1 + + await websocket.send(json.dumps({ + 'event': 'stream_end', + 'message_num': message_num + })) + + else: + print(f'Streaming api: unknown path: {path}') + return + + +async def _run(host: str, port: int): + async with serve(_handle_connection, host, port, ping_interval=None): + await asyncio.Future() # run forever + + +def _run_server(port: int, share: bool = False): + address = '0.0.0.0' if shared.args.listen else '127.0.0.1' + + def on_start(public_url: str): + public_url = public_url.replace('https://', 'wss://') + print(f'Starting streaming server at public url {public_url}{PATH}') + + if share: + try: + try_start_cloudflared(port, max_attempts=3, on_start=on_start) + except Exception as e: + print(e) + else: + print(f'Starting streaming server at ws://{address}:{port}{PATH}') + + asyncio.run(_run(host=address, port=port)) + + +def start_server(port: int, share: bool = False): + Thread(target=_run_server, args=[port, share], daemon=True).start() diff --git a/extensions/api/util.py b/extensions/api/util.py new file mode 100644 index 0000000000000000000000000000000000000000..d575c603f39f3c823931db2aeb1b6f25d3ed3063 --- /dev/null +++ b/extensions/api/util.py @@ -0,0 +1,98 @@ +import time +import traceback +from threading import Thread +from typing import Callable, Optional + +from modules import shared +from modules.chat import load_character_memoized +from modules.presets import load_preset_memoized + + +def build_parameters(body, chat=False): + + generate_params = { + 'max_new_tokens': int(body.get('max_new_tokens', body.get('max_length', 200))), + 'do_sample': bool(body.get('do_sample', True)), + 'temperature': float(body.get('temperature', 0.5)), + 'top_p': float(body.get('top_p', 1)), + 'typical_p': float(body.get('typical_p', body.get('typical', 1))), + 'epsilon_cutoff': float(body.get('epsilon_cutoff', 0)), + 'eta_cutoff': float(body.get('eta_cutoff', 0)), + 'tfs': float(body.get('tfs', 1)), + 'top_a': float(body.get('top_a', 0)), + 'repetition_penalty': float(body.get('repetition_penalty', body.get('rep_pen', 1.1))), + 'repetition_penalty_range': int(body.get('repetition_penalty_range', 0)), + 'encoder_repetition_penalty': float(body.get('encoder_repetition_penalty', 1.0)), + 'top_k': int(body.get('top_k', 0)), + 'min_length': int(body.get('min_length', 0)), + 'no_repeat_ngram_size': int(body.get('no_repeat_ngram_size', 0)), + 'num_beams': int(body.get('num_beams', 1)), + 'penalty_alpha': float(body.get('penalty_alpha', 0)), + 'length_penalty': float(body.get('length_penalty', 1)), + 'early_stopping': bool(body.get('early_stopping', False)), + 'mirostat_mode': int(body.get('mirostat_mode', 0)), + 'mirostat_tau': float(body.get('mirostat_tau', 5)), + 'mirostat_eta': float(body.get('mirostat_eta', 0.1)), + 'seed': int(body.get('seed', -1)), + 'add_bos_token': bool(body.get('add_bos_token', True)), + 'truncation_length': int(body.get('truncation_length', body.get('max_context_length', 2048))), + 'ban_eos_token': bool(body.get('ban_eos_token', False)), + 'skip_special_tokens': bool(body.get('skip_special_tokens', True)), + 'custom_stopping_strings': '', # leave this blank + 'stopping_strings': body.get('stopping_strings', []), + } + + preset_name = body.get('preset', 'None') + if preset_name not in ['None', None, '']: + preset = load_preset_memoized(preset_name) + generate_params.update(preset) + + if chat: + character = body.get('character') + instruction_template = body.get('instruction_template') + name1, name2, _, greeting, context, _ = load_character_memoized(character, str(body.get('your_name', shared.settings['name1'])), shared.settings['name2'], instruct=False) + name1_instruct, name2_instruct, _, _, context_instruct, turn_template = load_character_memoized(instruction_template, '', '', instruct=True) + generate_params.update({ + 'stop_at_newline': bool(body.get('stop_at_newline', shared.settings['stop_at_newline'])), + 'chat_generation_attempts': int(body.get('chat_generation_attempts', shared.settings['chat_generation_attempts'])), + 'mode': str(body.get('mode', 'chat')), + 'name1': name1, + 'name2': name2, + 'context': context, + 'greeting': greeting, + 'name1_instruct': name1_instruct, + 'name2_instruct': name2_instruct, + 'context_instruct': context_instruct, + 'turn_template': turn_template, + 'chat-instruct_command': str(body.get('chat-instruct_command', shared.settings['chat-instruct_command'])), + }) + + return generate_params + + +def try_start_cloudflared(port: int, max_attempts: int = 3, on_start: Optional[Callable[[str], None]] = None): + Thread(target=_start_cloudflared, args=[ + port, max_attempts, on_start], daemon=True).start() + + +def _start_cloudflared(port: int, max_attempts: int = 3, on_start: Optional[Callable[[str], None]] = None): + try: + from flask_cloudflared import _run_cloudflared + except ImportError: + print('You should install flask_cloudflared manually') + raise Exception( + 'flask_cloudflared not installed. Make sure you installed the requirements.txt for this extension.') + + for _ in range(max_attempts): + try: + public_url = _run_cloudflared(port, port + 1) + + if on_start: + on_start(public_url) + + return + except Exception: + traceback.print_exc() + time.sleep(3) + + raise Exception('Could not start cloudflared.') diff --git a/extensions/character_bias/script.py b/extensions/character_bias/script.py new file mode 100644 index 0000000000000000000000000000000000000000..ff12f3afdc28be4ead12ffab90bd9fbd783514a2 --- /dev/null +++ b/extensions/character_bias/script.py @@ -0,0 +1,83 @@ +import os + +import gradio as gr + +# get the current directory of the script +current_dir = os.path.dirname(os.path.abspath(__file__)) + +# check if the bias_options.txt file exists, if not, create it +bias_file = os.path.join(current_dir, "bias_options.txt") +if not os.path.isfile(bias_file): + with open(bias_file, "w") as f: + f.write("*I am so happy*\n*I am so sad*\n*I am so excited*\n*I am so bored*\n*I am so angry*") + +# read bias options from the text file +with open(bias_file, "r") as f: + bias_options = [line.strip() for line in f.readlines()] + +params = { + "activate": True, + "bias string": " *I am so happy*", + "use custom string": False, +} + + +def input_modifier(string): + """ + This function is applied to your text inputs before + they are fed into the model. + """ + return string + + +def output_modifier(string): + """ + This function is applied to the model outputs. + """ + return string + + +def bot_prefix_modifier(string): + """ + This function is only applied in chat mode. It modifies + the prefix text for the Bot and can be used to bias its + behavior. + """ + if params['activate']: + if params['use custom string']: + return f'{string} {params["custom string"].strip()} ' + else: + return f'{string} {params["bias string"].strip()} ' + else: + return string + + +def ui(): + # Gradio elements + activate = gr.Checkbox(value=params['activate'], label='Activate character bias') + dropdown_string = gr.Dropdown(choices=bias_options, value=params["bias string"], label='Character bias', info='To edit the options in this dropdown edit the "bias_options.txt" file') + use_custom_string = gr.Checkbox(value=False, label='Use custom bias textbox instead of dropdown') + custom_string = gr.Textbox(value="", placeholder="Enter custom bias string", label="Custom Character Bias", info='To use this textbox activate the checkbox above') + + # Event functions to update the parameters in the backend + def update_bias_string(x): + if x: + params.update({"bias string": x}) + else: + params.update({"bias string": dropdown_string.get()}) + return x + + def update_custom_string(x): + params.update({"custom string": x}) + + dropdown_string.change(update_bias_string, dropdown_string, None) + custom_string.change(update_custom_string, custom_string, None) + activate.change(lambda x: params.update({"activate": x}), activate, None) + use_custom_string.change(lambda x: params.update({"use custom string": x}), use_custom_string, None) + + # Group elements together depending on the selected option + def bias_string_group(): + if use_custom_string.value: + return gr.Group([use_custom_string, custom_string]) + else: + return dropdown_string diff --git a/extensions/elevenlabs_tts/outputs/outputs-will-be-saved-here.txt b/extensions/elevenlabs_tts/outputs/outputs-will-be-saved-here.txt new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/extensions/elevenlabs_tts/requirements.txt b/extensions/elevenlabs_tts/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..2cfc1960ce2cef55d0f85fb3c88bbb4d28bfcd80 --- /dev/null +++ b/extensions/elevenlabs_tts/requirements.txt @@ -0,0 +1 @@ +elevenlabs==0.2.* diff --git a/extensions/elevenlabs_tts/script.py b/extensions/elevenlabs_tts/script.py new file mode 100644 index 0000000000000000000000000000000000000000..1a24db1f31eacf4da6b68a99dce03ddc0213ca95 --- /dev/null +++ b/extensions/elevenlabs_tts/script.py @@ -0,0 +1,180 @@ +import re +from pathlib import Path + +import elevenlabs +import gradio as gr +from modules import chat, shared + +params = { + 'activate': True, + 'api_key': None, + 'selected_voice': 'None', + 'autoplay': False, + 'show_text': True, +} + +voices = None +wav_idx = 0 + + +def update_api_key(key): + params['api_key'] = key + if key is not None: + elevenlabs.set_api_key(key) + + +def refresh_voices(): + global params + your_voices = elevenlabs.voices() + voice_names = [voice.name for voice in your_voices] + return voice_names + + +def refresh_voices_dd(): + all_voices = refresh_voices() + return gr.Dropdown.update(value=all_voices[0], choices=all_voices) + + +def remove_tts_from_history(): + for i, entry in enumerate(shared.history['internal']): + shared.history['visible'][i] = [shared.history['visible'][i][0], entry[1]] + + +def toggle_text_in_history(): + for i, entry in enumerate(shared.history['visible']): + visible_reply = entry[1] + if visible_reply.startswith('')[0]}\n\n{reply}" + ] + else: + shared.history['visible'][i] = [ + shared.history['visible'][i][0], f"{visible_reply.split('')[0]}" + ] + + +def remove_surrounded_chars(string): + # this expression matches to 'as few symbols as possible (0 upwards) between any asterisks' OR + # 'as few symbols as possible (0 upwards) between an asterisk and the end of the string' + return re.sub('\*[^\*]*?(\*|$)', '', string) + + +def state_modifier(state): + if not params['activate']: + return state + + state['stream'] = False + return state + + +def input_modifier(string): + if not params['activate']: + return string + + shared.processing_message = "*Is recording a voice message...*" + return string + + +def history_modifier(history): + # Remove autoplay from the last reply + if len(history['internal']) > 0: + history['visible'][-1] = [ + history['visible'][-1][0], + history['visible'][-1][1].replace('controls autoplay>', 'controls>') + ] + + return history + + +def output_modifier(string): + global params, wav_idx + + if not params['activate']: + return string + + original_string = string + string = remove_surrounded_chars(string) + string = string.replace('"', '') + string = string.replace('“', '') + string = string.replace('\n', ' ') + string = string.strip() + if string == '': + string = 'empty reply, try regenerating' + + output_file = Path(f'extensions/elevenlabs_tts/outputs/{wav_idx:06d}.mp3'.format(wav_idx)) + print(f'Outputting audio to {str(output_file)}') + try: + audio = elevenlabs.generate(text=string, voice=params['selected_voice'], model="eleven_monolingual_v1") + elevenlabs.save(audio, str(output_file)) + + autoplay = 'autoplay' if params['autoplay'] else '' + string = f'' + wav_idx += 1 + except elevenlabs.api.error.UnauthenticatedRateLimitError: + string = "🤖 ElevenLabs Unauthenticated Rate Limit Reached - Please create an API key to continue\n\n" + except elevenlabs.api.error.RateLimitError: + string = "🤖 ElevenLabs API Tier Limit Reached\n\n" + except elevenlabs.api.error.APIError as err: + string = f"🤖 ElevenLabs Error: {err}\n\n" + + if params['show_text']: + string += f'\n\n{original_string}' + + shared.processing_message = "*Is typing...*" + return string + + +def ui(): + global voices + if not voices: + voices = refresh_voices() + params['selected_voice'] = voices[0] + + # Gradio elements + with gr.Row(): + activate = gr.Checkbox(value=params['activate'], label='Activate TTS') + autoplay = gr.Checkbox(value=params['autoplay'], label='Play TTS automatically') + show_text = gr.Checkbox(value=params['show_text'], label='Show message text under audio player') + + with gr.Row(): + voice = gr.Dropdown(value=params['selected_voice'], choices=voices, label='TTS Voice') + refresh = gr.Button(value='Refresh') + + with gr.Row(): + api_key = gr.Textbox(placeholder="Enter your API key.", label='API Key') + + with gr.Row(): + convert = gr.Button('Permanently replace audios with the message texts') + convert_cancel = gr.Button('Cancel', visible=False) + convert_confirm = gr.Button('Confirm (cannot be undone)', variant="stop", visible=False) + + # Convert history with confirmation + convert_arr = [convert_confirm, convert, convert_cancel] + convert.click(lambda: [gr.update(visible=True), gr.update(visible=False), gr.update(visible=True)], None, convert_arr) + convert_confirm.click( + lambda: [gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)], None, convert_arr).then( + remove_tts_from_history, None, None).then( + chat.save_history, shared.gradio['mode'], None, show_progress=False).then( + chat.redraw_html, shared.reload_inputs, shared.gradio['display']) + + convert_cancel.click(lambda: [gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)], None, convert_arr) + + # Toggle message text in history + show_text.change( + lambda x: params.update({"show_text": x}), show_text, None).then( + toggle_text_in_history, None, None).then( + chat.save_history, shared.gradio['mode'], None, show_progress=False).then( + chat.redraw_html, shared.reload_inputs, shared.gradio['display']) + + convert_cancel.click(lambda: [gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)], None, convert_arr) + + # Event functions to update the parameters in the backend + activate.change(lambda x: params.update({'activate': x}), activate, None) + voice.change(lambda x: params.update({'selected_voice': x}), voice, None) + api_key.change(update_api_key, api_key, None) + # connect.click(check_valid_api, [], connection_status) + refresh.click(refresh_voices_dd, [], voice) + # Event functions to update the parameters in the backend + autoplay.change(lambda x: params.update({"autoplay": x}), autoplay, None) diff --git a/extensions/gallery/script.py b/extensions/gallery/script.py new file mode 100644 index 0000000000000000000000000000000000000000..993ef273839e7cfbf9e80f2d7f9d4a71d208b446 --- /dev/null +++ b/extensions/gallery/script.py @@ -0,0 +1,96 @@ +from pathlib import Path + +import gradio as gr + +from modules.html_generator import get_image_cache +from modules.shared import gradio + + +def generate_css(): + css = """ + .character-gallery > .gallery { + margin: 1rem 0; + display: grid !important; + grid-template-columns: repeat(auto-fit, minmax(150px, 1fr)); + grid-column-gap: 0.4rem; + grid-row-gap: 1.2rem; + } + + .character-gallery > .label { + display: none !important; + } + + .character-gallery button.gallery-item { + display: contents; + } + + .character-container { + cursor: pointer; + text-align: center; + position: relative; + opacity: 0.85; + } + + .character-container:hover { + opacity: 1; + } + + .character-container .placeholder, .character-container img { + width: 150px; + height: 200px; + background-color: gray; + object-fit: cover; + margin: 0 auto; + border-radius: 1rem; + border: 3px solid white; + box-shadow: 3px 3px 6px 0px rgb(0 0 0 / 50%); + } + + .character-name { + margin-top: 0.3rem; + display: block; + font-size: 1.2rem; + font-weight: 600; + overflow-wrap: anywhere; + } + """ + return css + + +def generate_html(): + cards = [] + # Iterate through files in image folder + for file in sorted(Path("characters").glob("*")): + if file.suffix in [".json", ".yml", ".yaml"]: + character = file.stem + container_html = '
' + image_html = "
" + + for path in [Path(f"characters/{character}.{extension}") for extension in ['png', 'jpg', 'jpeg']]: + if path.exists(): + image_html = f'' + break + + container_html += f'{image_html} {character}' + container_html += "
" + cards.append([container_html, character]) + + return cards + + +def select_character(evt: gr.SelectData): + return (evt.value[1]) + + +def ui(): + with gr.Accordion("Character gallery", open=False): + update = gr.Button("Refresh") + gr.HTML(value="") + gallery = gr.Dataset(components=[gr.HTML(visible=False)], + label="", + samples=generate_html(), + elem_classes=["character-gallery"], + samples_per_page=50 + ) + update.click(generate_html, [], gallery) + gallery.select(select_character, None, gradio['character_menu']) diff --git a/extensions/google_translate/requirements.txt b/extensions/google_translate/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..554a00df62818f96ba7d396ae39d8e58efbe9bfe --- /dev/null +++ b/extensions/google_translate/requirements.txt @@ -0,0 +1 @@ +deep-translator==1.9.2 diff --git a/extensions/google_translate/script.py b/extensions/google_translate/script.py new file mode 100644 index 0000000000000000000000000000000000000000..63226107b2c2afe086fc343c7b7f7df78bef3f8a --- /dev/null +++ b/extensions/google_translate/script.py @@ -0,0 +1,46 @@ +import gradio as gr +from deep_translator import GoogleTranslator + +params = { + "language string": "ja", +} + +language_codes = {'Afrikaans': 'af', 'Albanian': 'sq', 'Amharic': 'am', 'Arabic': 'ar', 'Armenian': 'hy', 'Azerbaijani': 'az', 'Basque': 'eu', 'Belarusian': 'be', 'Bengali': 'bn', 'Bosnian': 'bs', 'Bulgarian': 'bg', 'Catalan': 'ca', 'Cebuano': 'ceb', 'Chinese (Simplified)': 'zh-CN', 'Chinese (Traditional)': 'zh-TW', 'Corsican': 'co', 'Croatian': 'hr', 'Czech': 'cs', 'Danish': 'da', 'Dutch': 'nl', 'English': 'en', 'Esperanto': 'eo', 'Estonian': 'et', 'Finnish': 'fi', 'French': 'fr', 'Frisian': 'fy', 'Galician': 'gl', 'Georgian': 'ka', 'German': 'de', 'Greek': 'el', 'Gujarati': 'gu', 'Haitian Creole': 'ht', 'Hausa': 'ha', 'Hawaiian': 'haw', 'Hebrew': 'iw', 'Hindi': 'hi', 'Hmong': 'hmn', 'Hungarian': 'hu', 'Icelandic': 'is', 'Igbo': 'ig', 'Indonesian': 'id', 'Irish': 'ga', 'Italian': 'it', 'Japanese': 'ja', 'Javanese': 'jw', 'Kannada': 'kn', 'Kazakh': 'kk', 'Khmer': 'km', 'Korean': 'ko', 'Kurdish': 'ku', 'Kyrgyz': 'ky', 'Lao': 'lo', 'Latin': 'la', 'Latvian': 'lv', 'Lithuanian': 'lt', 'Luxembourgish': 'lb', 'Macedonian': 'mk', 'Malagasy': 'mg', 'Malay': 'ms', 'Malayalam': 'ml', 'Maltese': 'mt', 'Maori': 'mi', 'Marathi': 'mr', 'Mongolian': 'mn', 'Myanmar (Burmese)': 'my', 'Nepali': 'ne', 'Norwegian': 'no', 'Nyanja (Chichewa)': 'ny', 'Pashto': 'ps', 'Persian': 'fa', 'Polish': 'pl', 'Portuguese (Portugal, Brazil)': 'pt', 'Punjabi': 'pa', 'Romanian': 'ro', 'Russian': 'ru', 'Samoan': 'sm', 'Scots Gaelic': 'gd', 'Serbian': 'sr', 'Sesotho': 'st', 'Shona': 'sn', 'Sindhi': 'sd', 'Sinhala (Sinhalese)': 'si', 'Slovak': 'sk', 'Slovenian': 'sl', 'Somali': 'so', 'Spanish': 'es', 'Sundanese': 'su', 'Swahili': 'sw', 'Swedish': 'sv', 'Tagalog (Filipino)': 'tl', 'Tajik': 'tg', 'Tamil': 'ta', 'Telugu': 'te', 'Thai': 'th', 'Turkish': 'tr', 'Ukrainian': 'uk', 'Urdu': 'ur', 'Uzbek': 'uz', 'Vietnamese': 'vi', 'Welsh': 'cy', 'Xhosa': 'xh', 'Yiddish': 'yi', 'Yoruba': 'yo', 'Zulu': 'zu'} + + +def input_modifier(string): + """ + This function is applied to your text inputs before + they are fed into the model. + """ + + return GoogleTranslator(source=params['language string'], target='en').translate(string) + + +def output_modifier(string): + """ + This function is applied to the model outputs. + """ + + return GoogleTranslator(source='en', target=params['language string']).translate(string) + + +def bot_prefix_modifier(string): + """ + This function is only applied in chat mode. It modifies + the prefix text for the Bot and can be used to bias its + behavior. + """ + + return string + + +def ui(): + # Finding the language name from the language code to use as the default value + language_name = list(language_codes.keys())[list(language_codes.values()).index(params['language string'])] + + # Gradio elements + language = gr.Dropdown(value=language_name, choices=[k for k in language_codes], label='Language') + + # Event functions to update the parameters in the backend + language.change(lambda x: params.update({"language string": language_codes[x]}), language, None) diff --git a/extensions/llava/script.py b/extensions/llava/script.py new file mode 100644 index 0000000000000000000000000000000000000000..781d584b78ebf8e7c0c87e4203665286b92cf81c --- /dev/null +++ b/extensions/llava/script.py @@ -0,0 +1,8 @@ +import gradio as gr + +from modules.logging_colors import logger + + +def ui(): + gr.Markdown("### This extension is deprecated, use \"multimodal\" extension instead") + logger.error("LLaVA extension is deprecated, use \"multimodal\" extension instead") diff --git a/extensions/multimodal/DOCS.md b/extensions/multimodal/DOCS.md new file mode 100644 index 0000000000000000000000000000000000000000..eaa4365e9a304a14ebbdb1d4d435f3a2a1f7a7d2 --- /dev/null +++ b/extensions/multimodal/DOCS.md @@ -0,0 +1,85 @@ +# Technical description of multimodal extension + +## Working principle +Multimodality extension does most of the stuff which is required for any image input: + +- adds the UI +- saves the images as base64 JPEGs to history +- provides the hooks to the UI +- if there are images in the prompt, it: + - splits the prompt to text and image parts + - adds image start/end markers to text parts, then encodes and embeds the text parts + - calls the vision pipeline to embed the images + - stitches the embeddings together, and returns them to text generation +- loads the appropriate vision pipeline, selected either from model name, or by specifying --multimodal-pipeline parameter + +Now, for the pipelines, they: + +- load the required vision models +- return some consts, for example the number of tokens taken up by image +- and most importantly: return the embeddings for LLM, given a list of images + +## Prompts/history + +To save images in prompt/history, this extension is using a base64 JPEG, wrapped in a HTML tag, like so: +``` + +``` +where `{img_str}` is the actual image data. This format makes displaying them in the UI for free. Do note, that this format is required to be exactly the same, the regex used to find the images is: ``. + +## LLM input +To describe the input, let's see it on an example prompt: +``` +text1text2text3 +``` +where `textN` is N-th text, `` is N-th image, in HTML format specified above. + +**The first step is to split the prompt into image/text parts**, so we get: +``` +['text1', '', 'text2', '', 'text3'] +``` +this is done in `MultimodalEmbedder._split_prompt(...)` function, which returns a list of `PromptPart`s - dataclasses wrapping the separate parts. + +This function also appends the image start/end markers to text, which are provided by `AbstractMultimodalPipeline.image_start()` / `AbstractMultimodalPipeline.image_end()` functions. If image start is ``, and end is ``, this function will return: +``` +['text1', '', 'text2', '', 'text3'] +``` + +**The returned prompt parts are then turned into token embeddings.** + +First, they are modified to token IDs, for the text it is done using standard `modules.text_generation.encode()` function, and for the images the returned token IDs are changed to placeholders. The placeholder is a list of `N` times `placeholder token id`, where `N` is specified using `AbstractMultimodalPipeline.num_image_embeds()`, and placeholder token IDs using `AbstractMultimodalPipeline.placeholder_token_id()`. + +Now, based on the token IDs, the prompt might get truncated, especially if `max_new_tokens` are unreasonably high. Unfortunately, it can't be done simply, just by trimming the prompt to be short enough. This way will lead to sometimes splitting the prompt in the middle of an image embedding, which usually breaks the generation. Therefore, in this case, the entire image needs to be removed from input. This is done inside `MultimodalEmbedder._encode_text(...)` function. + +**After the tokenization, the tokens need to get embedded**, the text and images are once again treated separately. + +The text parts are turned to embeddings, using `AbstractMultimodalPipeline.embed_tokens(...)` function. It uses standard embedding function from the model, but to support many LLMs, the actual function is returned by the pipeline (as it might be different for different LLMs), for LLaMA it is `shared.model.model.embed_tokens(...)`. + +The image parts are turned to embeddings, using `AbstractMultimodalPipeline.embed_images(...)` function. This function is specific for a given pipeline, it takes the images as input, forwards them through vision model/projector, and returns the embeddings. + +**Now, the returned embeddings are stitched together**, using `torch.cat()`, this is creating the final input to the LLM. + +## Pipelines + +All of the pipelines should subclass `AbstractMultimodalPipeline` class. The idea is to allow for new pipelines to be added in the same way as user extensions - git clone into `extensions/multimodal/pipelines`. + +The pipelines are the description of the vision part, containing vision model/multimodal projector. All of the pipelines should have an unique `name()`, which is then selected by user, in `--multimodal-pipeline` CLI argument. For an example, see `pipelines/llava/llava.py`. + +## Pipeline modules + +Pipelines are organized into "pipeline modules" - subdirectories in `pipelines` directory. The pipeline modules should contain a file called `pipelines.py`, that should contain the following fields: +- `available_pipelines: List[str]` - list of pipelines provided by this module, shown as the list of available pipelines to the user +- `def get_pipeline(name: str, params: dict) -> Optional[AbstractMultimodalPipeline]`: - a function to get a concrete pipeline by `name`, if `name` doesn't match any, should return `None`. `params` is the user settings for multimodal extension +- `def get_pipeline_from_model_name(model_name: str, params: dict) -> Optional[AbstractMultimodalPipeline]`: - a function to get a pipeline from `model_name`, should be eager to return `None`, unless the determination can be done clearly (for example: minigpt-4 bases on vicuna - it should never return the pipeline, but llava can, as it has its own specific LLM finetune) + +**NOTE**: A pipeline module should lazy-import the pipelines only when necessary, and it should keep its imports to minimum + +## Pipeline params + +The pipelines will get the extension `params` in the constructor. They should honor the following fields: +- `vision_device` - string, specifying `torch.device` to run the vision model (CLIP/ViT) on +- `vision_bits` - int, number of fp bits to load the vision model(s) in +- `projector_device` - string, specifying `torch.device` to run the projector models (Linear layers, QFormer, etc.) on +- `projector_bits` - int, number of fp bits to load the projector models in + +As a helper, `AbstractMultimodalPipeline` has `_get_device(self, setting_name: str, params: dict)` and `_get_dtype(self, setting_name: str, params: dict)` helper functions, which parse string/int and return `torch.device` / `torch.dtype`. diff --git a/extensions/multimodal/README.md b/extensions/multimodal/README.md new file mode 100644 index 0000000000000000000000000000000000000000..0f515ae69f6b8680522df9854c515ea698710629 --- /dev/null +++ b/extensions/multimodal/README.md @@ -0,0 +1,81 @@ +# Multimodal + +## Description + +Adds support for multimodality (text+images) to text-generation-webui. + +https://user-images.githubusercontent.com/3718215/233817203-69b57e77-0c55-4fd6-b742-3204bb13b8fc.mp4 + +## Usage + +To run this extension, download a LLM that supports multimodality, and then start server.py with the appropriate `--multimodal-pipeline` argument. Examples: + +``` +python server.py --model wojtab_llava-7b-v0-4bit-128g --multimodal-pipeline llava-7b --chat +python3 server.py --model wojtab_llava-13b-v0-4bit-128g --multimodal-pipeline llava-13b --chat +python server.py --model anon8231489123_vicuna-13b-GPTQ-4bit-128g --multimodal-pipeline minigpt4-13b --chat +python server.py --model llama-7b-4bit --multimodal-pipeline minigpt4-7b --chat +``` + +There is built-in support for LLaVA-v0-13B and LLaVA-v0-7b. To install `minigpt4`: + +- clone https://github.com/Wojtab/minigpt-4-pipeline into `extensions/multimodal/pipelines` +- install the requirements.txt + +The same procedure should be used to install other pipelines, which can then be used with `--multimodal-pipeline [pipeline name]`. For additional multimodal pipelines refer to the compatibility section below. + +Do note, that each image takes up a considerable amount of tokens, so adjust `max_new_tokens` to be at most 1700 (recommended value is between 200 to 500), so the images don't get truncated. + +To send an image, just upload it to the extension field below chat, and send a prompt as always. The image will be added to the end of your message. If you wish to modify the placement, include a string `` in your prompt. + +Additionally, there is *Embed all images, not only the last one* checkbox. It modifies the image embeddings, by default (if it's unchecked), all but the most recent images have their embeddings empty, so they are not fed to the network. It seems as if some multimodal networks consider the features in all images at the same time as if they were a single image. Due to this behavior, by default, the extension skips previous images. However, it can lead to sub-par generation on other pipelines. If you want to include all images, just tick this checkbox. + +## Compatibility +As of now, the following multimodal pipelines are supported: +|Pipeline|`--multimodal-pipeline`|Default LLM|LLM info(for the linked model)|Pipeline repository| +|-|-|-|-|-| +|[LLaVA 13B](https://github.com/haotian-liu/LLaVA)|`llava-13b`|[LLaVA 13B](https://huggingface.co/wojtab/llava-13b-v0-4bit-128g)|GPTQ 4-bit quant, old CUDA|built-in| +|[LLaVA 7B](https://github.com/haotian-liu/LLaVA)|`llava-7b`|[LLaVA 7B](https://huggingface.co/wojtab/llava-7b-v0-4bit-128g)|GPTQ 4-bit quant, old CUDA|built-in| +|[MiniGPT-4 7B](https://github.com/Vision-CAIR/MiniGPT-4)|`minigpt4-7b`|[Vicuna v0 7B](https://huggingface.co/TheBloke/vicuna-7B-GPTQ-4bit-128g)|GPTQ 4-bit quant, new format|[Wojtab/minigpt-4-pipeline](https://github.com/Wojtab/minigpt-4-pipeline)| +|[MiniGPT-4 13B](https://github.com/Vision-CAIR/MiniGPT-4)|`minigpt4-13b`|[Vicuna v0 13B](https://huggingface.co/anon8231489123/vicuna-13b-GPTQ-4bit-128g)|GPTQ 4-bit quant, old CUDA|[Wojtab/minigpt-4-pipeline](https://github.com/Wojtab/minigpt-4-pipeline)| + +Some pipelines could support different LLMs but do note that while it might work, it isn't a supported configuration. + +DO NOT report bugs if you are using a different LLM. + +DO NOT report bugs with pipelines in this repository (unless they are built-in) + +## Extension config +This extension uses the following parameters (from `settings.json`): +|Parameter|Description| +|---------|-----------| +|`multimodal-vision_bits`|Number of bits to load vision models (CLIP/ViT) feature extractor in (most pipelines should support either 32 or 16, default=32)| +|`multimodal-vision_device`|Torch device to run the feature extractor on, for example, `cpu` or `cuda:0`, by default `cuda:0` if available| +|`multimodal-projector_bits`|Number of bits to load feature projector model(s) in (most pipelines should support either 32 or 16, default=32)| +|`multimodal-projector_device`|Torch device to run the feature projector model(s) on, for example `cpu` or `cuda:0`, by default `cuda:0` if available| +|`multimodal-add_all_images_to_prompt`|Default value of "Embed all images, not only the last one" checkbox| + +## Usage through API + +You can run the multimodal inference through API, by inputting the images to prompt. Images are embedded like so: `f''`, where `img_str` is base-64 jpeg data. Note that you will need to launch `server.py` with the arguments `--api --extensions multimodal`. + +Python example: + +```Python +import base64 +import requests + +CONTEXT = "You are LLaVA, a large language and vision assistant trained by UW Madison WAIV Lab. You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language. Follow the instructions carefully and explain your answers in detail.### Human: Hi!### Assistant: Hi there! How can I help you today?\n" + +with open('extreme_ironing.jpg', 'rb') as f: + img_str = base64.b64encode(f.read()).decode('utf-8') + prompt = CONTEXT + f'### Human: What is unusual about this image: \n### Assistant: ' + print(requests.post('http://127.0.0.1:5000/api/v1/generate', json={'prompt': prompt, 'stopping_strings': ['\n###']}).json()) +``` +script output: +```Python +{'results': [{'text': "The unusual aspect of this image is that a man is standing on top of a yellow minivan while doing his laundry. He has set up a makeshift clothes line using the car's rooftop as an outdoor drying area. This scene is uncommon because people typically do their laundry indoors, in a dedicated space like a laundromat or a room in their home, rather than on top of a moving vehicle. Additionally, hanging clothes on the car could be potentially hazardous or illegal in some jurisdictions due to the risk of damaging the vehicle or causing accidents on the road.\n##"}]} +``` + +## For pipeline developers/technical description +see [DOCS.md](https://github.com/oobabooga/text-generation-webui/blob/main/extensions/multimodal/DOCS.md) diff --git a/extensions/multimodal/abstract_pipeline.py b/extensions/multimodal/abstract_pipeline.py new file mode 100644 index 0000000000000000000000000000000000000000..584219419d256e7743fd4d5120c56bcfa8f2a9f9 --- /dev/null +++ b/extensions/multimodal/abstract_pipeline.py @@ -0,0 +1,62 @@ +from abc import ABC, abstractmethod +from typing import List, Optional + +import torch +from PIL import Image + + +class AbstractMultimodalPipeline(ABC): + @staticmethod + @abstractmethod + def name() -> str: + 'name of the pipeline, should be same as in --multimodal-pipeline' + pass + + @staticmethod + @abstractmethod + def image_start() -> Optional[str]: + 'return image start string, string representation of image start token, or None if not applicable' + pass + + @staticmethod + @abstractmethod + def image_end() -> Optional[str]: + 'return image end string, string representation of image end token, or None if not applicable' + pass + + @staticmethod + @abstractmethod + def placeholder_token_id() -> int: + 'return placeholder token id' + pass + + @staticmethod + @abstractmethod + def num_image_embeds() -> int: + 'return the number of embeds used by a single image (for example: 256 for LLaVA)' + pass + + @abstractmethod + def embed_images(self, images: List[Image.Image]) -> torch.Tensor: + 'forward the images through vision pipeline, and return their embeddings' + pass + + @staticmethod + @abstractmethod + def embed_tokens(input_ids: torch.Tensor) -> torch.Tensor: + 'embed tokens, the exact function varies by LLM, for LLaMA it is `shared.model.model.embed_tokens`' + pass + + @staticmethod + @abstractmethod + def placeholder_embeddings() -> torch.Tensor: + 'get placeholder embeddings if there are multiple images, and `add_all_images_to_prompt` is False' + pass + + def _get_device(self, setting_name: str, params: dict): + if params[setting_name] is None: + return torch.device("cuda:0" if torch.cuda.is_available() else "cpu") + return torch.device(params[setting_name]) + + def _get_dtype(self, setting_name: str, params: dict): + return torch.float32 if int(params[setting_name]) == 32 else torch.float16 diff --git a/extensions/multimodal/multimodal_embedder.py b/extensions/multimodal/multimodal_embedder.py new file mode 100644 index 0000000000000000000000000000000000000000..626077cb80987d66af90f390e31aa2f2def76fec --- /dev/null +++ b/extensions/multimodal/multimodal_embedder.py @@ -0,0 +1,178 @@ +import base64 +import re +from dataclasses import dataclass +from io import BytesIO +from typing import Any, List, Optional + +import torch +from PIL import Image + +from extensions.multimodal.pipeline_loader import load_pipeline +from modules import shared +from modules.logging_colors import logger +from modules.text_generation import encode, get_max_prompt_length + + +@dataclass +class PromptPart: + text: str + image: Optional[Image.Image] = None + is_image: bool = False + input_ids: Optional[torch.Tensor] = None + embedding: Optional[torch.Tensor] = None + + +class MultimodalEmbedder: + def __init__(self, params: dict): + pipeline, source = load_pipeline(params) + self.pipeline = pipeline + logger.info(f'Multimodal: loaded pipeline {self.pipeline.name()} from pipelines/{source} ({self.pipeline.__class__.__name__})') + + def _split_prompt(self, prompt: str, load_images: bool = False) -> List[PromptPart]: + """Splits a prompt into a list of `PromptParts` to separate image data from text. + It will also append `image_start` and `image_end` before and after the image, and optionally parse and load the images, + if `load_images` is `True`. + """ + parts: List[PromptPart] = [] + curr = 0 + while True: + match = re.search(r'', prompt[curr:]) + if match is None: + # no more image tokens, append the rest of the prompt + if curr > 0: + # add image end token after last image + parts.append(PromptPart(text=self.pipeline.image_end() + prompt[curr:])) + else: + parts.append(PromptPart(text=prompt)) + break + # found an image, append image start token to the text + if match.start() > 0: + parts.append(PromptPart(text=prompt[curr:curr + match.start()] + self.pipeline.image_start())) + else: + parts.append(PromptPart(text=self.pipeline.image_start())) + # append the image + parts.append(PromptPart( + text=match.group(0), + image=Image.open(BytesIO(base64.b64decode(match.group(1)))) if load_images else None, + is_image=True + )) + curr += match.end() + return parts + + def _len_in_tokens_prompt_parts(self, parts: List[PromptPart]) -> int: + """Total length in tokens of all `parts`""" + tokens = 0 + for part in parts: + if part.is_image: + tokens += self.pipeline.num_image_embeds() + elif part.input_ids is not None: + tokens += len(part.input_ids) + else: + tokens += len(encode(part.text)[0]) + return tokens + + def len_in_tokens(self, prompt: str) -> int: + """Total length in tokens for a given text `prompt`""" + parts = self._split_prompt(prompt, False) + return self._len_in_tokens_prompt_parts(parts) + + def _encode_single_text(self, part: PromptPart, add_bos_token: bool) -> PromptPart: + """Encode a single prompt `part` to `input_ids`. Returns a `PromptPart`""" + if part.is_image: + placeholders = torch.ones((self.pipeline.num_image_embeds())) * self.pipeline.placeholder_token_id() + part.input_ids = placeholders.to(shared.model.device, dtype=torch.int64) + else: + part.input_ids = encode(part.text, add_bos_token=add_bos_token)[0].to(shared.model.device, dtype=torch.int64) + return part + + @staticmethod + def _num_images(parts: List[PromptPart]) -> int: + count = 0 + for part in parts: + if part.is_image: + count += 1 + return count + + def _encode_text(self, state, parts: List[PromptPart]) -> List[PromptPart]: + """Encode text to token_ids, also truncate the prompt, if necessary. + + The chat/instruct mode should make prompts that fit in get_max_prompt_length, but if max_new_tokens are set + such that the context + min_rows don't fit, we can get a prompt which is too long. + We can't truncate image embeddings, as it leads to broken generation, so remove the images instead and warn the user + """ + encoded: List[PromptPart] = [] + for i, part in enumerate(parts): + encoded.append(self._encode_single_text(part, i == 0 and state['add_bos_token'])) + + # truncation: + max_len = get_max_prompt_length(state) + removed_images = 0 + + # 1. remove entire text/image blocks + while self._len_in_tokens_prompt_parts(encoded[1:]) > max_len: + if encoded[0].is_image: + removed_images += 1 + encoded = encoded[1:] + + # 2. check if the last prompt part doesn't need to get truncated + if self._len_in_tokens_prompt_parts(encoded) > max_len: + if encoded[0].is_image: + # don't truncate image embeddings, just remove the image, otherwise generation will be broken + removed_images += 1 + encoded = encoded[1:] + elif len(encoded) > 1 and encoded[0].text.endswith(self.pipeline.image_start()): + # see if we can keep image_start token + len_image_start = len(encode(self.pipeline.image_start(), add_bos_token=state['add_bos_token'])[0]) + if self._len_in_tokens_prompt_parts(encoded[1:]) + len_image_start > max_len: + # we can't -> remove this text, and the image + encoded = encoded[2:] + removed_images += 1 + else: + # we can -> just truncate the text + trunc_len = self._len_in_tokens_prompt_parts(encoded) - max_len + encoded[0].input_ids = encoded[0].input_ids[trunc_len:] + elif len(encoded) > 0: + # only one text left, truncate it normally + trunc_len = self._len_in_tokens_prompt_parts(encoded) - max_len + encoded[0].input_ids = encoded[0].input_ids[trunc_len:] + + # notify user if we truncated an image + if removed_images > 0: + logger.warning(f"Multimodal: removed {removed_images} image(s) from prompt. Try decreasing max_new_tokens if generation is broken") + + return encoded + + def _embed(self, parts: List[PromptPart]) -> List[PromptPart]: + # batch images + image_indicies = [i for i, part in enumerate(parts) if part.is_image] + embedded = self.pipeline.embed_images([parts[i].image for i in image_indicies]) + for i, embeds in zip(image_indicies, embedded): + parts[i].embedding = embeds + # embed text + for (i, part) in enumerate(parts): + if not part.is_image: + parts[i].embedding = self.pipeline.embed_tokens(part.input_ids) + return parts + + def _remove_old_images(self, parts: List[PromptPart], params: dict) -> List[PromptPart]: + if params['add_all_images_to_prompt']: + return parts + already_added = False + for i, part in reversed(list(enumerate(parts))): + if part.is_image: + if already_added: + parts[i].embedding = self.pipeline.placeholder_embeddings() + else: + already_added = True + return parts + + def forward(self, prompt: str, state: Any, params: dict): + prompt_parts = self._split_prompt(prompt, True) + prompt_parts = self._encode_text(state, prompt_parts) + prompt_parts = self._embed(prompt_parts) + prompt_parts = self._remove_old_images(prompt_parts, params) + embeds = tuple(part.embedding for part in prompt_parts) + ids = tuple(part.input_ids for part in prompt_parts) + input_embeds = torch.cat(embeds, dim=0) + input_ids = torch.cat(ids, dim=0) + return prompt, input_ids, input_embeds, self._num_images(prompt_parts) diff --git a/extensions/multimodal/pipeline_loader.py b/extensions/multimodal/pipeline_loader.py new file mode 100644 index 0000000000000000000000000000000000000000..8fcd0a9b410fbc44a51941e0a87b294de871ef8b --- /dev/null +++ b/extensions/multimodal/pipeline_loader.py @@ -0,0 +1,52 @@ +import traceback +from importlib import import_module +from pathlib import Path +from typing import Tuple + +from extensions.multimodal.abstract_pipeline import AbstractMultimodalPipeline +from modules import shared +from modules.logging_colors import logger + + +def _get_available_pipeline_modules(): + pipeline_path = Path(__file__).parent / 'pipelines' + modules = [p for p in pipeline_path.iterdir() if p.is_dir()] + return [m.name for m in modules if (m / 'pipelines.py').exists()] + + +def load_pipeline(params: dict) -> Tuple[AbstractMultimodalPipeline, str]: + pipeline_modules = {} + available_pipeline_modules = _get_available_pipeline_modules() + for name in available_pipeline_modules: + try: + pipeline_modules[name] = import_module(f'extensions.multimodal.pipelines.{name}.pipelines') + except: + logger.warning(f'Failed to get multimodal pipelines from {name}') + logger.warning(traceback.format_exc()) + + if shared.args.multimodal_pipeline is not None: + for k in pipeline_modules: + if hasattr(pipeline_modules[k], 'get_pipeline'): + pipeline = getattr(pipeline_modules[k], 'get_pipeline')(shared.args.multimodal_pipeline, params) + if pipeline is not None: + return (pipeline, k) + else: + model_name = shared.args.model.lower() + for k in pipeline_modules: + if hasattr(pipeline_modules[k], 'get_pipeline_from_model_name'): + pipeline = getattr(pipeline_modules[k], 'get_pipeline_from_model_name')(model_name, params) + if pipeline is not None: + return (pipeline, k) + + available = [] + for k in pipeline_modules: + if hasattr(pipeline_modules[k], 'available_pipelines'): + pipelines = getattr(pipeline_modules[k], 'available_pipelines') + available += pipelines + + if shared.args.multimodal_pipeline is not None: + log = f'Multimodal - ERROR: Failed to load multimodal pipeline "{shared.args.multimodal_pipeline}", available pipelines are: {available}.' + else: + log = f'Multimodal - ERROR: Failed to determine multimodal pipeline for model {shared.args.model}, please select one manually using --multimodal-pipeline [PIPELINE]. Available pipelines are: {available}.' + logger.critical(f'{log} Please specify a correct pipeline, or disable the extension') + raise RuntimeError(f'{log} Please specify a correct pipeline, or disable the extension') diff --git a/extensions/multimodal/pipelines/llava/README.md b/extensions/multimodal/pipelines/llava/README.md new file mode 100644 index 0000000000000000000000000000000000000000..aff64faaae07d2f4da6c24e8ea03693326313139 --- /dev/null +++ b/extensions/multimodal/pipelines/llava/README.md @@ -0,0 +1,9 @@ +## LLaVA pipeline + +This module provides 2 pipelines: +- `llava-7b` - for use with LLaVA v0 7B model (finetuned LLaMa 7B) +- `llava-13b` - for use with LLaVA v0 13B model (finetuned LLaMa 13B) + +[LLaVA](https://github.com/haotian-liu/LLaVA) uses CLIP `openai/clip-vit-large-patch14` as the vision model, and then a single linear layer. For 13B the projector weights are in `liuhaotian/LLaVA-13b-delta-v0`, and for 7B they are in `liuhaotian/LLaVA-7b-delta-v0`. + +The supported parameter combinations for both the vision model, and the projector are: CUDA/32bit, CUDA/16bit, CPU/32bit diff --git a/extensions/multimodal/pipelines/llava/llava.py b/extensions/multimodal/pipelines/llava/llava.py new file mode 100644 index 0000000000000000000000000000000000000000..eca2be50bbcfce3f4b7c1f1bee89c80581a6b517 --- /dev/null +++ b/extensions/multimodal/pipelines/llava/llava.py @@ -0,0 +1,145 @@ +import time +from abc import abstractmethod +from typing import List, Tuple + +import torch +from huggingface_hub import hf_hub_download +from PIL import Image +from transformers import CLIPImageProcessor, CLIPVisionModel + +from extensions.multimodal.abstract_pipeline import AbstractMultimodalPipeline +from modules import shared +from modules.logging_colors import logger +from modules.text_generation import encode + + +class LLaVA_v0_Pipeline(AbstractMultimodalPipeline): + CLIP_REPO = "openai/clip-vit-large-patch14" + + def __init__(self, params: dict) -> None: + super().__init__() + self.clip_device = self._get_device("vision_device", params) + self.clip_dtype = self._get_dtype("vision_bits", params) + self.projector_device = self._get_device("projector_device", params) + self.projector_dtype = self._get_dtype("projector_bits", params) + self.image_processor, self.vision_tower, self.mm_projector = self._load_models() + + def _load_models(self): + start_ts = time.time() + + logger.info(f"LLaVA - Loading CLIP from {LLaVA_v0_Pipeline.CLIP_REPO} as {self.clip_dtype} on {self.clip_device}...") + image_processor = CLIPImageProcessor.from_pretrained(LLaVA_v0_Pipeline.CLIP_REPO, torch_dtype=self.clip_dtype) + vision_tower = CLIPVisionModel.from_pretrained(LLaVA_v0_Pipeline.CLIP_REPO, torch_dtype=self.clip_dtype).to(self.clip_device) + + logger.info(f"LLaVA - Loading projector from {self.llava_projector_repo()} as {self.projector_dtype} on {self.projector_device}...") + projector_path = hf_hub_download(self.llava_projector_repo(), self.llava_projector_filename()) + mm_projector = torch.nn.Linear(*self.llava_projector_shape()) + projector_data = torch.load(projector_path) + mm_projector.weight = torch.nn.Parameter(projector_data['model.mm_projector.weight'].to(dtype=self.projector_dtype), False) + mm_projector.bias = torch.nn.Parameter(projector_data['model.mm_projector.bias'].to(dtype=self.projector_dtype), False) + mm_projector = mm_projector.to(self.projector_device) + + logger.info(f"LLaVA supporting models loaded, took {time.time() - start_ts:.2f} seconds") + return image_processor, vision_tower, mm_projector + + @staticmethod + def image_start() -> str: + return "" + + @staticmethod + def image_end() -> str: + return "" + + @staticmethod + def num_image_embeds() -> int: + return 256 + + @staticmethod + def embed_tokens(input_ids: torch.Tensor) -> torch.Tensor: + if hasattr(shared.model.model, 'embed_tokens'): + func = shared.model.model.embed_tokens + else: + func = shared.model.model.model.embed_tokens # AutoGPTQ case + + return func(input_ids).to(shared.model.device, dtype=shared.model.dtype) + + @staticmethod + def placeholder_embeddings() -> torch.Tensor: + return LLaVA_v0_Pipeline.embed_tokens(encode(""*256, add_bos_token=False)[0]) + + def embed_images(self, images: List[Image.Image]) -> torch.Tensor: + images = self.image_processor(images, return_tensors='pt')['pixel_values'] + images = images.to(self.clip_device, dtype=self.clip_dtype) + + with torch.no_grad(): + image_forward_outs = self.vision_tower(images, output_hidden_states=True) + select_hidden_state_layer = -2 + select_hidden_state = image_forward_outs.hidden_states[select_hidden_state_layer] + image_features = select_hidden_state[:, 1:].to(self.projector_device, dtype=self.projector_dtype) + image_features = self.mm_projector(image_features) + return image_features.to(shared.model.device, dtype=shared.model.dtype) + + @staticmethod + @abstractmethod + def llava_projector_repo() -> str: + pass + + @staticmethod + @abstractmethod + def llava_projector_filename() -> str: + pass + + @staticmethod + @abstractmethod + def llava_projector_shape() -> Tuple[int, int]: + pass + + +class LLaVA_v0_13B_Pipeline(LLaVA_v0_Pipeline): + def __init__(self, params: dict) -> None: + super().__init__(params) + + @staticmethod + def name() -> str: + return "llava-13b" + + @staticmethod + def placeholder_token_id() -> int: + return 32000 + + @staticmethod + def llava_projector_shape() -> Tuple[int, int]: + return (1024, 5120) + + @staticmethod + def llava_projector_filename() -> str: + return "mm_projector.bin" + + @staticmethod + def llava_projector_repo() -> str: + return "liuhaotian/LLaVA-13b-delta-v0" + + +class LLaVA_v0_7B_Pipeline(LLaVA_v0_Pipeline): + def __init__(self, params: dict) -> None: + super().__init__(params) + + @staticmethod + def name() -> str: + return "llava-7b" + + @staticmethod + def placeholder_token_id() -> int: + return 32001 + + @staticmethod + def llava_projector_shape() -> Tuple[int, int]: + return (1024, 4096) + + @staticmethod + def llava_projector_filename() -> str: + return "mm_projector.bin" + + @staticmethod + def llava_projector_repo() -> str: + return "liuhaotian/LLaVA-7b-delta-v0" diff --git a/extensions/multimodal/pipelines/llava/pipelines.py b/extensions/multimodal/pipelines/llava/pipelines.py new file mode 100644 index 0000000000000000000000000000000000000000..0f650c1ab1a0f66bf79ce72d052db43b96801b6d --- /dev/null +++ b/extensions/multimodal/pipelines/llava/pipelines.py @@ -0,0 +1,27 @@ +from typing import Optional + +from extensions.multimodal.abstract_pipeline import AbstractMultimodalPipeline + +available_pipelines = ['llava-7b', 'llava-13b'] + + +def get_pipeline(name: str, params: dict) -> Optional[AbstractMultimodalPipeline]: + if name == 'llava-7b': + from .llava import LLaVA_v0_7B_Pipeline + return LLaVA_v0_7B_Pipeline(params) + if name == 'llava-13b': + from .llava import LLaVA_v0_13B_Pipeline + return LLaVA_v0_13B_Pipeline(params) + return None + + +def get_pipeline_from_model_name(model_name: str, params: dict) -> Optional[AbstractMultimodalPipeline]: + if 'llava' not in model_name.lower(): + return None + if '7b' in model_name.lower(): + from .llava import LLaVA_v0_7B_Pipeline + return LLaVA_v0_7B_Pipeline(params) + if '13b' in model_name.lower(): + from .llava import LLaVA_v0_13B_Pipeline + return LLaVA_v0_13B_Pipeline(params) + return None diff --git a/extensions/multimodal/pipelines/place-additional-pipelines-here.txt b/extensions/multimodal/pipelines/place-additional-pipelines-here.txt new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/extensions/multimodal/script.py b/extensions/multimodal/script.py new file mode 100644 index 0000000000000000000000000000000000000000..b3f654e43269ef53bfbecc628a0d94ecb3d2f83b --- /dev/null +++ b/extensions/multimodal/script.py @@ -0,0 +1,103 @@ +import base64 +import re +import time +from functools import partial +from io import BytesIO + +import gradio as gr +import torch + +from extensions.multimodal.multimodal_embedder import MultimodalEmbedder +from modules import shared +from modules.logging_colors import logger + +params = { + "add_all_images_to_prompt": False, + # device to run vision encoder on + "vision_device": None, + # bits to load vision encoder in, either 16 or 32 + "vision_bits": 32, + # device to run multimodal projector on + "projector_device": None, + # multimodal projector bits, either 32 or 16 + "projector_bits": 32 +} + + +# If 'state' is True, will hijack the next chat generation +input_hijack = { + 'state': False, + 'value': ["", ""] +} + + +# initialized in ui, so that params are loaded from settings +multimodal_embedder: MultimodalEmbedder = None + + +def add_chat_picture(picture, text, visible_text): + # resize the image, so that shortest edge is at least 224 (size for CLIP), and at most 300 (to keep history manageable) + max_hw, min_hw = max(picture.size), min(picture.size) + aspect_ratio = max_hw / min_hw + shortest_edge = int(max(300 / aspect_ratio, 224)) + longest_edge = int(shortest_edge * aspect_ratio) + w = shortest_edge if picture.width < picture.height else longest_edge + h = shortest_edge if picture.width >= picture.height else longest_edge + picture = picture.resize((w, h)) + + buffer = BytesIO() + picture.save(buffer, format="JPEG") + img_str = base64.b64encode(buffer.getvalue()).decode('utf-8') + image = f'' + + if '' in text: + text = text.replace('', image) + else: + text = text + '\n' + image + + if visible_text == '' or visible_text is None: + visible_text = text + elif '' in visible_text: + visible_text = visible_text.replace('', image) + else: + visible_text = visible_text + '\n' + image + + return text, visible_text + + +def custom_tokenized_length(prompt): + return multimodal_embedder.len_in_tokens(prompt) + + +def tokenizer_modifier(state, prompt, input_ids, input_embeds): + global params + start_ts = time.time() + image_match = re.search(r'', prompt) + + if image_match is None: + return prompt, input_ids, input_embeds + + prompt, input_ids, input_embeds, total_embedded = multimodal_embedder.forward(prompt, state, params) + logger.info(f'Embedded {total_embedded} image(s) in {time.time()-start_ts:.2f}s') + return (prompt, + input_ids.unsqueeze(0).to(shared.model.device, dtype=torch.int64), + input_embeds.unsqueeze(0).to(shared.model.device, dtype=shared.model.dtype)) + + +def ui(): + global multimodal_embedder + multimodal_embedder = MultimodalEmbedder(params) + with gr.Column(): + picture_select = gr.Image(label='Send a picture', type='pil') + # The models don't seem to deal well with multiple images + single_image_checkbox = gr.Checkbox(False, label='Embed all images, not only the last one') + # Prepare the input hijack + picture_select.upload( + lambda picture: input_hijack.update({"state": True, "value": partial(add_chat_picture, picture)}), + [picture_select], + None + ) + picture_select.clear(lambda: input_hijack.update({"state": False, "value": ["", ""]}), None, None) + single_image_checkbox.change(lambda x: params.update({"add_all_images_to_prompt": x}), single_image_checkbox, None) + shared.gradio['Generate'].click(lambda: None, None, picture_select) + shared.gradio['textbox'].submit(lambda: None, None, picture_select) diff --git a/extensions/ngrok/README.md b/extensions/ngrok/README.md new file mode 100644 index 0000000000000000000000000000000000000000..0324bf9852408d9d2b86cc0165c2d548996f9c94 --- /dev/null +++ b/extensions/ngrok/README.md @@ -0,0 +1,69 @@ +# Adding an ingress URL through the ngrok Agent SDK for Python + +[ngrok](https://ngrok.com) is a globally distributed reverse proxy commonly used for quickly getting a public URL to a +service running inside a private network, such as on your local laptop. The ngrok agent is usually +deployed inside a private network and is used to communicate with the ngrok cloud service. + +By default the authtoken in the NGROK_AUTHTOKEN environment variable will be used. Alternatively one may be specified in +the `settings.json` file, see the Examples below. Retrieve your authtoken on the [Auth Token page of your ngrok dashboard](https://dashboard.ngrok.com/get-started/your-authtoken), signing up is free. + +# Documentation + +For a list of all available options, see [the configuration documentation](https://ngrok.com/docs/ngrok-agent/config/) or [the connect example](https://github.com/ngrok/ngrok-py/blob/main/examples/ngrok-connect-full.py). + +The ngrok Python SDK is [on github here](https://github.com/ngrok/ngrok-py). A quickstart guide and a full API reference are included in the [ngrok-py Python API documentation](https://ngrok.github.io/ngrok-py/). + +# Running + +To enable ngrok install the requirements and then add `--extension ngrok` to the command line options, for instance: + +```bash +pip install -r extensions/ngrok/requirements.txt +python server.py --extension ngrok +``` + +In the output you should then see something like this: + +```bash +INFO:Loading the extension "ngrok"... +INFO:Session created +INFO:Created tunnel "9d9d0944dc75ff9d3aae653e5eb29fe9" with url "https://d83706cf7be7.ngrok.app" +INFO:Tunnel "9d9d0944dc75ff9d3aae653e5eb29fe9" TCP forwarding to "localhost:7860" +INFO:Ingress established at https://d83706cf7be7.ngrok.app +``` + +You can now access the webui via the url shown, in this case `https://d83706cf7be7.ngrok.app`. It is recommended to add some authentication to the ingress, see below. + +# Example Settings + +In `settings.json` add a `ngrok` key with a dictionary of options, for instance: + +To enable basic authentication: +```json +{ + "ngrok": { + "basic_auth": "user:password" + } +} +``` + +To enable OAUTH authentication: +```json +{ + "ngrok": { + "oauth_provider": "google", + "oauth_allow_domains": "asdf.com", + "oauth_allow_emails": "asdf@asdf.com" + } +} +``` + +To add an authtoken instead of using the NGROK_AUTHTOKEN environment variable: +```json +{ + "ngrok": { + "authtoken": "", + "authtoken_from_env":false + } +} +``` \ No newline at end of file diff --git a/extensions/ngrok/requirements.txt b/extensions/ngrok/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..8acb99f2a1f2a165f496121e539949e18f3fcd81 --- /dev/null +++ b/extensions/ngrok/requirements.txt @@ -0,0 +1 @@ +ngrok==0.* diff --git a/extensions/ngrok/script.py b/extensions/ngrok/script.py new file mode 100644 index 0000000000000000000000000000000000000000..782deeac0c7062e193fa2cf096e861956f194df4 --- /dev/null +++ b/extensions/ngrok/script.py @@ -0,0 +1,36 @@ +# Adds ngrok ingress, to use add `--extension ngrok` to the command line options +# +# Parameters can be customized in settings.json of webui, e.g.: +# {"ngrok": {"basic_auth":"user:password"} } +# or +# {"ngrok": {"oauth_provider":"google", "oauth_allow_emails":["asdf@asdf.com"]} } +# +# See this example for full list of options: https://github.com/ngrok/ngrok-py/blob/main/examples/ngrok-connect-full.py +# or the README.md in this directory. + +import logging +from modules import shared + +# Pick up host/port command line arguments +host = shared.args.listen_host if shared.args.listen_host and shared.args.listen else '127.0.0.1' +port = shared.args.listen_port if shared.args.listen_port else '7860' + +# Default options +options = { + 'addr': f"{host}:{port}", + 'authtoken_from_env': True, + 'session_metadata': 'text-generation-webui', +} + +def ui(): + settings = shared.settings.get("ngrok") + if settings: + options.update(settings) + + try: + import ngrok + tunnel = ngrok.connect(**options) + logging.info(f"Ingress established at: {tunnel.url()}") + except ModuleNotFoundError: + logging.error("===> ngrok library not found, please run `pip install -r extensions/ngrok/requirements.txt`") + diff --git a/extensions/openai/README.md b/extensions/openai/README.md new file mode 100644 index 0000000000000000000000000000000000000000..0f775bbfb6d39b00369854d7f6ac4f7734710425 --- /dev/null +++ b/extensions/openai/README.md @@ -0,0 +1,232 @@ +# An OpenedAI API (openai like) + +This extension creates an API that works kind of like openai (ie. api.openai.com). +It's incomplete so far but perhaps is functional enough for you. + +## Setup & installation + +Optional (for flask_cloudflared, embeddings): + +``` +pip3 install -r requirements.txt +``` + +It listens on tcp port 5001 by default. You can use the OPENEDAI_PORT environment variable to change this. + +Make sure you enable it in server launch parameters, it should include: + +``` +--extensions openai +``` + +You can also use the ``--listen`` argument to make the server available on the networ, and/or the ```--share``` argument to enable a public Cloudflare endpoint. + +To enable the basic image generation support (txt2img) set the environment variable SD_WEBUI_URL to point to your Stable Diffusion API ([Automatic1111](https://github.com/AUTOMATIC1111/stable-diffusion-webui)). + +For example: +``` +SD_WEBUI_URL=http://127.0.0.1:7861 +``` + +### Models + +This has been successfully tested with Alpaca, Koala, Vicuna, WizardLM and their variants, (ex. gpt4-x-alpaca, GPT4all-snoozy, stable-vicuna, wizard-vicuna, etc.) and many others. Models that have been trained for **Instruction Following** work best. If you test with other models please let me know how it goes. Less than satisfying results (so far) from: RWKV-4-Raven, llama, mpt-7b-instruct/chat. + +For best results across all API endpoints, a model like [vicuna-13b-v1.3-GPTQ](https://huggingface.co/TheBloke/vicuna-13b-v1.3-GPTQ), [stable-vicuna-13B-GPTQ](https://huggingface.co/TheBloke/stable-vicuna-13B-GPTQ) or [airoboros-13B-gpt4-1.3-GPTQ](https://huggingface.co/TheBloke/airoboros-13B-gpt4-1.3-GPTQ) is a good start. + +For good results with the [Completions](https://platform.openai.com/docs/api-reference/completions) API endpoint, in addition to the above models, you can also try using a base model like [falcon-7b](https://huggingface.co/tiiuae/falcon-7b) or Llama. + +For good results with the [ChatCompletions](https://platform.openai.com/docs/api-reference/chat) or [Edits](https://platform.openai.com/docs/api-reference/edits) API endpoints you can use almost any model trained for instruction following - within the limits of the model. Be sure that the proper instruction template is detected and loaded or the results will not be good. + +For the proper instruction format to be detected you need to have a matching model entry in your ```models/config.yaml``` file. Be sure to keep this file up to date. +A matching instruction template file in the characters/instruction-following/ folder will loaded and applied to format messages correctly for the model - this is critical for good results. + +For example, the Wizard-Vicuna family of models are trained with the Vicuna 1.1 format. In the models/config.yaml file there is this matching entry: + +``` +.*wizard.*vicuna: + mode: 'instruct' + instruction_template: 'Vicuna-v1.1' +``` + +This refers to ```characters/instruction-following/Vicuna-v1.1.yaml```, which looks like this: + +``` +user: "USER:" +bot: "ASSISTANT:" +turn_template: "<|user|> <|user-message|>\n<|bot|> <|bot-message|>\n" +context: "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.\n\n" +``` + +For most common models this is already setup, but if you are using a new or uncommon model you may need add a matching entry to the models/config.yaml and possibly create your own instruction-following template and for best results. + +If you see this in your logs, it probably means that the correct format could not be loaded: +``` +Warning: Loaded default instruction-following template for model. +``` + +### Embeddings (alpha) + +Embeddings requires ```sentence-transformers``` installed, but chat and completions will function without it loaded. The embeddings endpoint is currently using the HuggingFace model: ```sentence-transformers/all-mpnet-base-v2``` for embeddings. This produces 768 dimensional embeddings (the same as the text-davinci-002 embeddings), which is different from OpenAI's current default ```text-embedding-ada-002``` model which produces 1536 dimensional embeddings. The model is small-ish and fast-ish. This model and embedding size may change in the future. + +| model name | dimensions | input max tokens | speed | size | Avg. performance | +| --- | --- | --- | --- | --- | --- | +| text-embedding-ada-002 | 1536 | 8192| - | - | - | +| text-davinci-002 | 768 | 2046 | - | - | - | +| all-mpnet-base-v2 | 768 | 384 | 2800 | 420M | 63.3 | +| all-MiniLM-L6-v2 | 384 | 256 | 14200 | 80M | 58.8 | + +In short, the all-MiniLM-L6-v2 model is 5x faster, 5x smaller ram, 2x smaller storage, and still offers good quality. Stats from (https://www.sbert.net/docs/pretrained_models.html). To change the model from the default you can set the environment variable OPENEDAI_EMBEDDING_MODEL, ex. "OPENEDAI_EMBEDDING_MODEL=all-MiniLM-L6-v2". + +Warning: You cannot mix embeddings from different models even if they have the same dimensions. They are not comparable. + +### Client Application Setup + + +Almost everything you use it with will require you to set a dummy OpenAI API key environment variable. + +With the [official python openai client](https://github.com/openai/openai-python), you can set the OPENAI_API_BASE environment variable before you import the openai module, like so: + +``` +OPENAI_API_KEY=sk-111111111111111111111111111111111111111111111111 +OPENAI_API_BASE=http://127.0.0.1:5001/v1 +``` + +If needed, replace 127.0.0.1 with the IP/port of your server. + +If using .env files to save the OPENAI_API_BASE and OPENAI_API_KEY variables, you can ensure compatibility by loading the .env file before loading the openai module, like so in python: + +``` +from dotenv import load_dotenv +load_dotenv() +import openai +``` + +With the [official Node.js openai client](https://github.com/openai/openai-node) it is slightly more more complex because the environment variables are not used by default, so small source code changes may be required to use the environment variables, like so: + +``` +const openai = OpenAI(Configuration({ + apiKey: process.env.OPENAI_API_KEY, + basePath: process.env.OPENAI_API_BASE, +})); +``` + +For apps made with the [chatgpt-api Node.js client library](https://github.com/transitive-bullshit/chatgpt-api): + +``` +const api = new ChatGPTAPI({ + apiKey: process.env.OPENAI_API_KEY, + apiBaseUrl: process.env.OPENAI_API_BASE, +}) +``` + +## API Documentation & Examples + +The OpenAI API is well documented, you can view the documentation here: https://platform.openai.com/docs/api-reference + +Examples of how to use the Completions API in Python can be found here: https://platform.openai.com/examples +Not all of them will work with all models unfortunately, See the notes on Models for how to get the best results. + +Here is a simple python example of how you can use the Edit endpoint as a translator. + +```python +import openai +response = openai.Edit.create( + model="x", + instruction="Translate this into French", + input="Our mission is to ensure that artificial general intelligence benefits all of humanity.", +) +print(response['choices'][0]['text']) +# Sample Output: +# Notre mission est de garantir que l'intelligence artificielle généralisée profite à tous les membres de l'humanité. +``` + + + +## Compatibility & not so compatibility + +| API endpoint | tested with | notes | +| --- | --- | --- | +| /v1/models | openai.Model.list() | Lists models, Currently loaded model first, plus some compatibility options | +| /v1/models/{id} | openai.Model.get() | returns whatever you ask for, model does nothing yet anyways | +| /v1/text_completion | openai.Completion.create() | the most tested, only supports single string input so far, variable quality based on the model | +| /v1/chat/completions | openai.ChatCompletion.create() | Quality depends a lot on the model | +| /v1/edits | openai.Edit.create() | Works the best of all, perfect for instruction following models | +| /v1/images/generations | openai.Image.create() | Bare bones, no model configuration, response_format='b64_json' only. | +| /v1/embeddings | openai.Embedding.create() | Using Sentence Transformer, dimensions are different and may never be directly comparable to openai embeddings. | +| /v1/moderations | openai.Moderation.create() | does nothing. successfully. | +| /v1/completions | openai api completions.create | Legacy endpoint (v0.25) | +| /v1/engines/*/embeddings | python-openai v0.25 | Legacy endpoint | +| /v1/engines/*/generate | openai engines.generate | Legacy endpoint | +| /v1/engines | openai engines.list | Legacy Lists models | +| /v1/engines/{model_name} | openai engines.get -i {model_name} | You can use this legacy endpoint to load models via the api | +| /v1/images/edits | openai.Image.create_edit() | not yet supported | +| /v1/images/variations | openai.Image.create_variation() | not yet supported | +| /v1/audio/\* | openai.Audio.\* | not yet supported | +| /v1/files\* | openai.Files.\* | not yet supported | +| /v1/fine-tunes\* | openai.FineTune.\* | not yet supported | +| /v1/search | openai.search, engines.search | not yet supported | + +The model name setting is ignored in completions, but you may need to adjust the maximum token length to fit the model (ie. set to <2048 tokens instead of 4096, 8k, etc). To mitigate some of this, the max_tokens value is halved until it is less than truncation_length for the model (typically 2k). + +Streaming, temperature, top_p, max_tokens, stop, should all work as expected, but not all parameters are mapped correctly. + +Some hacky mappings: + +| OpenAI | text-generation-webui | note | +| --- | --- | --- | +| frequency_penalty | encoder_repetition_penalty | this seems to operate with a different scale and defaults, I tried to scale it based on range & defaults, but the results are terrible. hardcoded to 1.18 until there is a better way | +| presence_penalty | repetition_penalty | same issues as frequency_penalty, hardcoded to 1.0 | +| best_of | top_k | default is 1 | +| stop | custom_stopping_strings | this is also stuffed with ['\n###', "\n{user prompt}", "{user prompt}" ] for good measure. | +| n | 1 | variations are not supported yet. | +| 1 | num_beams | hardcoded to 1 | +| 1.0 | typical_p | hardcoded to 1.0 | +| max_tokens | max_new_tokens | For Text Completions max_tokens is set smaller than the truncation_length minus the prompt length. This can cause no input to be generated if the prompt is too large. For ChatCompletions, the older chat messages may be dropped to fit the max_new_tokens requested | +| logprobs | - | not supported yet | +| logit_bias | - | not supported yet | +| messages.name | - | not supported yet | +| user | - | not supported yet | +| functions/function_call | - | function calls are not supported yet | + +defaults are mostly from openai, so are different. I use the openai defaults where I can and try to scale them to the webui defaults with the same intent. + +### Applications + +Almost everything needs the OPENAI_API_KEY environment variable set, for example: +``` +OPENAI_API_KEY=sk-111111111111111111111111111111111111111111111111 +``` +Some apps are picky about key format, but 'dummy' or 'sk-dummy' also work in most cases. +Most application will work if you also set: +``` +OPENAI_API_BASE=http://127.0.0.1:5001/v1 +``` +but there are some exceptions. + +| Compatibility | Application/Library | url | notes / setting | +| --- | --- | --- | --- | +| ✅❌ | openai-python (v0.25+) | https://github.com/openai/openai-python | only the endpoints from above are working. OPENAI_API_BASE=http://127.0.0.1:5001/v1 | +| ✅❌ | openai-node | https://github.com/openai/openai-node | only the endpoints from above are working. environment variables don't work by default, but can be configured (see above) | +| ✅❌ | chatgpt-api | https://github.com/transitive-bullshit/chatgpt-api | only the endpoints from above are working. environment variables don't work by default, but can be configured (see above) | +| ✅ | anse | https://github.com/anse-app/anse | API Key & URL configurable in UI | +| ✅ | shell_gpt | https://github.com/TheR1D/shell_gpt | OPENAI_API_HOST=http://127.0.0.1:5001 | +| ✅ | gpt-shell | https://github.com/jla/gpt-shell | OPENAI_API_BASE=http://127.0.0.1:5001/v1 | +| ✅ | gpt-discord-bot | https://github.com/openai/gpt-discord-bot | OPENAI_API_BASE=http://127.0.0.1:5001/v1 | +| ✅ | OpenAI for Notepad++ | https://github.com/Krazal/nppopenai | api_url=http://127.0.0.1:5001 in the config file, or environment variables | +| ✅ | vscode-openai | https://marketplace.visualstudio.com/items?itemName=AndrewButson.vscode-openai | OPENAI_API_BASE=http://127.0.0.1:5001/v1 | +| ✅❌ | langchain | https://github.com/hwchase17/langchain | OPENAI_API_BASE=http://127.0.0.1:5001/v1 even with a good 30B-4bit model the result is poor so far. It assumes zero shot python/json coding. Some model tailored prompt formatting improves results greatly. | +| ✅❌ | Auto-GPT | https://github.com/Significant-Gravitas/Auto-GPT | OPENAI_API_BASE=http://127.0.0.1:5001/v1 Same issues as langchain. Also assumes a 4k+ context | +| ✅❌ | babyagi | https://github.com/yoheinakajima/babyagi | OPENAI_API_BASE=http://127.0.0.1:5001/v1 | + +## Future plans +* better error handling +* model changing, esp. something for swapping loras or embedding models +* consider switching to FastAPI + starlette for SSE (openai SSE seems non-standard) +* do something about rate limiting or locking requests for completions, most systems will only be able handle a single request at a time before OOM + +## Bugs? Feedback? Comments? Pull requests? + +To enable debugging and get copious output you can set the OPENEDAI_DEBUG=1 environment variable. + +Are all appreciated, please @matatonic and I'll try to get back to you as soon as possible. diff --git a/extensions/openai/cache_embedding_model.py b/extensions/openai/cache_embedding_model.py new file mode 100644 index 0000000000000000000000000000000000000000..44ac1dcd663d09a9f36bf9793ee2fa653339cbb3 --- /dev/null +++ b/extensions/openai/cache_embedding_model.py @@ -0,0 +1,8 @@ +#!/usr/bin/env python3 +# preload the embedding model, useful for Docker images to prevent re-download on config change +# Dockerfile: +# ENV OPENEDAI_EMBEDDING_MODEL=all-mpnet-base-v2 # Optional +# RUN python3 cache_embedded_model.py +import os, sentence_transformers +st_model = os.environ["OPENEDAI_EMBEDDING_MODEL"] if "OPENEDAI_EMBEDDING_MODEL" in os.environ else "all-mpnet-base-v2" +model = sentence_transformers.SentenceTransformer(st_model) diff --git a/extensions/openai/requirements.txt b/extensions/openai/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..5193a0acef91177f49cea0ba1c0fd0329b8703de --- /dev/null +++ b/extensions/openai/requirements.txt @@ -0,0 +1,2 @@ +flask_cloudflared==0.0.12 +sentence-transformers \ No newline at end of file diff --git a/extensions/openai/script.py b/extensions/openai/script.py new file mode 100644 index 0000000000000000000000000000000000000000..323d68236bec77b1d6c6a4e6f5e7ed7631516d81 --- /dev/null +++ b/extensions/openai/script.py @@ -0,0 +1,889 @@ +import base64 +import json +import os +import time +import requests +import yaml +import numpy as np +from http.server import BaseHTTPRequestHandler, ThreadingHTTPServer +from threading import Thread +from modules.utils import get_available_models +from modules.models import load_model, unload_model +from modules.models_settings import (get_model_settings_from_yamls, + update_model_parameters) + +from modules import shared +from modules.text_generation import encode, generate_reply + +params = { + 'port': int(os.environ.get('OPENEDAI_PORT')) if 'OPENEDAI_PORT' in os.environ else 5001, +} + +debug = True if 'OPENEDAI_DEBUG' in os.environ else False + +# Slightly different defaults for OpenAI's API +# Data type is important, Ex. use 0.0 for a float 0 +default_req_params = { + 'max_new_tokens': 200, + 'temperature': 1.0, + 'top_p': 1.0, + 'top_k': 1, + 'repetition_penalty': 1.18, + 'repetition_penalty_range': 0, + 'encoder_repetition_penalty': 1.0, + 'suffix': None, + 'stream': False, + 'echo': False, + 'seed': -1, + # 'n' : default(body, 'n', 1), # 'n' doesn't have a direct map + 'truncation_length': 2048, + 'add_bos_token': True, + 'do_sample': True, + 'typical_p': 1.0, + 'epsilon_cutoff': 0.0, # In units of 1e-4 + 'eta_cutoff': 0.0, # In units of 1e-4 + 'tfs': 1.0, + 'top_a': 0.0, + 'min_length': 0, + 'no_repeat_ngram_size': 0, + 'num_beams': 1, + 'penalty_alpha': 0.0, + 'length_penalty': 1.0, + 'early_stopping': False, + 'mirostat_mode': 0, + 'mirostat_tau': 5.0, + 'mirostat_eta': 0.1, + 'ban_eos_token': False, + 'skip_special_tokens': True, + 'custom_stopping_strings': '', +} + +# Optional, install the module and download the model to enable +# v1/embeddings +try: + from sentence_transformers import SentenceTransformer +except ImportError: + pass + +st_model = os.environ["OPENEDAI_EMBEDDING_MODEL"] if "OPENEDAI_EMBEDDING_MODEL" in os.environ else "all-mpnet-base-v2" +embedding_model = None + +# little helper to get defaults if arg is present but None and should be the same type as default. +def default(dic, key, default): + val = dic.get(key, default) + if type(val) != type(default): + # maybe it's just something like 1 instead of 1.0 + try: + v = type(default)(val) + if type(val)(v) == val: # if it's the same value passed in, it's ok. + return v + except: + pass + + val = default + return val + + +def clamp(value, minvalue, maxvalue): + return max(minvalue, min(value, maxvalue)) + + +def float_list_to_base64(float_list): + # Convert the list to a float32 array that the OpenAPI client expects + float_array = np.array(float_list, dtype="float32") + + # Get raw bytes + bytes_array = float_array.tobytes() + + # Encode bytes into base64 + encoded_bytes = base64.b64encode(bytes_array) + + # Turn raw base64 encoded bytes into ASCII + ascii_string = encoded_bytes.decode('ascii') + return ascii_string + + +class Handler(BaseHTTPRequestHandler): + def send_access_control_headers(self): + self.send_header("Access-Control-Allow-Origin", "*") + self.send_header("Access-Control-Allow-Credentials", "true") + self.send_header( + "Access-Control-Allow-Methods", + "GET,HEAD,OPTIONS,POST,PUT" + ) + self.send_header( + "Access-Control-Allow-Headers", + "Origin, Accept, X-Requested-With, Content-Type, " + "Access-Control-Request-Method, Access-Control-Request-Headers, " + "Authorization" + ) + + def openai_error(self, message, code = 500, error_type = 'APIError', param = '', internal_message = ''): + self.send_response(code) + self.send_access_control_headers() + self.send_header('Content-Type', 'application/json') + self.end_headers() + error_resp = { + 'error': { + 'message': message, + 'code': code, + 'type': error_type, + 'param': param, + } + } + if internal_message: + error_resp['internal_message'] = internal_message + + response = json.dumps(error_resp) + self.wfile.write(response.encode('utf-8')) + + def do_OPTIONS(self): + self.send_response(200) + self.send_access_control_headers() + self.send_header('Content-Type', 'application/json') + self.end_headers() + self.wfile.write("OK".encode('utf-8')) + + def do_GET(self): + if self.path.startswith('/v1/engines') or self.path.startswith('/v1/models'): + current_model_list = [ shared.model_name ] # The real chat/completions model, maybe "None" + embeddings_model_list = [ st_model ] if embedding_model else [] # The real sentence transformer embeddings model + pseudo_model_list = [ # these are expected by so much, so include some here as a dummy + 'gpt-3.5-turbo', # /v1/chat/completions + 'text-curie-001', # /v1/completions, 2k context + 'text-davinci-002' # /v1/embeddings text-embedding-ada-002:1536, text-davinci-002:768 + ] + + is_legacy = 'engines' in self.path + is_list = self.path in ['/v1/engines', '/v1/models'] + + resp = '' + + if is_legacy and not is_list: # load model + model_name = self.path[self.path.find('/v1/engines/') + len('/v1/engines/'):] + + resp = { + "id": model_name, + "object": "engine", + "owner": "self", + "ready": True, + } + if model_name not in pseudo_model_list + embeddings_model_list + current_model_list: # Real model only + # No args. Maybe it works anyways! + # TODO: hack some heuristics into args for better results + + shared.model_name = model_name + unload_model() + + model_settings = get_model_settings_from_yamls(shared.model_name) + shared.settings.update(model_settings) + update_model_parameters(model_settings, initial=True) + + if shared.settings['mode'] != 'instruct': + shared.settings['instruction_template'] = None + + shared.model, shared.tokenizer = load_model(shared.model_name) + + if not shared.model: # load failed. + shared.model_name = "None" + resp['id'] = "None" + resp['ready'] = False + + elif is_list: + # TODO: Lora's? + available_model_list = get_available_models() + all_model_list = current_model_list + embeddings_model_list + pseudo_model_list + available_model_list + + models = {} + + if is_legacy: + models = [{ "id": id, "object": "engine", "owner": "user", "ready": True } for id in all_model_list ] + if not shared.model: + models[0]['ready'] = False + else: + models = [{ "id": id, "object": "model", "owned_by": "user", "permission": [] } for id in all_model_list ] + + resp = { + "object": "list", + "data": models, + } + + else: + the_model_name = self.path[len('/v1/models/'):] + resp = { + "id": the_model_name, + "object": "model", + "owned_by": "user", + "permission": [] + } + + self.send_response(200) + self.send_access_control_headers() + self.send_header('Content-Type', 'application/json') + self.end_headers() + response = json.dumps(resp) + self.wfile.write(response.encode('utf-8')) + + elif '/billing/usage' in self.path: + # Ex. /v1/dashboard/billing/usage?start_date=2023-05-01&end_date=2023-05-31 + self.send_response(200) + self.send_access_control_headers() + self.send_header('Content-Type', 'application/json') + self.end_headers() + + response = json.dumps({ + "total_usage": 0, + }) + self.wfile.write(response.encode('utf-8')) + + else: + self.send_error(404) + + def do_POST(self): + if debug: + print(self.headers) # did you know... python-openai sends your linux kernel & python version? + content_length = int(self.headers['Content-Length']) + body = json.loads(self.rfile.read(content_length).decode('utf-8')) + + if debug: + print(body) + + if '/completions' in self.path or '/generate' in self.path: + + if not shared.model: + self.openai_error("No model loaded.") + return + + is_legacy = '/generate' in self.path + is_chat_request = 'chat' in self.path + resp_list = 'data' if is_legacy else 'choices' + + # XXX model is ignored for now + # model = body.get('model', shared.model_name) # ignored, use existing for now + model = shared.model_name + created_time = int(time.time()) + + cmpl_id = "chatcmpl-%d" % (created_time) if is_chat_request else "conv-%d" % (created_time) + + # Request Parameters + # Try to use openai defaults or map them to something with the same intent + req_params = default_req_params.copy() + stopping_strings = [] + + if 'stop' in body: + if isinstance(body['stop'], str): + stopping_strings.extend([body['stop']]) + elif isinstance(body['stop'], list): + stopping_strings.extend(body['stop']) + + truncation_length = default(shared.settings, 'truncation_length', 2048) + truncation_length = clamp(default(body, 'truncation_length', truncation_length), 1, truncation_length) + + default_max_tokens = truncation_length if is_chat_request else 16 # completions default, chat default is 'inf' so we need to cap it. + + max_tokens_str = 'length' if is_legacy else 'max_tokens' + max_tokens = default(body, max_tokens_str, default(shared.settings, 'max_new_tokens', default_max_tokens)) + # if the user assumes OpenAI, the max_tokens is way too large - try to ignore it unless it's small enough + + req_params['max_new_tokens'] = max_tokens + req_params['truncation_length'] = truncation_length + req_params['temperature'] = clamp(default(body, 'temperature', default_req_params['temperature']), 0.001, 1.999) # fixup absolute 0.0 + req_params['top_p'] = clamp(default(body, 'top_p', default_req_params['top_p']), 0.001, 1.0) + req_params['top_k'] = default(body, 'best_of', default_req_params['top_k']) + req_params['suffix'] = default(body, 'suffix', default_req_params['suffix']) + req_params['stream'] = default(body, 'stream', default_req_params['stream']) + req_params['echo'] = default(body, 'echo', default_req_params['echo']) + req_params['seed'] = shared.settings.get('seed', default_req_params['seed']) + req_params['add_bos_token'] = shared.settings.get('add_bos_token', default_req_params['add_bos_token']) + + is_streaming = req_params['stream'] + + self.send_response(200) + self.send_access_control_headers() + if is_streaming: + self.send_header('Content-Type', 'text/event-stream') + self.send_header('Cache-Control', 'no-cache') + # self.send_header('Connection', 'keep-alive') + else: + self.send_header('Content-Type', 'application/json') + self.end_headers() + + token_count = 0 + completion_token_count = 0 + prompt = '' + stream_object_type = '' + object_type = '' + + if is_chat_request: + # Chat Completions + stream_object_type = 'chat.completions.chunk' + object_type = 'chat.completions' + + messages = body['messages'] + + role_formats = { + 'user': 'user: {message}\n', + 'assistant': 'assistant: {message}\n', + 'system': '{message}', + 'context': 'You are a helpful assistant. Answer as concisely as possible.', + 'prompt': 'assistant:', + } + + # Instruct models can be much better + if shared.settings['instruction_template']: + try: + instruct = yaml.safe_load(open(f"characters/instruction-following/{shared.settings['instruction_template']}.yaml", 'r')) + + template = instruct['turn_template'] + system_message_template = "{message}" + system_message_default = instruct['context'] + bot_start = template.find('<|bot|>') # So far, 100% of instruction templates have this token + user_message_template = template[:bot_start].replace('<|user-message|>', '{message}').replace('<|user|>', instruct['user']) + bot_message_template = template[bot_start:].replace('<|bot-message|>', '{message}').replace('<|bot|>', instruct['bot']) + bot_prompt = bot_message_template[:bot_message_template.find('{message}')].rstrip(' ') + + role_formats = { + 'user': user_message_template, + 'assistant': bot_message_template, + 'system': system_message_template, + 'context': system_message_default, + 'prompt': bot_prompt, + } + + if 'Alpaca' in shared.settings['instruction_template']: + stopping_strings.extend(['\n###']) + elif instruct['user']: # WizardLM and some others have no user prompt. + stopping_strings.extend(['\n' + instruct['user'], instruct['user']]) + + if debug: + print(f"Loaded instruction role format: {shared.settings['instruction_template']}") + + except Exception as e: + stopping_strings.extend(['\nuser:']) + + print(f"Exception: When loading characters/instruction-following/{shared.settings['instruction_template']}.yaml: {repr(e)}") + print("Warning: Loaded default instruction-following template for model.") + + else: + stopping_strings.extend(['\nuser:']) + print("Warning: Loaded default instruction-following template for model.") + + system_msgs = [] + chat_msgs = [] + + # You are ChatGPT, a large language model trained by OpenAI. Answer as concisely as possible. Knowledge cutoff: {knowledge_cutoff} Current date: {current_date} + context_msg = role_formats['system'].format(message=role_formats['context']) if role_formats['context'] else '' + if context_msg: + system_msgs.extend([context_msg]) + + # Maybe they sent both? This is not documented in the API, but some clients seem to do this. + if 'prompt' in body: + prompt_msg = role_formats['system'].format(message=body['prompt']) + system_msgs.extend([prompt_msg]) + + for m in messages: + role = m['role'] + content = m['content'] + msg = role_formats[role].format(message=content) + if role == 'system': + system_msgs.extend([msg]) + else: + chat_msgs.extend([msg]) + + # can't really truncate the system messages + system_msg = '\n'.join(system_msgs) + if system_msg and system_msg[-1] != '\n': + system_msg = system_msg + '\n' + + system_token_count = len(encode(system_msg)[0]) + remaining_tokens = truncation_length - system_token_count + chat_msg = '' + + while chat_msgs: + new_msg = chat_msgs.pop() + new_size = len(encode(new_msg)[0]) + if new_size <= remaining_tokens: + chat_msg = new_msg + chat_msg + remaining_tokens -= new_size + else: + print(f"Warning: too many messages for context size, dropping {len(chat_msgs) + 1} oldest message(s).") + break + + prompt = system_msg + chat_msg + role_formats['prompt'] + + token_count = len(encode(prompt)[0]) + + else: + # Text Completions + stream_object_type = 'text_completion.chunk' + object_type = 'text_completion' + + # ... encoded as a string, array of strings, array of tokens, or array of token arrays. + if is_legacy: + prompt = body['context'] # Older engines.generate API + else: + prompt = body['prompt'] # XXX this can be different types + + if isinstance(prompt, list): + self.openai_error("API Batched generation not yet supported.") + return + + token_count = len(encode(prompt)[0]) + if token_count >= truncation_length: + new_len = int(len(prompt) * shared.settings['truncation_length'] / token_count) + prompt = prompt[-new_len:] + new_token_count = len(encode(prompt)[0]) + print(f"Warning: truncating prompt to {new_len} characters, was {token_count} tokens. Now: {new_token_count} tokens.") + token_count = new_token_count + + if truncation_length - token_count < req_params['max_new_tokens']: + print(f"Warning: Ignoring max_new_tokens ({req_params['max_new_tokens']}), too large for the remaining context. Remaining tokens: {truncation_length - token_count}") + req_params['max_new_tokens'] = truncation_length - token_count + print(f"Warning: Set max_new_tokens = {req_params['max_new_tokens']}") + + if is_streaming: + # begin streaming + chunk = { + "id": cmpl_id, + "object": stream_object_type, + "created": created_time, + "model": shared.model_name, + resp_list: [{ + "index": 0, + "finish_reason": None, + }], + } + + if stream_object_type == 'text_completion.chunk': + chunk[resp_list][0]["text"] = "" + else: + # So yeah... do both methods? delta and messages. + chunk[resp_list][0]["message"] = {'role': 'assistant', 'content': ''} + chunk[resp_list][0]["delta"] = {'role': 'assistant', 'content': ''} + + response = 'data: ' + json.dumps(chunk) + '\r\n\r\n' + self.wfile.write(response.encode('utf-8')) + + # generate reply ####################################### + if debug: + print({'prompt': prompt, 'req_params': req_params}) + generator = generate_reply(prompt, req_params, stopping_strings=stopping_strings, is_chat=False) + + answer = '' + seen_content = '' + longest_stop_len = max([len(x) for x in stopping_strings] + [0]) + + for a in generator: + answer = a + + stop_string_found = False + len_seen = len(seen_content) + search_start = max(len_seen - longest_stop_len, 0) + + for string in stopping_strings: + idx = answer.find(string, search_start) + if idx != -1: + answer = answer[:idx] # clip it. + stop_string_found = True + + if stop_string_found: + break + + # If something like "\nYo" is generated just before "\nYou:" + # is completed, buffer and generate more, don't send it + buffer_and_continue = False + + for string in stopping_strings: + for j in range(len(string) - 1, 0, -1): + if answer[-j:] == string[:j]: + buffer_and_continue = True + break + else: + continue + break + + if buffer_and_continue: + continue + + if is_streaming: + # Streaming + new_content = answer[len_seen:] + + if not new_content or chr(0xfffd) in new_content: # partial unicode character, don't send it yet. + continue + + seen_content = answer + chunk = { + "id": cmpl_id, + "object": stream_object_type, + "created": created_time, + "model": shared.model_name, + resp_list: [{ + "index": 0, + "finish_reason": None, + }], + } + + # strip extra leading space off new generated content + if len_seen == 0 and new_content[0] == ' ': + new_content = new_content[1:] + + if stream_object_type == 'text_completion.chunk': + chunk[resp_list][0]['text'] = new_content + else: + # So yeah... do both methods? delta and messages. + chunk[resp_list][0]['message'] = {'content': new_content} + chunk[resp_list][0]['delta'] = {'content': new_content} + response = 'data: ' + json.dumps(chunk) + '\r\n\r\n' + self.wfile.write(response.encode('utf-8')) + completion_token_count += len(encode(new_content)[0]) + + if is_streaming: + chunk = { + "id": cmpl_id, + "object": stream_object_type, + "created": created_time, + "model": model, # TODO: add Lora info? + resp_list: [{ + "index": 0, + "finish_reason": "stop", + }], + "usage": { + "prompt_tokens": token_count, + "completion_tokens": completion_token_count, + "total_tokens": token_count + completion_token_count + } + } + if stream_object_type == 'text_completion.chunk': + chunk[resp_list][0]['text'] = '' + else: + # So yeah... do both methods? delta and messages. + chunk[resp_list][0]['message'] = {'content': ''} + chunk[resp_list][0]['delta'] = {'content': ''} + + response = 'data: ' + json.dumps(chunk) + '\r\n\r\ndata: [DONE]\r\n\r\n' + self.wfile.write(response.encode('utf-8')) + # Finished if streaming. + if debug: + if answer and answer[0] == ' ': + answer = answer[1:] + print({'answer': answer}, chunk) + return + + # strip extra leading space off new generated content + if answer and answer[0] == ' ': + answer = answer[1:] + + if debug: + print({'response': answer}) + + completion_token_count = len(encode(answer)[0]) + stop_reason = "stop" + if token_count + completion_token_count >= truncation_length: + stop_reason = "length" + + resp = { + "id": cmpl_id, + "object": object_type, + "created": created_time, + "model": model, # TODO: add Lora info? + resp_list: [{ + "index": 0, + "finish_reason": stop_reason, + }], + "usage": { + "prompt_tokens": token_count, + "completion_tokens": completion_token_count, + "total_tokens": token_count + completion_token_count + } + } + + if is_chat_request: + resp[resp_list][0]["message"] = {"role": "assistant", "content": answer} + else: + resp[resp_list][0]["text"] = answer + + response = json.dumps(resp) + self.wfile.write(response.encode('utf-8')) + + elif '/edits' in self.path: + if not shared.model: + self.openai_error("No model loaded.") + return + + self.send_response(200) + self.send_access_control_headers() + self.send_header('Content-Type', 'application/json') + self.end_headers() + + created_time = int(time.time()) + + # Using Alpaca format, this may work with other models too. + instruction = body['instruction'] + input = body.get('input', '') + + # Request parameters + req_params = default_req_params.copy() + stopping_strings = [] + + # Alpaca is verbose so a good default prompt + default_template = ( + "Below is an instruction that describes a task, paired with an input that provides further context. " + "Write a response that appropriately completes the request.\n\n" + "### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n" + ) + + instruction_template = default_template + + # Use the special instruction/input/response template for anything trained like Alpaca + if shared.settings['instruction_template']: + if 'Alpaca' in shared.settings['instruction_template']: + stopping_strings.extend(['\n###']) + else: + try: + instruct = yaml.safe_load(open(f"characters/instruction-following/{shared.settings['instruction_template']}.yaml", 'r')) + + template = instruct['turn_template'] + template = template\ + .replace('<|user|>', instruct.get('user', ''))\ + .replace('<|bot|>', instruct.get('bot', ''))\ + .replace('<|user-message|>', '{instruction}\n{input}') + + instruction_template = instruct.get('context', '') + template[:template.find('<|bot-message|>')].rstrip(' ') + if instruct['user']: + stopping_strings.extend(['\n' + instruct['user'], instruct['user'] ]) + + except Exception as e: + instruction_template = default_template + print(f"Exception: When loading characters/instruction-following/{shared.settings['instruction_template']}.yaml: {repr(e)}") + print("Warning: Loaded default instruction-following template (Alpaca) for model.") + else: + stopping_strings.extend(['\n###']) + print("Warning: Loaded default instruction-following template (Alpaca) for model.") + + + edit_task = instruction_template.format(instruction=instruction, input=input) + + truncation_length = default(shared.settings, 'truncation_length', 2048) + token_count = len(encode(edit_task)[0]) + max_tokens = truncation_length - token_count + + req_params['max_new_tokens'] = max_tokens + req_params['truncation_length'] = truncation_length + req_params['temperature'] = clamp(default(body, 'temperature', default_req_params['temperature']), 0.001, 1.999) # fixup absolute 0.0 + req_params['top_p'] = clamp(default(body, 'top_p', default_req_params['top_p']), 0.001, 1.0) + req_params['seed'] = shared.settings.get('seed', default_req_params['seed']) + req_params['add_bos_token'] = shared.settings.get('add_bos_token', default_req_params['add_bos_token']) + + if debug: + print({'edit_template': edit_task, 'req_params': req_params, 'token_count': token_count}) + + generator = generate_reply(edit_task, req_params, stopping_strings=stopping_strings, is_chat=False) + + longest_stop_len = max([len(x) for x in stopping_strings] + [0]) + answer = '' + seen_content = '' + for a in generator: + answer = a + + stop_string_found = False + len_seen = len(seen_content) + search_start = max(len_seen - longest_stop_len, 0) + + for string in stopping_strings: + idx = answer.find(string, search_start) + if idx != -1: + answer = answer[:idx] # clip it. + stop_string_found = True + + if stop_string_found: + break + + + # some reply's have an extra leading space to fit the instruction template, just clip it off from the reply. + if edit_task[-1] != '\n' and answer and answer[0] == ' ': + answer = answer[1:] + + completion_token_count = len(encode(answer)[0]) + + resp = { + "object": "edit", + "created": created_time, + "choices": [{ + "text": answer, + "index": 0, + }], + "usage": { + "prompt_tokens": token_count, + "completion_tokens": completion_token_count, + "total_tokens": token_count + completion_token_count + } + } + + if debug: + print({'answer': answer, 'completion_token_count': completion_token_count}) + + response = json.dumps(resp) + self.wfile.write(response.encode('utf-8')) + + elif '/images/generations' in self.path and 'SD_WEBUI_URL' in os.environ: + # Stable Diffusion callout wrapper for txt2img + # Low effort implementation for compatibility. With only "prompt" being passed and assuming DALL-E + # the results will be limited and likely poor. SD has hundreds of models and dozens of settings. + # If you want high quality tailored results you should just use the Stable Diffusion API directly. + # it's too general an API to try and shape the result with specific tags like "masterpiece", etc, + # Will probably work best with the stock SD models. + # SD configuration is beyond the scope of this API. + # At this point I will not add the edits and variations endpoints (ie. img2img) because they + # require changing the form data handling to accept multipart form data, also to properly support + # url return types will require file management and a web serving files... Perhaps later! + + self.send_response(200) + self.send_access_control_headers() + self.send_header('Content-Type', 'application/json') + self.end_headers() + + width, height = [ int(x) for x in default(body, 'size', '1024x1024').split('x') ] # ignore the restrictions on size + response_format = default(body, 'response_format', 'url') # or b64_json + + payload = { + 'prompt': body['prompt'], # ignore prompt limit of 1000 characters + 'width': width, + 'height': height, + 'batch_size': default(body, 'n', 1) # ignore the batch limits of max 10 + } + + resp = { + 'created': int(time.time()), + 'data': [] + } + + # TODO: support SD_WEBUI_AUTH username:password pair. + sd_url = f"{os.environ['SD_WEBUI_URL']}/sdapi/v1/txt2img" + + response = requests.post(url=sd_url, json=payload) + r = response.json() + # r['parameters']... + for b64_json in r['images']: + if response_format == 'b64_json': + resp['data'].extend([{'b64_json': b64_json}]) + else: + resp['data'].extend([{'url': f'data:image/png;base64,{b64_json}'}]) # yeah it's lazy. requests.get() will not work with this + + response = json.dumps(resp) + self.wfile.write(response.encode('utf-8')) + + elif '/embeddings' in self.path and embedding_model is not None: + self.send_response(200) + self.send_access_control_headers() + self.send_header('Content-Type', 'application/json') + self.end_headers() + + input = body['input'] if 'input' in body else body['text'] + if type(input) is str: + input = [input] + + embeddings = embedding_model.encode(input).tolist() + + def enc_emb(emb): + # If base64 is specified, encode. Otherwise, do nothing. + if body.get("encoding_format", "") == "base64": + return float_list_to_base64(emb) + else: + return emb + data = [{"object": "embedding", "embedding": enc_emb(emb), "index": n} for n, emb in enumerate(embeddings)] + + response = json.dumps({ + "object": "list", + "data": data, + "model": st_model, # return the real model + "usage": { + "prompt_tokens": 0, + "total_tokens": 0, + } + }) + + if debug: + print(f"Embeddings return size: {len(embeddings[0])}, number: {len(embeddings)}") + self.wfile.write(response.encode('utf-8')) + + elif '/moderations' in self.path: + # for now do nothing, just don't error. + self.send_response(200) + self.send_access_control_headers() + self.send_header('Content-Type', 'application/json') + self.end_headers() + + response = json.dumps({ + "id": "modr-5MWoLO", + "model": "text-moderation-001", + "results": [{ + "categories": { + "hate": False, + "hate/threatening": False, + "self-harm": False, + "sexual": False, + "sexual/minors": False, + "violence": False, + "violence/graphic": False + }, + "category_scores": { + "hate": 0.0, + "hate/threatening": 0.0, + "self-harm": 0.0, + "sexual": 0.0, + "sexual/minors": 0.0, + "violence": 0.0, + "violence/graphic": 0.0 + }, + "flagged": False + }] + }) + self.wfile.write(response.encode('utf-8')) + + elif self.path == '/api/v1/token-count': + # NOT STANDARD. lifted from the api extension, but it's still very useful to calculate tokenized length client side. + self.send_response(200) + self.send_access_control_headers() + self.send_header('Content-Type', 'application/json') + self.end_headers() + + tokens = encode(body['prompt'])[0] + response = json.dumps({ + 'results': [{ + 'tokens': len(tokens) + }] + }) + self.wfile.write(response.encode('utf-8')) + + else: + print(self.path, self.headers) + self.send_error(404) + + +def run_server(): + global embedding_model + try: + embedding_model = SentenceTransformer(st_model) + print(f"\nLoaded embedding model: {st_model}, max sequence length: {embedding_model.max_seq_length}") + except: + print(f"\nFailed to load embedding model: {st_model}") + pass + + server_addr = ('0.0.0.0' if shared.args.listen else '127.0.0.1', params['port']) + server = ThreadingHTTPServer(server_addr, Handler) + if shared.args.share: + try: + from flask_cloudflared import _run_cloudflared + public_url = _run_cloudflared(params['port'], params['port'] + 1) + print(f'Starting OpenAI compatible api at\nOPENAI_API_BASE={public_url}/v1') + except ImportError: + print('You should install flask_cloudflared manually') + else: + print(f'Starting OpenAI compatible api:\nOPENAI_API_BASE=http://{server_addr[0]}:{server_addr[1]}/v1') + + server.serve_forever() + + +def setup(): + Thread(target=run_server, daemon=True).start() diff --git a/extensions/sd_api_pictures/README.MD b/extensions/sd_api_pictures/README.MD new file mode 100644 index 0000000000000000000000000000000000000000..67c75e145ccc8301505d96d858da04713ad4337d --- /dev/null +++ b/extensions/sd_api_pictures/README.MD @@ -0,0 +1,90 @@ +## Description: +TL;DR: Lets the bot answer you with a picture! + +Stable Diffusion API pictures for TextGen, v.1.2.0 +An extension to [oobabooga's textgen-webui](https://github.com/oobabooga/text-generation-webui) allowing you to receive pics generated by [Automatic1111's SD-WebUI API](https://github.com/AUTOMATIC1111/stable-diffusion-webui) + +
+Interface overview + +![Interface](https://raw.githubusercontent.com/Brawlence/SD_api_pics/main/illust/Interface.jpg) + +
+ +Load it in the `--chat` mode with `--extension sd_api_pictures` alongside `send_pictures` +(it's not really required, but completes the picture, *pun intended*). + + +## History + +Consider the version included with [oobabooga's repository](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/sd_api_pictures) to be STABLE, experimental developments and untested features are pushed in [Brawlence/SD_api_pics](https://github.com/Brawlence/SD_api_pics) + +Lastest change: +1.1.0 → 1.1.1 Fixed not having Auto1111's metadata in received images + +## Details + +The image generation is triggered: +- manually through the 'Force the picture response' button while in `Manual` or `Immersive/Interactive` modes OR +- automatically in `Immersive/Interactive` mode if the words `'send|main|message|me'` are followed by `'image|pic|picture|photo|snap|snapshot|selfie|meme'` in the user's prompt +- always on in `Picturebook/Adventure` mode (if not currently suppressed by 'Suppress the picture response') + +## Prerequisites + +One needs an available instance of Automatic1111's webui running with an `--api` flag. Ain't tested with a notebook / cloud hosted one but should be possible. +To run it locally in parallel on the same machine, specify custom `--listen-port` for either Auto1111's or ooba's webUIs. + +## Features overview +- Connection to API check (press enter in the address box) +- [VRAM management (model shuffling)](https://github.com/Brawlence/SD_api_pics/wiki/VRAM-management-feature) +- [Three different operation modes](https://github.com/Brawlence/SD_api_pics/wiki/Modes-of-operation) (manual, interactive, always-on) +- User-defined persistent settings via settings.json + +### Connection check + +Insert the Automatic1111's WebUI address and press Enter: +![API-check](https://raw.githubusercontent.com/Brawlence/SD_api_pics/main/illust/API-check.gif) +Green mark confirms the ability to communicate with Auto1111's API on this address. Red cross means something's not right (the ext won't work). + +### Persistents settings + +Create or modify the `settings.json` in the `text-generation-webui` root directory to override the defaults +present in script.py, ex: + +```json +{ + "sd_api_pictures-manage_VRAM": 1, + "sd_api_pictures-save_img": 1, + "sd_api_pictures-prompt_prefix": "(Masterpiece:1.1), detailed, intricate, colorful, (solo:1.1)", + "sd_api_pictures-sampler_name": "DPM++ 2M Karras" +} +``` + +will automatically set the `Manage VRAM` & `Keep original images` checkboxes and change the texts in `Prompt Prefix` and `Sampler name` on load. + +--- + +## Demonstrations: + +Those are examples of the version 1.0.0, but the core functionality is still the same + +
+Conversation 1 + +![EXA1](https://user-images.githubusercontent.com/42910943/224866564-939a3bcb-e7cf-4ac0-a33f-b3047b55054d.jpg) +![EXA2](https://user-images.githubusercontent.com/42910943/224866566-38394054-1320-45cf-9515-afa76d9d7745.jpg) +![EXA3](https://user-images.githubusercontent.com/42910943/224866568-10ea47b7-0bac-4269-9ec9-22c387a13b59.jpg) +![EXA4](https://user-images.githubusercontent.com/42910943/224866569-326121ad-1ea1-4874-9f6b-4bca7930a263.jpg) + + +
+ +
+Conversation 2 + +![Hist1](https://user-images.githubusercontent.com/42910943/224865517-c6966b58-bc4d-4353-aab9-6eb97778d7bf.jpg) +![Hist2](https://user-images.githubusercontent.com/42910943/224865527-b2fe7c2e-0da5-4c2e-b705-42e233b07084.jpg) +![Hist3](https://user-images.githubusercontent.com/42910943/224865535-a38d94e7-8975-4a46-a655-1ae1de41f85d.jpg) + +
+ diff --git a/extensions/sd_api_pictures/script.py b/extensions/sd_api_pictures/script.py new file mode 100644 index 0000000000000000000000000000000000000000..75cc205d5c6a3ad0b2c5075c523094ec667b2f69 --- /dev/null +++ b/extensions/sd_api_pictures/script.py @@ -0,0 +1,383 @@ +import base64 +import io +import re +import time +from datetime import date +from pathlib import Path + +import gradio as gr +import requests +import torch +from PIL import Image + +import modules.shared as shared +from modules.models import reload_model, unload_model +from modules.ui import create_refresh_button + +torch._C._jit_set_profiling_mode(False) + +# parameters which can be customized in settings.json of webui +params = { + 'address': 'http://127.0.0.1:7860', + 'mode': 0, # modes of operation: 0 (Manual only), 1 (Immersive/Interactive - looks for words to trigger), 2 (Picturebook Adventure - Always on) + 'manage_VRAM': False, + 'save_img': False, + 'SD_model': 'NeverEndingDream', # not used right now + 'prompt_prefix': '(Masterpiece:1.1), detailed, intricate, colorful', + 'negative_prompt': '(worst quality, low quality:1.3)', + 'width': 512, + 'height': 512, + 'denoising_strength': 0.61, + 'restore_faces': False, + 'enable_hr': False, + 'hr_upscaler': 'ESRGAN_4x', + 'hr_scale': '1.0', + 'seed': -1, + 'sampler_name': 'DPM++ 2M Karras', + 'steps': 32, + 'cfg_scale': 7, + 'textgen_prefix': 'Please provide a detailed and vivid description of [subject]', + 'sd_checkpoint': ' ', + 'checkpoint_list': [" "] +} + + +def give_VRAM_priority(actor): + global shared, params + + if actor == 'SD': + unload_model() + print("Requesting Auto1111 to re-load last checkpoint used...") + response = requests.post(url=f'{params["address"]}/sdapi/v1/reload-checkpoint', json='') + response.raise_for_status() + + elif actor == 'LLM': + print("Requesting Auto1111 to vacate VRAM...") + response = requests.post(url=f'{params["address"]}/sdapi/v1/unload-checkpoint', json='') + response.raise_for_status() + reload_model() + + elif actor == 'set': + print("VRAM mangement activated -- requesting Auto1111 to vacate VRAM...") + response = requests.post(url=f'{params["address"]}/sdapi/v1/unload-checkpoint', json='') + response.raise_for_status() + + elif actor == 'reset': + print("VRAM mangement deactivated -- requesting Auto1111 to reload checkpoint") + response = requests.post(url=f'{params["address"]}/sdapi/v1/reload-checkpoint', json='') + response.raise_for_status() + + else: + raise RuntimeError(f'Managing VRAM: "{actor}" is not a known state!') + + response.raise_for_status() + del response + + +if params['manage_VRAM']: + give_VRAM_priority('set') + +SD_models = ['NeverEndingDream'] # TODO: get with http://{address}}/sdapi/v1/sd-models and allow user to select + +picture_response = False # specifies if the next model response should appear as a picture + + +def remove_surrounded_chars(string): + # this expression matches to 'as few symbols as possible (0 upwards) between any asterisks' OR + # 'as few symbols as possible (0 upwards) between an asterisk and the end of the string' + return re.sub('\*[^\*]*?(\*|$)', '', string) + + +def triggers_are_in(string): + string = remove_surrounded_chars(string) + # regex searches for send|main|message|me (at the end of the word) followed by + # a whole word of image|pic|picture|photo|snap|snapshot|selfie|meme(s), + # (?aims) are regex parser flags + return bool(re.search('(?aims)(send|mail|message|me)\\b.+?\\b(image|pic(ture)?|photo|snap(shot)?|selfie|meme)s?\\b', string)) + + +def state_modifier(state): + if picture_response: + state['stream'] = False + + return state + + +def input_modifier(string): + """ + This function is applied to your text inputs before + they are fed into the model. + """ + + global params + + if not params['mode'] == 1: # if not in immersive/interactive mode, do nothing + return string + + if triggers_are_in(string): # if we're in it, check for trigger words + toggle_generation(True) + string = string.lower() + if "of" in string: + subject = string.split('of', 1)[1] # subdivide the string once by the first 'of' instance and get what's coming after it + string = params['textgen_prefix'].replace("[subject]", subject) + else: + string = params['textgen_prefix'].replace("[subject]", "your appearance, your surroundings and what you are doing right now") + + return string + +# Get and save the Stable Diffusion-generated picture +def get_SD_pictures(description): + + global params + + if params['manage_VRAM']: + give_VRAM_priority('SD') + + payload = { + "prompt": params['prompt_prefix'] + description, + "seed": params['seed'], + "sampler_name": params['sampler_name'], + "enable_hr": params['enable_hr'], + "hr_scale": params['hr_scale'], + "hr_upscaler": params['hr_upscaler'], + "denoising_strength": params['denoising_strength'], + "steps": params['steps'], + "cfg_scale": params['cfg_scale'], + "width": params['width'], + "height": params['height'], + "restore_faces": params['restore_faces'], + "override_settings_restore_afterwards": True, + "negative_prompt": params['negative_prompt'] + } + + print(f'Prompting the image generator via the API on {params["address"]}...') + response = requests.post(url=f'{params["address"]}/sdapi/v1/txt2img', json=payload) + response.raise_for_status() + r = response.json() + + visible_result = "" + for img_str in r['images']: + if params['save_img']: + img_data = base64.b64decode(img_str) + + variadic = f'{date.today().strftime("%Y_%m_%d")}/{shared.character}_{int(time.time())}' + output_file = Path(f'extensions/sd_api_pictures/outputs/{variadic}.png') + output_file.parent.mkdir(parents=True, exist_ok=True) + + with open(output_file.as_posix(), 'wb') as f: + f.write(img_data) + + visible_result = visible_result + f'{description}\n' + else: + image = Image.open(io.BytesIO(base64.b64decode(img_str.split(",", 1)[0]))) + # lower the resolution of received images for the chat, otherwise the log size gets out of control quickly with all the base64 values in visible history + image.thumbnail((300, 300)) + buffered = io.BytesIO() + image.save(buffered, format="JPEG") + buffered.seek(0) + image_bytes = buffered.getvalue() + img_str = "data:image/jpeg;base64," + base64.b64encode(image_bytes).decode() + visible_result = visible_result + f'{description}\n' + + if params['manage_VRAM']: + give_VRAM_priority('LLM') + + return visible_result + +# TODO: how do I make the UI history ignore the resulting pictures (I don't want HTML to appear in history) +# and replace it with 'text' for the purposes of logging? +def output_modifier(string): + """ + This function is applied to the model outputs. + """ + + global picture_response, params + + if not picture_response: + return string + + string = remove_surrounded_chars(string) + string = string.replace('"', '') + string = string.replace('“', '') + string = string.replace('\n', ' ') + string = string.strip() + + if string == '': + string = 'no viable description in reply, try regenerating' + return string + + text = "" + if (params['mode'] < 2): + toggle_generation(False) + text = f'*Sends a picture which portrays: “{string}”*' + else: + text = string + + string = get_SD_pictures(string) + "\n" + text + + return string + + +def bot_prefix_modifier(string): + """ + This function is only applied in chat mode. It modifies + the prefix text for the Bot and can be used to bias its + behavior. + """ + + return string + + +def toggle_generation(*args): + global picture_response, shared + + if not args: + picture_response = not picture_response + else: + picture_response = args[0] + + shared.processing_message = "*Is sending a picture...*" if picture_response else "*Is typing...*" + + +def filter_address(address): + address = address.strip() + # address = re.sub('http(s)?:\/\/|\/$','',address) # remove starting http:// OR https:// OR trailing slash + address = re.sub('\/$', '', address) # remove trailing /s + if not address.startswith('http'): + address = 'http://' + address + return address + + +def SD_api_address_update(address): + global params + + msg = "✔️ SD API is found on:" + address = filter_address(address) + params.update({"address": address}) + try: + response = requests.get(url=f'{params["address"]}/sdapi/v1/sd-models') + response.raise_for_status() + # r = response.json() + except: + msg = "❌ No SD API endpoint on:" + + return gr.Textbox.update(label=msg) + + +def custom_css(): + path_to_css = Path(__file__).parent.resolve() / 'style.css' + return open(path_to_css, 'r').read() + + +def get_checkpoints(): + global params + + try: + models = requests.get(url=f'{params["address"]}/sdapi/v1/sd-models') + options = requests.get(url=f'{params["address"]}/sdapi/v1/options') + options_json = options.json() + params['sd_checkpoint'] = options_json['sd_model_checkpoint'] + params['checkpoint_list'] = [result["title"] for result in models.json()] + except: + params['sd_checkpoint'] = "" + params['checkpoint_list'] = [] + + return gr.update(choices=params['checkpoint_list'], value=params['sd_checkpoint']) + + +def load_checkpoint(checkpoint): + payload = { + "sd_model_checkpoint": checkpoint + } + + try: + requests.post(url=f'{params["address"]}/sdapi/v1/options', json=payload) + except: + pass + + +def get_samplers(): + try: + response = requests.get(url=f'{params["address"]}/sdapi/v1/samplers') + response.raise_for_status() + samplers = [x["name"] for x in response.json()] + except: + samplers = [] + + return samplers + + +def ui(): + + # Gradio elements + # gr.Markdown('### Stable Diffusion API Pictures') # Currently the name of extension is shown as the title + with gr.Accordion("Parameters", open=True, elem_classes="SDAP"): + with gr.Row(): + address = gr.Textbox(placeholder=params['address'], value=params['address'], label='Auto1111\'s WebUI address') + modes_list = ["Manual", "Immersive/Interactive", "Picturebook/Adventure"] + mode = gr.Dropdown(modes_list, value=modes_list[params['mode']], label="Mode of operation", type="index") + with gr.Column(scale=1, min_width=300): + manage_VRAM = gr.Checkbox(value=params['manage_VRAM'], label='Manage VRAM') + save_img = gr.Checkbox(value=params['save_img'], label='Keep original images and use them in chat') + + force_pic = gr.Button("Force the picture response") + suppr_pic = gr.Button("Suppress the picture response") + with gr.Row(): + checkpoint = gr.Dropdown(params['checkpoint_list'], value=params['sd_checkpoint'], label="Checkpoint", type="value") + update_checkpoints = gr.Button("Get list of checkpoints") + + with gr.Accordion("Generation parameters", open=False): + prompt_prefix = gr.Textbox(placeholder=params['prompt_prefix'], value=params['prompt_prefix'], label='Prompt Prefix (best used to describe the look of the character)') + textgen_prefix = gr.Textbox(placeholder=params['textgen_prefix'], value=params['textgen_prefix'], label='textgen prefix (type [subject] where the subject should be placed)') + negative_prompt = gr.Textbox(placeholder=params['negative_prompt'], value=params['negative_prompt'], label='Negative Prompt') + with gr.Row(): + with gr.Column(): + width = gr.Slider(256, 768, value=params['width'], step=64, label='Width') + height = gr.Slider(256, 768, value=params['height'], step=64, label='Height') + with gr.Column(variant="compact", elem_id="sampler_col"): + with gr.Row(elem_id="sampler_row"): + sampler_name = gr.Dropdown(value=params['sampler_name'], label='Sampling method', elem_id="sampler_box") + create_refresh_button(sampler_name, lambda: None, lambda: {'choices': get_samplers()}, 'refresh-button') + steps = gr.Slider(1, 150, value=params['steps'], step=1, label="Sampling steps", elem_id="steps_box") + with gr.Row(): + seed = gr.Number(label="Seed", value=params['seed'], elem_id="seed_box") + cfg_scale = gr.Number(label="CFG Scale", value=params['cfg_scale'], elem_id="cfg_box") + with gr.Column() as hr_options: + restore_faces = gr.Checkbox(value=params['restore_faces'], label='Restore faces') + enable_hr = gr.Checkbox(value=params['enable_hr'], label='Hires. fix') + with gr.Row(visible=params['enable_hr'], elem_classes="hires_opts") as hr_options: + hr_scale = gr.Slider(1, 4, value=params['hr_scale'], step=0.1, label='Upscale by') + denoising_strength = gr.Slider(0, 1, value=params['denoising_strength'], step=0.01, label='Denoising strength') + hr_upscaler = gr.Textbox(placeholder=params['hr_upscaler'], value=params['hr_upscaler'], label='Upscaler') + + # Event functions to update the parameters in the backend + address.change(lambda x: params.update({"address": filter_address(x)}), address, None) + mode.select(lambda x: params.update({"mode": x}), mode, None) + mode.select(lambda x: toggle_generation(x > 1), inputs=mode, outputs=None) + manage_VRAM.change(lambda x: params.update({"manage_VRAM": x}), manage_VRAM, None) + manage_VRAM.change(lambda x: give_VRAM_priority('set' if x else 'reset'), inputs=manage_VRAM, outputs=None) + save_img.change(lambda x: params.update({"save_img": x}), save_img, None) + + address.submit(fn=SD_api_address_update, inputs=address, outputs=address) + prompt_prefix.change(lambda x: params.update({"prompt_prefix": x}), prompt_prefix, None) + textgen_prefix.change(lambda x: params.update({"textgen_prefix": x}), textgen_prefix, None) + negative_prompt.change(lambda x: params.update({"negative_prompt": x}), negative_prompt, None) + width.change(lambda x: params.update({"width": x}), width, None) + height.change(lambda x: params.update({"height": x}), height, None) + hr_scale.change(lambda x: params.update({"hr_scale": x}), hr_scale, None) + denoising_strength.change(lambda x: params.update({"denoising_strength": x}), denoising_strength, None) + restore_faces.change(lambda x: params.update({"restore_faces": x}), restore_faces, None) + hr_upscaler.change(lambda x: params.update({"hr_upscaler": x}), hr_upscaler, None) + enable_hr.change(lambda x: params.update({"enable_hr": x}), enable_hr, None) + enable_hr.change(lambda x: hr_options.update(visible=params["enable_hr"]), enable_hr, hr_options) + update_checkpoints.click(get_checkpoints, None, checkpoint) + checkpoint.change(lambda x: params.update({"sd_checkpoint": x}), checkpoint, None) + checkpoint.change(load_checkpoint, checkpoint, None) + + sampler_name.change(lambda x: params.update({"sampler_name": x}), sampler_name, None) + steps.change(lambda x: params.update({"steps": x}), steps, None) + seed.change(lambda x: params.update({"seed": x}), seed, None) + cfg_scale.change(lambda x: params.update({"cfg_scale": x}), cfg_scale, None) + + force_pic.click(lambda x: toggle_generation(True), inputs=force_pic, outputs=None) + suppr_pic.click(lambda x: toggle_generation(False), inputs=suppr_pic, outputs=None) diff --git a/extensions/sd_api_pictures/style.css b/extensions/sd_api_pictures/style.css new file mode 100644 index 0000000000000000000000000000000000000000..6f4994616a1d4ca52f3a8245f963ce0b7ebbb0d7 --- /dev/null +++ b/extensions/sd_api_pictures/style.css @@ -0,0 +1,52 @@ +/* Align the elements for SD_api_picture extension */ +.SDAP #sampler_box { + padding-top: var(--spacing-sm); + padding-bottom: var(--spacing-sm); + border: 0; +} + +.SDAP #steps_box { + border-radius: 0 0 var(--block-radius) var(--block-radius); +} + +.SDAP #sampler_col { + gap: 0; + padding: 0; + background-color: transparent; +} + +.SDAP #sampler_row { + border-bottom: 0; + box-shadow: var(--block-shadow); + border-width: var(--block-border-width); + border-color: var(--block-border-color); + border-radius: var(--block-radius) var(--block-radius) 0 0; + background: var(--block-background-fill); + gap: 0; +} + +.SDAP #sampler_row .refresh-button { + margin-bottom: var(--spacing-sm); + margin-right: var(--spacing-lg); +} + +.SDAP #seed_box, +.SDAP #cfg_box { + padding-top: var(--spacing-md); +} + +.SDAP #sampler_box span, +.SDAP #seed_box span, +.SDAP #cfg_box span, +.SDAP #steps_box span { + margin-bottom: var(--spacing-sm); +} + +.SDAP svg.dropdown-arrow { + flex-shrink: 0 !important; + margin: 0px !important; +} + +.SDAP .hires_opts input[type="number"] { + width: 6em !important; +} diff --git a/extensions/send_pictures/script.py b/extensions/send_pictures/script.py new file mode 100644 index 0000000000000000000000000000000000000000..dbbeb0fd7c13b169d60999b236a3237ac3a5f0c5 --- /dev/null +++ b/extensions/send_pictures/script.py @@ -0,0 +1,47 @@ +import base64 +from io import BytesIO + +import gradio as gr +import torch +from transformers import BlipForConditionalGeneration, BlipProcessor + +from modules import chat, shared +from modules.ui import gather_interface_values + +# If 'state' is True, will hijack the next chat generation with +# custom input text given by 'value' in the format [text, visible_text] +input_hijack = { + 'state': False, + 'value': ["", ""] +} + +processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") +model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base", torch_dtype=torch.float32).to("cpu") + + +def caption_image(raw_image): + inputs = processor(raw_image.convert('RGB'), return_tensors="pt").to("cpu", torch.float32) + out = model.generate(**inputs, max_new_tokens=100) + return processor.decode(out[0], skip_special_tokens=True) + + +def generate_chat_picture(picture, name1, name2): + text = f'*{name1} sends {name2} a picture that contains the following: “{caption_image(picture)}”*' + # lower the resolution of sent images for the chat, otherwise the log size gets out of control quickly with all the base64 values in visible history + picture.thumbnail((300, 300)) + buffer = BytesIO() + picture.save(buffer, format="JPEG") + img_str = base64.b64encode(buffer.getvalue()).decode('utf-8') + visible_text = f'{text}' + return text, visible_text + + +def ui(): + picture_select = gr.Image(label='Send a picture', type='pil') + + # Prepare the input hijack, update the interface values, call the generation function, and clear the picture + picture_select.upload( + lambda picture, name1, name2: input_hijack.update({"state": True, "value": generate_chat_picture(picture, name1, name2)}), [picture_select, shared.gradio['name1'], shared.gradio['name2']], None).then( + gather_interface_values, [shared.gradio[k] for k in shared.input_elements], shared.gradio['interface_state']).then( + chat.generate_chat_reply_wrapper, shared.input_params, shared.gradio['display'], show_progress=False).then( + lambda: None, None, picture_select, show_progress=False) diff --git a/extensions/silero_tts/outputs/outputs-will-be-saved-here.txt b/extensions/silero_tts/outputs/outputs-will-be-saved-here.txt new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/extensions/silero_tts/requirements.txt b/extensions/silero_tts/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..1017bf0d7accb9930872ededd8a4bc077d393958 --- /dev/null +++ b/extensions/silero_tts/requirements.txt @@ -0,0 +1,5 @@ +ipython +num2words +omegaconf +pydub +PyYAML diff --git a/extensions/silero_tts/script.py b/extensions/silero_tts/script.py new file mode 100644 index 0000000000000000000000000000000000000000..0d57a90f0748d22b096ac8a5bfa1f62a18fb431c --- /dev/null +++ b/extensions/silero_tts/script.py @@ -0,0 +1,181 @@ +import time +from pathlib import Path + +import gradio as gr +import torch +from modules import chat, shared + +from extensions.silero_tts import tts_preprocessor + +torch._C._jit_set_profiling_mode(False) + + +params = { + 'activate': True, + 'speaker': 'en_56', + 'language': 'en', + 'model_id': 'v3_en', + 'sample_rate': 48000, + 'device': 'cpu', + 'show_text': False, + 'autoplay': True, + 'voice_pitch': 'medium', + 'voice_speed': 'medium', + 'local_cache_path': '' # User can override the default cache path to something other via settings.json +} + +current_params = params.copy() +voices_by_gender = ['en_99', 'en_45', 'en_18', 'en_117', 'en_49', 'en_51', 'en_68', 'en_0', 'en_26', 'en_56', 'en_74', 'en_5', 'en_38', 'en_53', 'en_21', 'en_37', 'en_107', 'en_10', 'en_82', 'en_16', 'en_41', 'en_12', 'en_67', 'en_61', 'en_14', 'en_11', 'en_39', 'en_52', 'en_24', 'en_97', 'en_28', 'en_72', 'en_94', 'en_36', 'en_4', 'en_43', 'en_88', 'en_25', 'en_65', 'en_6', 'en_44', 'en_75', 'en_91', 'en_60', 'en_109', 'en_85', 'en_101', 'en_108', 'en_50', 'en_96', 'en_64', 'en_92', 'en_76', 'en_33', 'en_116', 'en_48', 'en_98', 'en_86', 'en_62', 'en_54', 'en_95', 'en_55', 'en_111', 'en_3', 'en_83', 'en_8', 'en_47', 'en_59', 'en_1', 'en_2', 'en_7', 'en_9', 'en_13', 'en_15', 'en_17', 'en_19', 'en_20', 'en_22', 'en_23', 'en_27', 'en_29', 'en_30', 'en_31', 'en_32', 'en_34', 'en_35', 'en_40', 'en_42', 'en_46', 'en_57', 'en_58', 'en_63', 'en_66', 'en_69', 'en_70', 'en_71', 'en_73', 'en_77', 'en_78', 'en_79', 'en_80', 'en_81', 'en_84', 'en_87', 'en_89', 'en_90', 'en_93', 'en_100', 'en_102', 'en_103', 'en_104', 'en_105', 'en_106', 'en_110', 'en_112', 'en_113', 'en_114', 'en_115'] +voice_pitches = ['x-low', 'low', 'medium', 'high', 'x-high'] +voice_speeds = ['x-slow', 'slow', 'medium', 'fast', 'x-fast'] + +# Used for making text xml compatible, needed for voice pitch and speed control +table = str.maketrans({ + "<": "<", + ">": ">", + "&": "&", + "'": "'", + '"': """, +}) + + +def xmlesc(txt): + return txt.translate(table) + + +def load_model(): + torch_cache_path = torch.hub.get_dir() if params['local_cache_path'] == '' else params['local_cache_path'] + model_path = torch_cache_path + "/snakers4_silero-models_master/src/silero/model/" + params['model_id'] + ".pt" + if Path(model_path).is_file(): + print(f'\nUsing Silero TTS cached checkpoint found at {torch_cache_path}') + model, example_text = torch.hub.load(repo_or_dir=torch_cache_path + '/snakers4_silero-models_master/', model='silero_tts', language=params['language'], speaker=params['model_id'], source='local', path=model_path, force_reload=True) + else: + print(f'\nSilero TTS cache not found at {torch_cache_path}. Attempting to download...') + model, example_text = torch.hub.load(repo_or_dir='snakers4/silero-models', model='silero_tts', language=params['language'], speaker=params['model_id']) + model.to(params['device']) + return model + + +def remove_tts_from_history(): + for i, entry in enumerate(shared.history['internal']): + shared.history['visible'][i] = [shared.history['visible'][i][0], entry[1]] + + +def toggle_text_in_history(): + for i, entry in enumerate(shared.history['visible']): + visible_reply = entry[1] + if visible_reply.startswith('')[0]}\n\n{reply}"] + else: + shared.history['visible'][i] = [shared.history['visible'][i][0], f"{visible_reply.split('')[0]}"] + + +def state_modifier(state): + if not params['activate']: + return state + + state['stream'] = False + return state + + +def input_modifier(string): + if not params['activate']: + return string + + shared.processing_message = "*Is recording a voice message...*" + return string + + +def history_modifier(history): + # Remove autoplay from the last reply + if len(history['internal']) > 0: + history['visible'][-1] = [ + history['visible'][-1][0], + history['visible'][-1][1].replace('controls autoplay>', 'controls>') + ] + + return history + + +def output_modifier(string): + global model, current_params, streaming_state + for i in params: + if params[i] != current_params[i]: + model = load_model() + current_params = params.copy() + break + + if not params['activate']: + return string + + original_string = string + string = tts_preprocessor.preprocess(string) + + if string == '': + string = '*Empty reply, try regenerating*' + else: + output_file = Path(f'extensions/silero_tts/outputs/{shared.character}_{int(time.time())}.wav') + prosody = ''.format(params['voice_speed'], params['voice_pitch']) + silero_input = f'{prosody}{xmlesc(string)}' + model.save_wav(ssml_text=silero_input, speaker=params['speaker'], sample_rate=int(params['sample_rate']), audio_path=str(output_file)) + + autoplay = 'autoplay' if params['autoplay'] else '' + string = f'' + if params['show_text']: + string += f'\n\n{original_string}' + + shared.processing_message = "*Is typing...*" + return string + + +def setup(): + global model + model = load_model() + + +def ui(): + # Gradio elements + with gr.Accordion("Silero TTS"): + with gr.Row(): + activate = gr.Checkbox(value=params['activate'], label='Activate TTS') + autoplay = gr.Checkbox(value=params['autoplay'], label='Play TTS automatically') + + show_text = gr.Checkbox(value=params['show_text'], label='Show message text under audio player') + voice = gr.Dropdown(value=params['speaker'], choices=voices_by_gender, label='TTS voice') + with gr.Row(): + v_pitch = gr.Dropdown(value=params['voice_pitch'], choices=voice_pitches, label='Voice pitch') + v_speed = gr.Dropdown(value=params['voice_speed'], choices=voice_speeds, label='Voice speed') + + with gr.Row(): + convert = gr.Button('Permanently replace audios with the message texts') + convert_cancel = gr.Button('Cancel', visible=False) + convert_confirm = gr.Button('Confirm (cannot be undone)', variant="stop", visible=False) + + gr.Markdown('[Click here for Silero audio samples](https://oobabooga.github.io/silero-samples/index.html)') + + # Convert history with confirmation + convert_arr = [convert_confirm, convert, convert_cancel] + convert.click(lambda: [gr.update(visible=True), gr.update(visible=False), gr.update(visible=True)], None, convert_arr) + convert_confirm.click( + lambda: [gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)], None, convert_arr).then( + remove_tts_from_history, None, None).then( + chat.save_history, shared.gradio['mode'], None, show_progress=False).then( + chat.redraw_html, shared.reload_inputs, shared.gradio['display']) + + convert_cancel.click(lambda: [gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)], None, convert_arr) + + # Toggle message text in history + show_text.change( + lambda x: params.update({"show_text": x}), show_text, None).then( + toggle_text_in_history, None, None).then( + chat.save_history, shared.gradio['mode'], None, show_progress=False).then( + chat.redraw_html, shared.reload_inputs, shared.gradio['display']) + + # Event functions to update the parameters in the backend + activate.change(lambda x: params.update({"activate": x}), activate, None) + autoplay.change(lambda x: params.update({"autoplay": x}), autoplay, None) + voice.change(lambda x: params.update({"speaker": x}), voice, None) + v_pitch.change(lambda x: params.update({"voice_pitch": x}), v_pitch, None) + v_speed.change(lambda x: params.update({"voice_speed": x}), v_speed, None) diff --git a/extensions/silero_tts/test_tts.py b/extensions/silero_tts/test_tts.py new file mode 100644 index 0000000000000000000000000000000000000000..ebc2c102a9ef29f21141429232f957421989cdd4 --- /dev/null +++ b/extensions/silero_tts/test_tts.py @@ -0,0 +1,81 @@ +import time +from pathlib import Path + +import torch +import tts_preprocessor + +torch._C._jit_set_profiling_mode(False) + + +params = { + 'activate': True, + 'speaker': 'en_49', + 'language': 'en', + 'model_id': 'v3_en', + 'sample_rate': 48000, + 'device': 'cpu', + 'show_text': True, + 'autoplay': True, + 'voice_pitch': 'medium', + 'voice_speed': 'medium', +} + +current_params = params.copy() +voices_by_gender = ['en_99', 'en_45', 'en_18', 'en_117', 'en_49', 'en_51', 'en_68', 'en_0', 'en_26', 'en_56', 'en_74', 'en_5', 'en_38', 'en_53', 'en_21', 'en_37', 'en_107', 'en_10', 'en_82', 'en_16', 'en_41', 'en_12', 'en_67', 'en_61', 'en_14', 'en_11', 'en_39', 'en_52', 'en_24', 'en_97', 'en_28', 'en_72', 'en_94', 'en_36', 'en_4', 'en_43', 'en_88', 'en_25', 'en_65', 'en_6', 'en_44', 'en_75', 'en_91', 'en_60', 'en_109', 'en_85', 'en_101', 'en_108', 'en_50', 'en_96', 'en_64', 'en_92', 'en_76', 'en_33', 'en_116', 'en_48', 'en_98', 'en_86', 'en_62', 'en_54', 'en_95', 'en_55', 'en_111', 'en_3', 'en_83', 'en_8', 'en_47', 'en_59', 'en_1', 'en_2', 'en_7', 'en_9', 'en_13', 'en_15', 'en_17', 'en_19', 'en_20', 'en_22', 'en_23', 'en_27', 'en_29', 'en_30', 'en_31', 'en_32', 'en_34', 'en_35', 'en_40', 'en_42', 'en_46', 'en_57', 'en_58', 'en_63', 'en_66', 'en_69', 'en_70', 'en_71', 'en_73', 'en_77', 'en_78', 'en_79', 'en_80', 'en_81', 'en_84', 'en_87', 'en_89', 'en_90', 'en_93', 'en_100', 'en_102', 'en_103', 'en_104', 'en_105', 'en_106', 'en_110', 'en_112', 'en_113', 'en_114', 'en_115'] +voice_pitches = ['x-low', 'low', 'medium', 'high', 'x-high'] +voice_speeds = ['x-slow', 'slow', 'medium', 'fast', 'x-fast'] + +# Used for making text xml compatible, needed for voice pitch and speed control +table = str.maketrans({ + "<": "<", + ">": ">", + "&": "&", + "'": "'", + '"': """, +}) + + +def xmlesc(txt): + return txt.translate(table) + + +def load_model(): + model, example_text = torch.hub.load(repo_or_dir='snakers4/silero-models', model='silero_tts', language=params['language'], speaker=params['model_id']) + model.to(params['device']) + return model + + +model = load_model() + + +def output_modifier(string): + """ + This function is applied to the model outputs. + """ + + global model, current_params + + original_string = string + string = tts_preprocessor.preprocess(string) + processed_string = string + + if string == '': + string = '*Empty reply, try regenerating*' + else: + output_file = Path(f'extensions/silero_tts/outputs/test_{int(time.time())}.wav') + prosody = ''.format(params['voice_speed'], params['voice_pitch']) + silero_input = f'{prosody}{xmlesc(string)}' + model.save_wav(ssml_text=silero_input, speaker=params['speaker'], sample_rate=int(params['sample_rate']), audio_path=str(output_file)) + + autoplay = 'autoplay' if params['autoplay'] else '' + string = f'' + + if params['show_text']: + string += f'\n\n{original_string}\n\nProcessed:\n{processed_string}' + + print(string) + + +if __name__ == '__main__': + import sys + output_modifier(sys.argv[1]) diff --git a/extensions/silero_tts/tts_preprocessor.py b/extensions/silero_tts/tts_preprocessor.py new file mode 100644 index 0000000000000000000000000000000000000000..daefdcbda6c9b20a87c6f3d84d2a759c2c51289c --- /dev/null +++ b/extensions/silero_tts/tts_preprocessor.py @@ -0,0 +1,200 @@ +import re + +from num2words import num2words + +punctuation = r'[\s,.?!/)\'\]>]' +alphabet_map = { + "A": " Ei ", + "B": " Bee ", + "C": " See ", + "D": " Dee ", + "E": " Eee ", + "F": " Eff ", + "G": " Jee ", + "H": " Eich ", + "I": " Eye ", + "J": " Jay ", + "K": " Kay ", + "L": " El ", + "M": " Emm ", + "N": " Enn ", + "O": " Ohh ", + "P": " Pee ", + "Q": " Queue ", + "R": " Are ", + "S": " Ess ", + "T": " Tee ", + "U": " You ", + "V": " Vee ", + "W": " Double You ", + "X": " Ex ", + "Y": " Why ", + "Z": " Zed " # Zed is weird, as I (da3dsoul) am American, but most of the voice models sound British, so it matches +} + + +def preprocess(string): + # the order for some of these matter + # For example, you need to remove the commas in numbers before expanding them + string = remove_surrounded_chars(string) + string = string.replace('"', '') + string = string.replace('\u201D', '').replace('\u201C', '') # right and left quote + string = string.replace('\u201F', '') # italic looking quote + string = string.replace('\n', ' ') + string = convert_num_locale(string) + string = replace_negative(string) + string = replace_roman(string) + string = hyphen_range_to(string) + string = num_to_words(string) + + # TODO Try to use a ML predictor to expand abbreviations. It's hard, dependent on context, and whether to actually + # try to say the abbreviation or spell it out as I've done below is not agreed upon + + # For now, expand abbreviations to pronunciations + # replace_abbreviations adds a lot of unnecessary whitespace to ensure separation + string = replace_abbreviations(string) + string = replace_lowercase_abbreviations(string) + + # cleanup whitespaces + # remove whitespace before punctuation + string = re.sub(rf'\s+({punctuation})', r'\1', string) + string = string.strip() + # compact whitespace + string = ' '.join(string.split()) + + return string + + +def remove_surrounded_chars(string): + # first this expression will check if there is a string nested exclusively between a alt= + # and a style= string. This would correspond to only a the alt text of an embedded image + # If it matches it will only keep that part as the string, and rend it for further processing + # Afterwards this expression matches to 'as few symbols as possible (0 upwards) between any + # asterisks' OR' as few symbols as possible (0 upwards) between an asterisk and the end of the string' + if re.search(r'(?<=alt=)(.*)(?=style=)', string, re.DOTALL): + m = re.search(r'(?<=alt=)(.*)(?=style=)', string, re.DOTALL) + string = m.group(0) + return re.sub(r'\*[^*]*?(\*|$)', '', string) + + +def convert_num_locale(text): + # This detects locale and converts it to American without comma separators + pattern = re.compile(r'(?:\s|^)\d{1,3}(?:\.\d{3})+(,\d+)(?:\s|$)') + result = text + while True: + match = pattern.search(result) + if match is None: + break + + start = match.start() + end = match.end() + result = result[0:start] + result[start:end].replace('.', '').replace(',', '.') + result[end:len(result)] + + # removes comma separators from existing American numbers + pattern = re.compile(r'(\d),(\d)') + result = pattern.sub(r'\1\2', result) + + return result + + +def replace_negative(string): + # handles situations like -5. -5 would become negative 5, which would then be expanded to negative five + return re.sub(rf'(\s)(-)(\d+)({punctuation})', r'\1negative \3\4', string) + + +def replace_roman(string): + # find a string of roman numerals. + # Only 2 or more, to avoid capturing I and single character abbreviations, like names + pattern = re.compile(rf'\s[IVXLCDM]{{2,}}{punctuation}') + result = string + while True: + match = pattern.search(result) + if match is None: + break + + start = match.start() + end = match.end() + result = result[0:start + 1] + str(roman_to_int(result[start + 1:end - 1])) + result[end - 1:len(result)] + + return result + + +def roman_to_int(s): + rom_val = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000} + int_val = 0 + for i in range(len(s)): + if i > 0 and rom_val[s[i]] > rom_val[s[i - 1]]: + int_val += rom_val[s[i]] - 2 * rom_val[s[i - 1]] + else: + int_val += rom_val[s[i]] + return int_val + + +def hyphen_range_to(text): + pattern = re.compile(r'(\d+)[-–](\d+)') + result = pattern.sub(lambda x: x.group(1) + ' to ' + x.group(2), text) + return result + + +def num_to_words(text): + # 1000 or 10.23 + pattern = re.compile(r'\d+\.\d+|\d+') + result = pattern.sub(lambda x: num2words(float(x.group())), text) + return result + + +def replace_abbreviations(string): + # abbreviations 1 to 4 characters long. It will get things like A and I, but those are pronounced with their letter + pattern = re.compile(rf'(^|[\s(.\'\[<])([A-Z]{{1,4}})({punctuation}|$)') + result = string + while True: + match = pattern.search(result) + if match is None: + break + + start = match.start() + end = match.end() + result = result[0:start] + replace_abbreviation(result[start:end]) + result[end:len(result)] + + return result + + +def replace_lowercase_abbreviations(string): + # abbreviations 1 to 4 characters long, separated by dots i.e. e.g. + pattern = re.compile(rf'(^|[\s(.\'\[<])(([a-z]\.){{1,4}})({punctuation}|$)') + result = string + while True: + match = pattern.search(result) + if match is None: + break + + start = match.start() + end = match.end() + result = result[0:start] + replace_abbreviation(result[start:end].upper()) + result[end:len(result)] + + return result + + +def replace_abbreviation(string): + result = "" + for char in string: + result += match_mapping(char) + + return result + + +def match_mapping(char): + for mapping in alphabet_map.keys(): + if char == mapping: + return alphabet_map[char] + + return char + + +def __main__(args): + print(preprocess(args[1])) + + +if __name__ == "__main__": + import sys + __main__(sys.argv) diff --git a/extensions/superbooga/chromadb.py b/extensions/superbooga/chromadb.py new file mode 100644 index 0000000000000000000000000000000000000000..1fb7a71848a8c99ab29b90c49902b545a1595f03 --- /dev/null +++ b/extensions/superbooga/chromadb.py @@ -0,0 +1,125 @@ +import chromadb +import posthog +import torch +from chromadb.config import Settings +from sentence_transformers import SentenceTransformer + +from modules.logging_colors import logger + +logger.info('Intercepting all calls to posthog :)') +posthog.capture = lambda *args, **kwargs: None + + +class Collecter(): + def __init__(self): + pass + + def add(self, texts: list[str]): + pass + + def get(self, search_strings: list[str], n_results: int) -> list[str]: + pass + + def clear(self): + pass + + +class Embedder(): + def __init__(self): + pass + + def embed(self, text: str) -> list[torch.Tensor]: + pass + + +class ChromaCollector(Collecter): + def __init__(self, embedder: Embedder): + super().__init__() + self.chroma_client = chromadb.Client(Settings(anonymized_telemetry=False)) + self.embedder = embedder + self.collection = self.chroma_client.create_collection(name="context", embedding_function=embedder.embed) + self.ids = [] + + def add(self, texts: list[str]): + if len(texts) == 0: + return + + self.ids = [f"id{i}" for i in range(len(texts))] + self.collection.add(documents=texts, ids=self.ids) + + def get_documents_ids_distances(self, search_strings: list[str], n_results: int): + n_results = min(len(self.ids), n_results) + if n_results == 0: + return [], [], [] + + result = self.collection.query(query_texts=search_strings, n_results=n_results, include=['documents', 'distances']) + documents = result['documents'][0] + ids = list(map(lambda x: int(x[2:]), result['ids'][0])) + distances = result['distances'][0] + return documents, ids, distances + + # Get chunks by similarity + def get(self, search_strings: list[str], n_results: int) -> list[str]: + documents, _, _ = self.get_documents_ids_distances(search_strings, n_results) + return documents + + # Get ids by similarity + def get_ids(self, search_strings: list[str], n_results: int) -> list[str]: + _, ids, _ = self.get_documents_ids_distances(search_strings, n_results) + return ids + + # Get chunks by similarity and then sort by insertion order + def get_sorted(self, search_strings: list[str], n_results: int) -> list[str]: + documents, ids, _ = self.get_documents_ids_distances(search_strings, n_results) + return [x for _, x in sorted(zip(ids, documents))] + + # Multiply distance by factor within [0, time_weight] where more recent is lower + def apply_time_weight_to_distances(self, ids: list[int], distances: list[float], time_weight: float = 1.0) -> list[float]: + if len(self.ids) <= 1: + return distances.copy() + + return [distance * (1 - _id / (len(self.ids) - 1) * time_weight) for _id, distance in zip(ids, distances)] + + # Get ids by similarity and then sort by insertion order + def get_ids_sorted(self, search_strings: list[str], n_results: int, n_initial: int = None, time_weight: float = 1.0) -> list[str]: + do_time_weight = time_weight > 0 + if not (do_time_weight and n_initial is not None): + n_initial = n_results + elif n_initial == -1: + n_initial = len(self.ids) + + if n_initial < n_results: + raise ValueError(f"n_initial {n_initial} should be >= n_results {n_results}") + + _, ids, distances = self.get_documents_ids_distances(search_strings, n_initial) + if do_time_weight: + distances_w = self.apply_time_weight_to_distances(ids, distances, time_weight=time_weight) + results = zip(ids, distances, distances_w) + results = sorted(results, key=lambda x: x[2])[:n_results] + results = sorted(results, key=lambda x: x[0]) + ids = [x[0] for x in results] + + return sorted(ids) + + def clear(self): + self.collection.delete(ids=self.ids) + self.ids = [] + + +class SentenceTransformerEmbedder(Embedder): + def __init__(self) -> None: + self.model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2") + self.embed = self.model.encode + + +def make_collector(): + global embedder + return ChromaCollector(embedder) + + +def add_chunks_to_collector(chunks, collector): + collector.clear() + collector.add(chunks) + + +embedder = SentenceTransformerEmbedder() diff --git a/extensions/superbooga/download_urls.py b/extensions/superbooga/download_urls.py new file mode 100644 index 0000000000000000000000000000000000000000..efe300d28393e4550f241808073f04c98fb33ace --- /dev/null +++ b/extensions/superbooga/download_urls.py @@ -0,0 +1,32 @@ +import concurrent.futures + +import requests + + +def download_single(url): + response = requests.get(url, timeout=5) + if response.status_code == 200: + return response.content + else: + raise Exception("Failed to download URL") + + +def download_urls(urls, threads=1): + with concurrent.futures.ThreadPoolExecutor(max_workers=threads) as executor: + futures = [] + for url in urls: + future = executor.submit(download_single, url) + futures.append(future) + + results = [] + i = 0 + for future in concurrent.futures.as_completed(futures): + try: + result = future.result() + results.append(result) + i += 1 + yield f"{i}/{len(urls)}", results + except Exception: + pass + + yield "Done", results diff --git a/extensions/superbooga/requirements.txt b/extensions/superbooga/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..dd2cbde6fbe65f966a5a418132dd65c2c9350027 --- /dev/null +++ b/extensions/superbooga/requirements.txt @@ -0,0 +1,4 @@ +beautifulsoup4==4.12.2 +chromadb==0.3.18 +posthog==2.4.2 +sentence_transformers==2.2.2 diff --git a/extensions/superbooga/script.py b/extensions/superbooga/script.py new file mode 100644 index 0000000000000000000000000000000000000000..66c79b3d91fcdde7bc72ce56522972d31d190c43 --- /dev/null +++ b/extensions/superbooga/script.py @@ -0,0 +1,257 @@ +import re +import textwrap + +import gradio as gr +from bs4 import BeautifulSoup + +from modules import chat, shared +from modules.logging_colors import logger + +from .chromadb import add_chunks_to_collector, make_collector +from .download_urls import download_urls + +params = { + 'chunk_count': 5, + 'chunk_count_initial': 10, + 'time_weight': 0, + 'chunk_length': 700, + 'chunk_separator': '', + 'strong_cleanup': False, + 'threads': 4, +} + +collector = make_collector() +chat_collector = make_collector() + + +def feed_data_into_collector(corpus, chunk_len, chunk_sep): + global collector + + # Defining variables + chunk_len = int(chunk_len) + chunk_sep = chunk_sep.replace(r'\n', '\n') + cumulative = '' + + # Breaking the data into chunks and adding those to the db + cumulative += "Breaking the input dataset...\n\n" + yield cumulative + if chunk_sep: + data_chunks = corpus.split(chunk_sep) + data_chunks = [[data_chunk[i:i + chunk_len] for i in range(0, len(data_chunk), chunk_len)] for data_chunk in data_chunks] + data_chunks = [x for y in data_chunks for x in y] + else: + data_chunks = [corpus[i:i + chunk_len] for i in range(0, len(corpus), chunk_len)] + + cumulative += f"{len(data_chunks)} chunks have been found.\n\nAdding the chunks to the database...\n\n" + yield cumulative + add_chunks_to_collector(data_chunks, collector) + cumulative += "Done." + yield cumulative + + +def feed_file_into_collector(file, chunk_len, chunk_sep): + yield 'Reading the input dataset...\n\n' + text = file.decode('utf-8') + for i in feed_data_into_collector(text, chunk_len, chunk_sep): + yield i + + +def feed_url_into_collector(urls, chunk_len, chunk_sep, strong_cleanup, threads): + all_text = '' + cumulative = '' + + urls = urls.strip().split('\n') + cumulative += f'Loading {len(urls)} URLs with {threads} threads...\n\n' + yield cumulative + for update, contents in download_urls(urls, threads=threads): + yield cumulative + update + + cumulative += 'Processing the HTML sources...' + yield cumulative + for content in contents: + soup = BeautifulSoup(content, features="html.parser") + for script in soup(["script", "style"]): + script.extract() + + strings = soup.stripped_strings + if strong_cleanup: + strings = [s for s in strings if re.search("[A-Za-z] ", s)] + + text = '\n'.join([s.strip() for s in strings]) + all_text += text + + for i in feed_data_into_collector(all_text, chunk_len, chunk_sep): + yield i + + +def apply_settings(chunk_count, chunk_count_initial, time_weight): + global params + params['chunk_count'] = int(chunk_count) + params['chunk_count_initial'] = int(chunk_count_initial) + params['time_weight'] = time_weight + settings_to_display = {k: params[k] for k in params if k in ['chunk_count', 'chunk_count_initial', 'time_weight']} + yield f"The following settings are now active: {str(settings_to_display)}" + + +def custom_generate_chat_prompt(user_input, state, **kwargs): + global chat_collector + + if state['mode'] == 'instruct': + results = collector.get_sorted(user_input, n_results=params['chunk_count']) + additional_context = '\nYour reply should be based on the context below:\n\n' + '\n'.join(results) + user_input += additional_context + else: + + def make_single_exchange(id_): + output = '' + output += f"{state['name1']}: {shared.history['internal'][id_][0]}\n" + output += f"{state['name2']}: {shared.history['internal'][id_][1]}\n" + return output + + if len(shared.history['internal']) > params['chunk_count'] and user_input != '': + chunks = [] + hist_size = len(shared.history['internal']) + for i in range(hist_size-1): + chunks.append(make_single_exchange(i)) + + add_chunks_to_collector(chunks, chat_collector) + query = '\n'.join(shared.history['internal'][-1] + [user_input]) + try: + best_ids = chat_collector.get_ids_sorted(query, n_results=params['chunk_count'], n_initial=params['chunk_count_initial'], time_weight=params['time_weight']) + additional_context = '\n' + for id_ in best_ids: + if shared.history['internal'][id_][0] != '<|BEGIN-VISIBLE-CHAT|>': + additional_context += make_single_exchange(id_) + + logger.warning(f'Adding the following new context:\n{additional_context}') + state['context'] = state['context'].strip() + '\n' + additional_context + kwargs['history'] = { + 'internal': [shared.history['internal'][i] for i in range(hist_size) if i not in best_ids], + 'visible': '' + } + except RuntimeError: + logger.error("Couldn't query the database, moving on...") + + return chat.generate_chat_prompt(user_input, state, **kwargs) + + +def remove_special_tokens(string): + pattern = r'(<\|begin-user-input\|>|<\|end-user-input\|>|<\|injection-point\|>)' + return re.sub(pattern, '', string) + + +def input_modifier(string): + if shared.is_chat(): + return string + + # Find the user input + pattern = re.compile(r"<\|begin-user-input\|>(.*?)<\|end-user-input\|>", re.DOTALL) + match = re.search(pattern, string) + if match: + user_input = match.group(1).strip() + + # Get the most similar chunks + results = collector.get_sorted(user_input, n_results=params['chunk_count']) + + # Make the injection + string = string.replace('<|injection-point|>', '\n'.join(results)) + + return remove_special_tokens(string) + + +def ui(): + with gr.Accordion("Click for more information...", open=False): + gr.Markdown(textwrap.dedent(""" + + ## About + + This extension takes a dataset as input, breaks it into chunks, and adds the result to a local/offline Chroma database. + + The database is then queried during inference time to get the excerpts that are closest to your input. The idea is to create an arbitrarily large pseudo context. + + The core methodology was developed and contributed by kaiokendev, who is working on improvements to the method in this repository: https://github.com/kaiokendev/superbig + + ## Data input + + Start by entering some data in the interface below and then clicking on "Load data". + + Each time you load some new data, the old chunks are discarded. + + ## Chat mode + + #### Instruct + + On each turn, the chunks will be compared to your current input and the most relevant matches will be appended to the input in the following format: + + ``` + Consider the excerpts below as additional context: + ... + ``` + + The injection doesn't make it into the chat history. It is only used in the current generation. + + #### Regular chat + + The chunks from the external data sources are ignored, and the chroma database is built based on the chat history instead. The most relevant past exchanges relative to the present input are added to the context string. This way, the extension acts as a long term memory. + + ## Notebook/default modes + + Your question must be manually specified between `<|begin-user-input|>` and `<|end-user-input|>` tags, and the injection point must be specified with `<|injection-point|>`. + + The special tokens mentioned above (`<|begin-user-input|>`, `<|end-user-input|>`, and `<|injection-point|>`) are removed in the background before the text generation begins. + + Here is an example in Vicuna 1.1 format: + + ``` + A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. + + USER: + + <|begin-user-input|> + What datasets are mentioned in the text below? + <|end-user-input|> + + <|injection-point|> + + ASSISTANT: + ``` + + ⚠️ For best results, make sure to remove the spaces and new line characters after `ASSISTANT:`. + + *This extension is currently experimental and under development.* + + """)) + + with gr.Row(): + with gr.Column(min_width=600): + with gr.Tab("Text input"): + data_input = gr.Textbox(lines=20, label='Input data') + update_data = gr.Button('Load data') + + with gr.Tab("URL input"): + url_input = gr.Textbox(lines=10, label='Input URLs', info='Enter one or more URLs separated by newline characters.') + strong_cleanup = gr.Checkbox(value=params['strong_cleanup'], label='Strong cleanup', info='Only keeps html elements that look like long-form text.') + threads = gr.Number(value=params['threads'], label='Threads', info='The number of threads to use while downloading the URLs.', precision=0) + update_url = gr.Button('Load data') + + with gr.Tab("File input"): + file_input = gr.File(label='Input file', type='binary') + update_file = gr.Button('Load data') + + with gr.Tab("Generation settings"): + chunk_count = gr.Number(value=params['chunk_count'], label='Chunk count', info='The number of closest-matching chunks to include in the prompt.') + gr.Markdown('Time weighting (optional, used in to make recently added chunks more likely to appear)') + time_weight = gr.Slider(0, 1, value=params['time_weight'], label='Time weight', info='Defines the strength of the time weighting. 0 = no time weighting.') + chunk_count_initial = gr.Number(value=params['chunk_count_initial'], label='Initial chunk count', info='The number of closest-matching chunks retrieved for time weight reordering in chat mode. This should be >= chunk count. -1 = All chunks are retrieved. Only used if time_weight > 0.') + + update_settings = gr.Button('Apply changes') + + chunk_len = gr.Number(value=params['chunk_length'], label='Chunk length', info='In characters, not tokens. This value is used when you click on "Load data".') + chunk_sep = gr.Textbox(value=params['chunk_separator'], label='Chunk separator', info='Used to manually split chunks. Manually split chunks longer than chunk length are split again. This value is used when you click on "Load data".') + with gr.Column(): + last_updated = gr.Markdown() + + update_data.click(feed_data_into_collector, [data_input, chunk_len, chunk_sep], last_updated, show_progress=False) + update_url.click(feed_url_into_collector, [url_input, chunk_len, chunk_sep, strong_cleanup, threads], last_updated, show_progress=False) + update_file.click(feed_file_into_collector, [file_input, chunk_len, chunk_sep], last_updated, show_progress=False) + update_settings.click(apply_settings, [chunk_count, chunk_count_initial, time_weight], last_updated, show_progress=False) diff --git a/extensions/whisper_stt/requirements.txt b/extensions/whisper_stt/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..576c955f3c1e1f556a17d8de323723b04f69892e --- /dev/null +++ b/extensions/whisper_stt/requirements.txt @@ -0,0 +1,4 @@ +SpeechRecognition==3.10.0 +openai-whisper +soundfile +ffmpeg diff --git a/extensions/whisper_stt/script.py b/extensions/whisper_stt/script.py new file mode 100644 index 0000000000000000000000000000000000000000..32226404b63c443ac588bbc5e66741a332cbe05d --- /dev/null +++ b/extensions/whisper_stt/script.py @@ -0,0 +1,47 @@ +import gradio as gr +import speech_recognition as sr + +from modules import shared + +input_hijack = { + 'state': False, + 'value': ["", ""] +} + + +def do_stt(audio): + transcription = "" + r = sr.Recognizer() + + # Convert to AudioData + audio_data = sr.AudioData(sample_rate=audio[0], frame_data=audio[1], sample_width=4) + + try: + transcription = r.recognize_whisper(audio_data, language="english", model="base.en") + except sr.UnknownValueError: + print("Whisper could not understand audio") + except sr.RequestError as e: + print("Could not request results from Whisper", e) + + return transcription + + +def auto_transcribe(audio, auto_submit): + if audio is None: + return "", "" + + transcription = do_stt(audio) + if auto_submit: + input_hijack.update({"state": True, "value": [transcription, transcription]}) + + return transcription, None + + +def ui(): + with gr.Row(): + audio = gr.Audio(source="microphone") + auto_submit = gr.Checkbox(label='Submit the transcribed audio automatically', value=True) + + audio.change( + auto_transcribe, [audio, auto_submit], [shared.gradio['textbox'], audio]).then( + None, auto_submit, None, _js="(check) => {if (check) { document.getElementById('Generate').click() }}") diff --git a/loras/place-your-loras-here.txt b/loras/place-your-loras-here.txt new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/models/config.yaml b/models/config.yaml new file mode 100644 index 0000000000000000000000000000000000000000..08b35e2ad1cb935d7dbbd0948cf32ece66d2052c --- /dev/null +++ b/models/config.yaml @@ -0,0 +1,242 @@ +.*(llama|alpac|vicuna|guanaco|koala|llava|wizardlm|metharme|pygmalion-7b|wizard-mega|openbuddy|vigogne|h2ogpt-research|manticore): + model_type: 'llama' +.*(opt-|opt_|opt1|opt3|optfor|galactica|galpaca|pygmalion-350m): + model_type: 'opt' +.*(gpt-j|gptj|gpt4all-j|malion-6b|pygway|pygmalion-6b|dolly-v1): + model_type: 'gptj' +.*(gpt-neox|koalpaca-polyglot|polyglot.*koalpaca|polyglot-ko|polyglot_ko|pythia|stablelm|incite|dolly-v2|polycoder|h2ogpt-oig|h2ogpt-oasst1|h2ogpt-gm): + model_type: 'gpt_neox' +.*llama: + model_type: 'llama' +.*bloom: + model_type: 'bloom' +llama-65b-gptq-3bit: + groupsize: 'None' +.*(4bit|int4): + wbits: 4 +.*(3bit|int3): + wbits: 3 +.*(-2bit|_2bit|int2-): + wbits: 2 +.*(-1bit|_1bit|int1-): + wbits: 1 +.*(8bit|int8): + wbits: 8 +.*(-7bit|_7bit|int7-): + wbits: 7 +.*(-6bit|_6bit|int6-): + wbits: 6 +.*(-5bit|_5bit|int5-): + wbits: 5 +.*(-gr32-|-32g-|groupsize32|-32g$): + groupsize: 32 +.*(-gr64-|-64g-|groupsize64|-64g$): + groupsize: 64 +.*(gr128|128g|groupsize128): + groupsize: 128 +.*(gr1024|1024g|groupsize1024): + groupsize: 1024 +.*(oasst|openassistant-|stablelm-7b-sft-v7-epoch-3): + mode: 'instruct' + instruction_template: 'Open Assistant' + skip_special_tokens: false +(?!.*galactica)(?!.*reward).*openassistant: + mode: 'instruct' + instruction_template: 'Open Assistant' + skip_special_tokens: false +(?!.*v0)(?!.*1.1)(?!.*1_1)(?!.*stable)(?!.*chinese).*vicuna: + mode: 'instruct' + instruction_template: 'Vicuna-v0' +.*vicuna.*v0: + mode: 'instruct' + instruction_template: 'Vicuna-v0' +.*vicuna.*(1.1|1_1|1.3|1_3): + mode: 'instruct' + instruction_template: 'Vicuna-v1.1' +.*wizard.*vicuna: + mode: 'instruct' + instruction_template: 'Vicuna-v1.1' +.*stable.*vicuna: + mode: 'instruct' + instruction_template: 'StableVicuna' +(?!.*chat).*chinese-vicuna: + mode: 'instruct' + instruction_template: 'Alpaca' +.*chinese-vicuna.*chat: + mode: 'instruct' + instruction_template: 'Chinese-Vicuna-Chat' +.*alpaca: + mode: 'instruct' + instruction_template: 'Alpaca' +.*alpaca-native-4bit: + mode: 'instruct' + instruction_template: 'Alpaca' + wbits: 4 + groupsize: 128 +.*galactica: + skip_special_tokens: false +.*dolly-v[0-9]-[0-9]*b: + mode: 'instruct' + instruction_template: 'Alpaca' + skip_special_tokens: false + custom_stopping_strings: '"### End"' +.*koala: + mode: 'instruct' + instruction_template: 'Koala' +.*chatglm: + mode: 'instruct' + instruction_template: 'ChatGLM' +.*metharme: + mode: 'instruct' + instruction_template: 'Metharme' +.*llava: + mode: 'instruct' + model_type: 'llama' + instruction_template: 'LLaVA' + custom_stopping_strings: '"\n###"' +.*raven: + mode: 'instruct' + instruction_template: 'RWKV-Raven' +.*moss-moon.*sft: + mode: 'instruct' + instruction_template: 'MOSS' +.*stablelm-tuned: + mode: 'instruct' + instruction_template: 'StableLM' + truncation_length: 4096 +.*stablelm-base: + truncation_length: 4096 +.*wizardlm: + mode: 'instruct' + model_type: 'llama' + instruction_template: 'WizardLM' +.*galactica.*finetuned: + mode: 'instruct' + instruction_template: 'Galactica Finetuned' +.*galactica.*-v2: + mode: 'instruct' + instruction_template: 'Galactica v2' +(?!.*finetuned)(?!.*-v2).*galactica: + mode: 'instruct' + instruction_template: 'Galactica' +.*guanaco: + mode: 'instruct' + instruction_template: 'Guanaco non-chat' +.*baize: + mode: 'instruct' + instruction_template: 'Baize' +.*mpt-.*instruct: + mode: 'instruct' + instruction_template: 'Alpaca' +.*mpt-.*chat: + mode: 'instruct' + instruction_template: 'MPT-Chat' +(?!.*-flan-)(?!.*-t5-).*lamini-: + mode: 'instruct' + instruction_template: 'Alpaca' +.*incite.*chat: + mode: 'instruct' + instruction_template: 'INCITE-Chat' +.*incite.*instruct: + mode: 'instruct' + instruction_template: 'INCITE-Instruct' +.*wizard.*mega: + mode: 'instruct' + instruction_template: 'Wizard-Mega' +.*ziya-: + mode: 'instruct' + instruction_template: 'Ziya' +.*koalpaca: + mode: 'instruct' + instruction_template: 'KoAlpaca' +.*openbuddy: + mode: 'instruct' + instruction_template: 'OpenBuddy' +(?!.*chat).*vigogne: + mode: 'instruct' + instruction_template: 'Vigogne-Instruct' +.*vigogne.*chat: + mode: 'instruct' + instruction_template: 'Vigogne-Chat' +.*(llama-deus|supercot|llama-natural-instructions|open-llama-0.3t-7b-instruct-dolly-hhrlhf|open-llama-0.3t-7b-open-instruct): + mode: 'instruct' + instruction_template: 'Alpaca' +.*bactrian: + mode: 'instruct' + instruction_template: 'Bactrian' +.*(h2ogpt-oig-|h2ogpt-oasst1-|h2ogpt-research-oasst1-): + mode: 'instruct' + instruction_template: 'H2O-human_bot' +.*h2ogpt-gm-: + mode: 'instruct' + instruction_template: 'H2O-prompt_answer' +.*manticore: + mode: 'instruct' + instruction_template: 'Manticore Chat' +.*bluemoonrp-(30|13)b: + mode: 'instruct' + instruction_template: 'Bluemoon' + truncation_length: 4096 +.*Nous-Hermes-13b: + mode: 'instruct' + instruction_template: 'Alpaca' +.*airoboros: + mode: 'instruct' + instruction_template: 'Vicuna-v1.1' +.*WizardLM-30B-V1.0: + mode: 'instruct' + instruction_template: 'Vicuna-v1.1' +TheBloke_WizardLM-30B-GPTQ: + mode: 'instruct' + instruction_template: 'Vicuna-v1.1' +.*alpa(cino|sta): + mode: 'instruct' + instruction_template: 'Alpaca' +.*hippogriff: + mode: 'instruct' + instruction_template: 'Hippogriff' +.*gpt4all-.*-snoozy: + mode: 'instruct' + instruction_template: 'WizardLM' +.*lazarus: + mode: 'instruct' + instruction_template: 'Alpaca' +.*guanaco-.*(7|13|33|65)b: + mode: 'instruct' + instruction_template: 'Guanaco' +.*hypermantis: + mode: 'instruct' + instruction_template: 'Alpaca' +.*open-llama-.*-open-instruct: + mode: 'instruct' + instruction_template: 'Alpaca' +.*starcoder-gpteacher-code-instruct: + mode: 'instruct' + instruction_template: 'Alpaca' +.*tulu: + mode: 'instruct' + instruction_template: 'Tulu' +.*chronos: + mode: 'instruct' + instruction_template: 'Alpaca' +.*samantha: + mode: 'instruct' + instruction_template: 'Samantha' +.*wizardcoder: + mode: 'instruct' + instruction_template: 'Alpaca' +.*starchat-beta: + mode: 'instruct' + instruction_template: 'Starchat-Beta' +.*minotaur: + mode: 'instruct' + instruction_template: 'Minotaur' +.*minotaur-15b: + truncation_length: 8192 +.*orca_mini: + mode: 'instruct' + instruction_template: 'Orca Mini' +.*landmark: + truncation_length: 8192 +.*superhot-8k: + truncation_length: 8192 diff --git a/models/place-your-models-here.txt b/models/place-your-models-here.txt new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/modules/AutoGPTQ_loader.py b/modules/AutoGPTQ_loader.py new file mode 100644 index 0000000000000000000000000000000000000000..0d41ac0a5589aff024569cb973a4b154477c5908 --- /dev/null +++ b/modules/AutoGPTQ_loader.py @@ -0,0 +1,71 @@ +from pathlib import Path + +from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig + +import modules.shared as shared +from modules.logging_colors import logger +from modules.models import get_max_memory_dict + + +def load_quantized(model_name): + path_to_model = Path(f'{shared.args.model_dir}/{model_name}') + pt_path = None + + # Find the model checkpoint + if shared.args.checkpoint: + pt_path = Path(shared.args.checkpoint) + else: + for ext in ['.safetensors', '.pt', '.bin']: + found = list(path_to_model.glob(f"*{ext}")) + if len(found) > 0: + if len(found) > 1: + logger.warning(f'More than one {ext} model has been found. The last one will be selected. It could be wrong.') + + pt_path = found[-1] + break + + if pt_path is None: + logger.error("The model could not be loaded because its checkpoint file in .bin/.pt/.safetensors format could not be located.") + return + + use_safetensors = pt_path.suffix == '.safetensors' + if not (path_to_model / "quantize_config.json").exists(): + quantize_config = BaseQuantizeConfig( + bits=bits if (bits := shared.args.wbits) > 0 else 4, + group_size=gs if (gs := shared.args.groupsize) > 0 else -1, + desc_act=shared.args.desc_act + ) + else: + quantize_config = None + + # Define the params for AutoGPTQForCausalLM.from_quantized + params = { + 'model_basename': pt_path.stem, + 'device': "cuda:0" if not shared.args.cpu else "cpu", + 'use_triton': shared.args.triton, + 'inject_fused_attention': not shared.args.no_inject_fused_attention, + 'inject_fused_mlp': not shared.args.no_inject_fused_mlp, + 'use_safetensors': use_safetensors, + 'trust_remote_code': shared.args.trust_remote_code, + 'max_memory': get_max_memory_dict(), + 'quantize_config': quantize_config, + 'use_cuda_fp16': not shared.args.no_use_cuda_fp16, + } + + logger.info(f"The AutoGPTQ params are: {params}") + model = AutoGPTQForCausalLM.from_quantized(path_to_model, **params) + + # These lines fix the multimodal extension when used with AutoGPTQ + if hasattr(model, 'model'): + if not hasattr(model, 'dtype'): + if hasattr(model.model, 'dtype'): + model.dtype = model.model.dtype + + if hasattr(model.model, 'model') and hasattr(model.model.model, 'embed_tokens'): + if not hasattr(model, 'embed_tokens'): + model.embed_tokens = model.model.model.embed_tokens + + if not hasattr(model.model, 'embed_tokens'): + model.model.embed_tokens = model.model.model.embed_tokens + + return model diff --git a/modules/GPTQ_loader.py b/modules/GPTQ_loader.py new file mode 100644 index 0000000000000000000000000000000000000000..ddc5f9a5a8c134553eae392bb46360dcc6d1ff8c --- /dev/null +++ b/modules/GPTQ_loader.py @@ -0,0 +1,201 @@ +import inspect +import re +import sys +from pathlib import Path + +import accelerate +import torch +import transformers +from transformers import AutoConfig, AutoModelForCausalLM + +import modules.shared as shared +from modules.logging_colors import logger + +sys.path.insert(0, str(Path("repositories/GPTQ-for-LLaMa"))) + +try: + import llama_inference_offload +except ImportError: + logger.error('Failed to load GPTQ-for-LLaMa') + logger.error('See https://github.com/oobabooga/text-generation-webui/blob/main/docs/GPTQ-models-(4-bit-mode).md') + sys.exit(-1) + +try: + from modelutils import find_layers +except ImportError: + from utils import find_layers + +try: + from quant import make_quant + is_triton = False +except ImportError: + import quant + is_triton = True + + +# This function is a replacement for the load_quant function in the +# GPTQ-for_LLaMa repository. It supports more models and branches. +def _load_quant(model, checkpoint, wbits, groupsize=-1, faster_kernel=False, exclude_layers=None, kernel_switch_threshold=128, eval=True): + exclude_layers = exclude_layers or ['lm_head'] + + def noop(*args, **kwargs): + pass + + config = AutoConfig.from_pretrained(model, trust_remote_code=shared.args.trust_remote_code) + torch.nn.init.kaiming_uniform_ = noop + torch.nn.init.uniform_ = noop + torch.nn.init.normal_ = noop + + torch.set_default_dtype(torch.half) + transformers.modeling_utils._init_weights = False + torch.set_default_dtype(torch.half) + model = AutoModelForCausalLM.from_config(config, trust_remote_code=shared.args.trust_remote_code) + torch.set_default_dtype(torch.float) + if eval: + model = model.eval() + + layers = find_layers(model) + for name in exclude_layers: + if name in layers: + del layers[name] + + if not is_triton: + gptq_args = inspect.getfullargspec(make_quant).args + + make_quant_kwargs = { + 'module': model, + 'names': layers, + 'bits': wbits, + } + if 'groupsize' in gptq_args: + make_quant_kwargs['groupsize'] = groupsize + if 'faster' in gptq_args: + make_quant_kwargs['faster'] = faster_kernel + if 'kernel_switch_threshold' in gptq_args: + make_quant_kwargs['kernel_switch_threshold'] = kernel_switch_threshold + + make_quant(**make_quant_kwargs) + else: + quant.make_quant_linear(model, layers, wbits, groupsize) + + del layers + if checkpoint.endswith('.safetensors'): + from safetensors.torch import load_file as safe_load + model.load_state_dict(safe_load(checkpoint), strict=False) + else: + model.load_state_dict(torch.load(checkpoint), strict=False) + + if is_triton: + if shared.args.quant_attn: + quant.make_quant_attn(model) + + if eval and shared.args.fused_mlp: + quant.make_fused_mlp(model) + + if shared.args.warmup_autotune: + quant.autotune_warmup_linear(model, transpose=not eval) + if eval and shared.args.fused_mlp: + quant.autotune_warmup_fused(model) + + model.seqlen = 2048 + return model + + +# Used to locate the .pt/.safetensors quantized file +def find_quantized_model_file(model_name): + if shared.args.checkpoint: + return Path(shared.args.checkpoint) + + path_to_model = Path(f'{shared.args.model_dir}/{model_name}') + pt_path = None + priority_name_list = [ + Path(f'{shared.args.model_dir}/{model_name}{hyphen}{shared.args.wbits}bit{group}{ext}') + for group in ([f'-{shared.args.groupsize}g', ''] if shared.args.groupsize > 0 else ['']) + for ext in ['.safetensors', '.pt'] + for hyphen in ['-', f'/{model_name}-', '/'] + ] + + for path in priority_name_list: + if path.exists(): + pt_path = path + break + + # If the model hasn't been found with a well-behaved name, pick the last .pt + # or the last .safetensors found in its folder as a last resort + if not pt_path: + for ext in ['.pt', '.safetensors']: + found = list(path_to_model.glob(f"*{ext}")) + if len(found) > 0: + if len(found) > 1: + logger.warning(f'More than one {ext} model has been found. The last one will be selected. It could be wrong.') + + pt_path = found[-1] + break + + return pt_path + + +# The function that loads the model in modules/models.py +def load_quantized(model_name): + if shared.args.model_type is None: + logger.error("The model could not be loaded because its type could not be inferred from its name.") + logger.error("Please specify the type manually using the --model_type argument.") + return None + + # Select the appropriate load_quant function + model_type = shared.args.model_type.lower() + if shared.args.pre_layer and model_type == 'llama': + load_quant = llama_inference_offload.load_quant + elif model_type in ('llama', 'opt', 'gptj'): + if shared.args.pre_layer: + logger.warning("Ignoring --pre_layer because it only works for llama model type.") + + load_quant = _load_quant + else: + logger.error("Unknown pre-quantized model type specified. Only 'llama', 'opt' and 'gptj' are supported") + exit() + + # Find the quantized model weights file (.pt/.safetensors) + path_to_model = Path(f'{shared.args.model_dir}/{model_name}') + pt_path = find_quantized_model_file(model_name) + if not pt_path: + logger.error("Could not find the quantized model in .pt or .safetensors format, exiting...") + exit() + else: + logger.info(f"Found the following quantized model: {pt_path}") + + # qwopqwop200's offload + if model_type == 'llama' and shared.args.pre_layer: + if len(shared.args.pre_layer) == 1: + pre_layer = shared.args.pre_layer[0] + else: + pre_layer = shared.args.pre_layer + + model = load_quant(str(path_to_model), str(pt_path), shared.args.wbits, shared.args.groupsize, pre_layer) + else: + threshold = False if model_type == 'gptj' else 128 + model = load_quant(str(path_to_model), str(pt_path), shared.args.wbits, shared.args.groupsize, kernel_switch_threshold=threshold) + + # accelerate offload (doesn't work properly) + if shared.args.gpu_memory or torch.cuda.device_count() > 1: + if shared.args.gpu_memory: + memory_map = list(map(lambda x: x.strip(), shared.args.gpu_memory)) + max_cpu_memory = shared.args.cpu_memory.strip() if shared.args.cpu_memory is not None else '99GiB' + max_memory = {} + for i in range(len(memory_map)): + max_memory[i] = f'{memory_map[i]}GiB' if not re.match('.*ib$', memory_map[i].lower()) else memory_map[i] + + max_memory['cpu'] = f'{max_cpu_memory}GiB' if not re.match('.*ib$', max_cpu_memory.lower()) else max_cpu_memory + else: + max_memory = accelerate.utils.get_balanced_memory(model) + + device_map = accelerate.infer_auto_device_map(model, max_memory=max_memory, no_split_module_classes=["LlamaDecoderLayer"]) + logger.info("Using the following device map for the quantized model:", device_map) + # https://huggingface.co/docs/accelerate/package_reference/big_modeling#accelerate.dispatch_model + model = accelerate.dispatch_model(model, device_map=device_map, offload_buffers=True) + + # No offload + elif not shared.args.cpu: + model = model.to(torch.device('cuda:0')) + + return model diff --git a/modules/LoRA.py b/modules/LoRA.py new file mode 100644 index 0000000000000000000000000000000000000000..c0c8ae081abd2ef7a6a3a38d0a1393aa15573148 --- /dev/null +++ b/modules/LoRA.py @@ -0,0 +1,135 @@ +from pathlib import Path + +import torch +from peft import PeftModel + +import modules.shared as shared +from modules.logging_colors import logger +from modules.models import reload_model + + +def add_lora_to_model(lora_names): + if 'GPTQForCausalLM' in shared.model.__class__.__name__: + add_lora_autogptq(lora_names) + elif shared.model.__class__.__name__ in ['ExllamaModel', 'ExllamaHF']: + add_lora_exllama(lora_names) + else: + add_lora_transformers(lora_names) + + +def add_lora_exllama(lora_names): + + try: + from exllama.lora import ExLlamaLora + except: + try: + from repositories.exllama.lora import ExLlamaLora + except: + logger.error("Could not find the file repositories/exllama/lora.py. Make sure that exllama is cloned inside repositories/ and is up to date.") + return + + if len(lora_names) == 0: + if shared.model.__class__.__name__ == 'ExllamaModel': + shared.model.generator.lora = None + else: + shared.model.lora = None + + shared.lora_names = [] + return + else: + if len(lora_names) > 1: + logger.warning('ExLlama can only work with 1 LoRA at the moment. Only the first one in the list will be loaded.') + + lora_path = Path(f"{shared.args.lora_dir}/{lora_names[0]}") + lora_config_path = lora_path / "adapter_config.json" + lora_adapter_path = lora_path / "adapter_model.bin" + + logger.info("Applying the following LoRAs to {}: {}".format(shared.model_name, ', '.join([lora_names[0]]))) + if shared.model.__class__.__name__ == 'ExllamaModel': + lora = ExLlamaLora(shared.model.model, str(lora_config_path), str(lora_adapter_path)) + shared.model.generator.lora = lora + else: + lora = ExLlamaLora(shared.model.ex_model, str(lora_config_path), str(lora_adapter_path)) + shared.model.lora = lora + + shared.lora_names = [lora_names[0]] + return + + +# Adapted from https://github.com/Ph0rk0z/text-generation-webui-testing +def add_lora_autogptq(lora_names): + + try: + from auto_gptq import get_gptq_peft_model + from auto_gptq.utils.peft_utils import GPTQLoraConfig + except: + logger.error("This version of AutoGPTQ does not support LoRA. You need to install from source or wait for a new release.") + return + + if len(lora_names) == 0: + if len(shared.lora_names) > 0: + reload_model() + + shared.lora_names = [] + return + else: + if len(lora_names) > 1: + logger.warning('AutoGPTQ can only work with 1 LoRA at the moment. Only the first one in the list will be loaded.') + + peft_config = GPTQLoraConfig( + inference_mode=True, + ) + + lora_path = Path(f"{shared.args.lora_dir}/{lora_names[0]}") + logger.info("Applying the following LoRAs to {}: {}".format(shared.model_name, ', '.join([lora_names[0]]))) + shared.model = get_gptq_peft_model(shared.model, peft_config, lora_path) + shared.lora_names = [lora_names[0]] + return + + +def add_lora_transformers(lora_names): + prior_set = set(shared.lora_names) + added_set = set(lora_names) - prior_set + removed_set = prior_set - set(lora_names) + + # If no LoRA needs to be added or removed, exit + if len(added_set) == 0 and len(removed_set) == 0: + return + + # Add a LoRA when another LoRA is already present + if len(removed_set) == 0 and len(prior_set) > 0: + logger.info(f"Adding the LoRA(s) named {added_set} to the model...") + for lora in added_set: + shared.model.load_adapter(Path(f"{shared.args.lora_dir}/{lora}"), lora) + + return + + # If any LoRA needs to be removed, start over + if len(removed_set) > 0: + shared.model.disable_adapter() + shared.model = shared.model.base_model.model + + if len(lora_names) > 0: + params = {} + if not shared.args.cpu: + params['dtype'] = shared.model.dtype + if hasattr(shared.model, "hf_device_map"): + params['device_map'] = {"base_model.model." + k: v for k, v in shared.model.hf_device_map.items()} + elif shared.args.load_in_8bit: + params['device_map'] = {'': 0} + + logger.info("Applying the following LoRAs to {}: {}".format(shared.model_name, ', '.join(lora_names))) + shared.model = PeftModel.from_pretrained(shared.model, Path(f"{shared.args.lora_dir}/{lora_names[0]}"), adapter_name=lora_names[0], **params) + for lora in lora_names[1:]: + shared.model.load_adapter(Path(f"{shared.args.lora_dir}/{lora}"), lora) + + shared.lora_names = lora_names + + if not shared.args.load_in_8bit and not shared.args.cpu: + shared.model.half() + if not hasattr(shared.model, "hf_device_map"): + if torch.has_mps: + device = torch.device('mps') + shared.model = shared.model.to(device) + else: + shared.model = shared.model.cuda() diff --git a/modules/RWKV.py b/modules/RWKV.py new file mode 100644 index 0000000000000000000000000000000000000000..35d69986820ec93d7e5dbcf2abc2f19a62dc9c33 --- /dev/null +++ b/modules/RWKV.py @@ -0,0 +1,148 @@ +import copy +import os +from pathlib import Path + +import numpy as np +from tokenizers import Tokenizer + +import modules.shared as shared +from modules.callbacks import Iteratorize + +np.set_printoptions(precision=4, suppress=True, linewidth=200) + +os.environ['RWKV_JIT_ON'] = '1' +os.environ["RWKV_CUDA_ON"] = '1' if shared.args.rwkv_cuda_on else '0' # use CUDA kernel for seq mode (much faster) + +from rwkv.model import RWKV +from rwkv.utils import PIPELINE, PIPELINE_ARGS + + +class RWKVModel: + def __init__(self): + pass + + @classmethod + def from_pretrained(self, path, dtype="fp16", device="cuda"): + tokenizer_path = Path(f"{path.parent}/20B_tokenizer.json") + if shared.args.rwkv_strategy is None: + model = RWKV(model=str(path), strategy=f'{device} {dtype}') + else: + model = RWKV(model=str(path), strategy=shared.args.rwkv_strategy) + + pipeline = PIPELINE(model, str(tokenizer_path)) + result = self() + result.pipeline = pipeline + result.model = model + result.cached_context = "" + result.cached_model_state = None + result.cached_output_logits = None + return result + + def generate(self, prompt, state, callback=None): + args = PIPELINE_ARGS( + temperature=state['temperature'], + top_p=state['top_p'], + top_k=state['top_k'], + alpha_frequency=0.1, # Frequency Penalty (as in GPT-3) + alpha_presence=0.1, # Presence Penalty (as in GPT-3) + token_ban=[0], # ban the generation of some tokens + token_stop=[] + ) + + if self.cached_context != "": + if prompt.startswith(self.cached_context): + prompt = prompt[len(self.cached_context):] + else: + self.cached_context = "" + self.cached_model_state = None + self.cached_output_logits = None + + # out = self.pipeline.generate(prompt, token_count=state['max_new_tokens'], args=args, callback=callback) + out = self.generate_from_cached_state(prompt, token_count=state['max_new_tokens'], args=args, callback=callback) + return out + + def generate_with_streaming(self, *args, **kwargs): + with Iteratorize(self.generate, args, kwargs, callback=None) as generator: + reply = '' + for token in generator: + reply += token + yield reply + + # Similar to the PIPELINE.generate, but lets us maintain the cached_model_state + def generate_from_cached_state(self, ctx="", token_count=20, args=None, callback=None): + all_tokens = [] + out_str = '' + occurrence = {} + state = copy.deepcopy(self.cached_model_state) if self.cached_model_state is not None else None + + # if we ended up with an empty context, just reuse the cached logits + # this can happen if a user undoes a message and then sends the exact message again + # in that case the full context ends up being the same as the cached_context, so the remaining context is empty. + if ctx == "": + out = self.cached_output_logits + + token = None + for i in range(token_count): + # forward + tokens = self.pipeline.encode(ctx) if i == 0 else [token] + while len(tokens) > 0: + out, state = self.model.forward(tokens[:args.chunk_len], state) + tokens = tokens[args.chunk_len:] + if i == 0: + begin_token = len(all_tokens) + last_token_posi = begin_token + # cache the model state after scanning the context + # we don't cache the state after processing our own generated tokens because + # the output string might be post-processed arbitrarily. Therefore, what's fed into the model + # on the next round of chat might be slightly different what what it output on the previous round + if i == 0: + self.cached_context += ctx + self.cached_model_state = copy.deepcopy(state) + self.cached_output_logits = copy.deepcopy(out) + + # adjust probabilities + for n in args.token_ban: + out[n] = -float('inf') + + for n in occurrence: + out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency) + + # sampler + token = self.pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p, top_k=args.top_k) + if token in args.token_stop: + break + + all_tokens += [token] + if token not in occurrence: + occurrence[token] = 1 + else: + occurrence[token] += 1 + + # output + tmp = self.pipeline.decode(all_tokens[last_token_posi:]) + if '\ufffd' not in tmp: # is valid utf-8 string? + if callback: + callback(tmp) + + out_str += tmp + last_token_posi = begin_token + i + 1 + return out_str + + +class RWKVTokenizer: + def __init__(self): + pass + + @classmethod + def from_pretrained(self, path): + tokenizer_path = path / "20B_tokenizer.json" + tokenizer = Tokenizer.from_file(str(tokenizer_path)) + result = self() + result.tokenizer = tokenizer + return result + + def encode(self, prompt): + return self.tokenizer.encode(prompt).ids + + def decode(self, ids): + return self.tokenizer.decode(ids) diff --git a/modules/block_requests.py b/modules/block_requests.py new file mode 100644 index 0000000000000000000000000000000000000000..4358a820c26a45612ed03385af85694ccd32f10a --- /dev/null +++ b/modules/block_requests.py @@ -0,0 +1,19 @@ +import requests + +from modules.logging_colors import logger + + +class RequestBlocker: + + def __enter__(self): + self.original_get = requests.get + requests.get = my_get + + def __exit__(self, exc_type, exc_value, traceback): + requests.get = self.original_get + + +def my_get(url, **kwargs): + logger.info('Unwanted HTTP request redirected to localhost :)') + kwargs.setdefault('allow_redirects', True) + return requests.api.request('get', 'http://127.0.0.1/', **kwargs) diff --git a/modules/callbacks.py b/modules/callbacks.py new file mode 100644 index 0000000000000000000000000000000000000000..1fa95e475f5e7f5936f55c6dc2848770621a1241 --- /dev/null +++ b/modules/callbacks.py @@ -0,0 +1,94 @@ +import gc +import traceback +from queue import Queue +from threading import Thread + +import torch +import transformers + +import modules.shared as shared + + +class _StopEverythingStoppingCriteria(transformers.StoppingCriteria): + def __init__(self): + transformers.StoppingCriteria.__init__(self) + + def __call__(self, input_ids: torch.LongTensor, _scores: torch.FloatTensor) -> bool: + return shared.stop_everything + + +class Stream(transformers.StoppingCriteria): + def __init__(self, callback_func=None): + self.callback_func = callback_func + + def __call__(self, input_ids, scores) -> bool: + if self.callback_func is not None: + self.callback_func(input_ids[0]) + return False + + +class Iteratorize: + + """ + Transforms a function that takes a callback + into a lazy iterator (generator). + + Adapted from: https://stackoverflow.com/a/9969000 + """ + + def __init__(self, func, args=None, kwargs=None, callback=None): + self.mfunc = func + self.c_callback = callback + self.q = Queue() + self.sentinel = object() + self.args = args or [] + self.kwargs = kwargs or {} + self.stop_now = False + + def _callback(val): + if self.stop_now or shared.stop_everything: + raise ValueError + self.q.put(val) + + def gentask(): + try: + ret = self.mfunc(callback=_callback, *args, **self.kwargs) + except ValueError: + pass + except: + traceback.print_exc() + pass + + clear_torch_cache() + self.q.put(self.sentinel) + if self.c_callback: + self.c_callback(ret) + + self.thread = Thread(target=gentask) + self.thread.start() + + def __iter__(self): + return self + + def __next__(self): + obj = self.q.get(True, None) + if obj is self.sentinel: + raise StopIteration + else: + return obj + + def __del__(self): + clear_torch_cache() + + def __enter__(self): + return self + + def __exit__(self, exc_type, exc_val, exc_tb): + self.stop_now = True + clear_torch_cache() + + +def clear_torch_cache(): + gc.collect() + if not shared.args.cpu: + torch.cuda.empty_cache() diff --git a/modules/chat.py b/modules/chat.py new file mode 100644 index 0000000000000000000000000000000000000000..c5d8a36f7d5e9d70aa4da1ec138ae72eaa67d165 --- /dev/null +++ b/modules/chat.py @@ -0,0 +1,644 @@ +import base64 +import copy +import functools +import json +import re +from datetime import datetime +from pathlib import Path + +import gradio as gr +import yaml +from PIL import Image + +import modules.shared as shared +from modules import utils +from modules.extensions import apply_extensions +from modules.html_generator import chat_html_wrapper, make_thumbnail +from modules.logging_colors import logger +from modules.text_generation import ( + generate_reply, + get_encoded_length, + get_max_prompt_length +) +from modules.utils import delete_file, replace_all, save_file + + +def get_turn_substrings(state, instruct=False): + if instruct: + if 'turn_template' not in state or state['turn_template'] == '': + template = '<|user|>\n<|user-message|>\n<|bot|>\n<|bot-message|>\n' + else: + template = state['turn_template'].replace(r'\n', '\n') + else: + template = '<|user|>: <|user-message|>\n<|bot|>: <|bot-message|>\n' + + replacements = { + '<|user|>': state['name1_instruct' if instruct else 'name1'].strip(), + '<|bot|>': state['name2_instruct' if instruct else 'name2'].strip(), + } + + output = { + 'user_turn': template.split('<|bot|>')[0], + 'bot_turn': '<|bot|>' + template.split('<|bot|>')[1], + 'user_turn_stripped': template.split('<|bot|>')[0].split('<|user-message|>')[0], + 'bot_turn_stripped': '<|bot|>' + template.split('<|bot|>')[1].split('<|bot-message|>')[0], + } + + for k in output: + output[k] = replace_all(output[k], replacements) + + return output + + +def generate_chat_prompt(user_input, state, **kwargs): + impersonate = kwargs.get('impersonate', False) + _continue = kwargs.get('_continue', False) + also_return_rows = kwargs.get('also_return_rows', False) + history = kwargs.get('history', shared.history)['internal'] + is_instruct = state['mode'] == 'instruct' + + # Find the maximum prompt size + max_length = get_max_prompt_length(state) + all_substrings = { + 'chat': get_turn_substrings(state, instruct=False), + 'instruct': get_turn_substrings(state, instruct=True) + } + + substrings = all_substrings['instruct' if is_instruct else 'chat'] + + # Create the template for "chat-instruct" mode + if state['mode'] == 'chat-instruct': + wrapper = '' + command = state['chat-instruct_command'].replace('<|character|>', state['name2'] if not impersonate else state['name1']) + wrapper += state['context_instruct'] + wrapper += all_substrings['instruct']['user_turn'].replace('<|user-message|>', command) + wrapper += all_substrings['instruct']['bot_turn_stripped'] + if impersonate: + wrapper += substrings['user_turn_stripped'].rstrip(' ') + elif _continue: + wrapper += apply_extensions("bot_prefix", substrings['bot_turn_stripped']) + wrapper += history[-1][1] + else: + wrapper += apply_extensions("bot_prefix", substrings['bot_turn_stripped'].rstrip(' ')) + else: + wrapper = '<|prompt|>' + + # Build the prompt + min_rows = 3 + i = len(history) - 1 + rows = [state['context_instruct'] if is_instruct else f"{state['context'].strip()}\n"] + while i >= 0 and get_encoded_length(wrapper.replace('<|prompt|>', ''.join(rows))) < max_length: + if _continue and i == len(history) - 1: + if state['mode'] != 'chat-instruct': + rows.insert(1, substrings['bot_turn_stripped'] + history[i][1].strip()) + else: + rows.insert(1, substrings['bot_turn'].replace('<|bot-message|>', history[i][1].strip())) + + string = history[i][0] + if string not in ['', '<|BEGIN-VISIBLE-CHAT|>']: + rows.insert(1, replace_all(substrings['user_turn'], {'<|user-message|>': string.strip(), '<|round|>': str(i)})) + + i -= 1 + + if impersonate: + if state['mode'] == 'chat-instruct': + min_rows = 1 + else: + min_rows = 2 + rows.append(substrings['user_turn_stripped'].rstrip(' ')) + elif not _continue: + # Add the user message + if len(user_input) > 0: + rows.append(replace_all(substrings['user_turn'], {'<|user-message|>': user_input.strip(), '<|round|>': str(len(history))})) + + # Add the character prefix + if state['mode'] != 'chat-instruct': + rows.append(apply_extensions("bot_prefix", substrings['bot_turn_stripped'].rstrip(' '))) + + while len(rows) > min_rows and get_encoded_length(wrapper.replace('<|prompt|>', ''.join(rows))) >= max_length: + rows.pop(1) + + prompt = wrapper.replace('<|prompt|>', ''.join(rows)) + if also_return_rows: + return prompt, rows + else: + return prompt + + +def get_stopping_strings(state): + stopping_strings = [] + if state['mode'] in ['instruct', 'chat-instruct']: + stopping_strings += [ + state['turn_template'].split('<|user-message|>')[1].split('<|bot|>')[0] + '<|bot|>', + state['turn_template'].split('<|bot-message|>')[1] + '<|user|>' + ] + + replacements = { + '<|user|>': state['name1_instruct'], + '<|bot|>': state['name2_instruct'] + } + + for i in range(len(stopping_strings)): + stopping_strings[i] = replace_all(stopping_strings[i], replacements).rstrip(' ').replace(r'\n', '\n') + + if state['mode'] in ['chat', 'chat-instruct']: + stopping_strings += [ + f"\n{state['name1']}:", + f"\n{state['name2']}:" + ] + + if state['stop_at_newline']: + stopping_strings.append("\n") + + return stopping_strings + + +def chatbot_wrapper(text, history, state, regenerate=False, _continue=False, loading_message=True): + output = copy.deepcopy(history) + output = apply_extensions('history', output) + state = apply_extensions('state', state) + if shared.model_name == 'None' or shared.model is None: + logger.error("No model is loaded! Select one in the Model tab.") + yield output + return + + # Defining some variables + just_started = True + visible_text = None + stopping_strings = get_stopping_strings(state) + is_stream = state['stream'] + + # Preparing the input + if not any((regenerate, _continue)): + text, visible_text = apply_extensions('input_hijack', text, visible_text) + if visible_text is None: + visible_text = text + + # *Is typing...* + if loading_message: + yield {'visible': output['visible'] + [[visible_text, shared.processing_message]], 'internal': output['internal']} + + text = apply_extensions('input', text) + else: + text, visible_text = output['internal'][-1][0], output['visible'][-1][0] + if regenerate: + output['visible'].pop() + output['internal'].pop() + # *Is typing...* + if loading_message: + yield {'visible': output['visible'] + [[visible_text, shared.processing_message]], 'internal': output['internal']} + elif _continue: + last_reply = [output['internal'][-1][1], output['visible'][-1][1]] + if loading_message: + yield {'visible': output['visible'][:-1] + [[visible_text, last_reply[1] + '...']], 'internal': output['internal']} + + # Generating the prompt + kwargs = { + '_continue': _continue, + 'history': output, + } + + prompt = apply_extensions('custom_generate_chat_prompt', text, state, **kwargs) + if prompt is None: + prompt = generate_chat_prompt(text, state, **kwargs) + + # Generate + cumulative_reply = '' + for i in range(state['chat_generation_attempts']): + reply = None + for j, reply in enumerate(generate_reply(prompt + cumulative_reply, state, stopping_strings=stopping_strings, is_chat=True)): + reply = cumulative_reply + reply + + # Extract the reply + visible_reply = re.sub("(||{{user}})", state['name1'], reply) + + # We need this global variable to handle the Stop event, + # otherwise gradio gets confused + if shared.stop_everything: + output['visible'][-1][1] = apply_extensions("output", output['visible'][-1][1]) + yield output + return + + if just_started: + just_started = False + if not _continue: + output['internal'].append(['', '']) + output['visible'].append(['', '']) + + if _continue: + output['internal'][-1] = [text, last_reply[0] + reply] + output['visible'][-1] = [visible_text, last_reply[1] + visible_reply] + if is_stream: + yield output + elif not (j == 0 and visible_reply.strip() == ''): + output['internal'][-1] = [text, reply.lstrip(' ')] + output['visible'][-1] = [visible_text, visible_reply.lstrip(' ')] + if is_stream: + yield output + + if reply in [None, cumulative_reply]: + break + else: + cumulative_reply = reply + + output['visible'][-1][1] = apply_extensions("output", output['visible'][-1][1]) + yield output + + +def impersonate_wrapper(text, start_with, state): + if shared.model_name == 'None' or shared.model is None: + logger.error("No model is loaded! Select one in the Model tab.") + yield '' + return + + # Defining some variables + cumulative_reply = '' + prompt = generate_chat_prompt('', state, impersonate=True) + stopping_strings = get_stopping_strings(state) + + yield text + '...' + cumulative_reply = text + for i in range(state['chat_generation_attempts']): + reply = None + for reply in generate_reply(prompt + cumulative_reply, state, stopping_strings=stopping_strings, is_chat=True): + reply = cumulative_reply + reply + yield reply.lstrip(' ') + if shared.stop_everything: + return + + if reply in [None, cumulative_reply]: + break + else: + cumulative_reply = reply + + yield cumulative_reply.lstrip(' ') + + +def generate_chat_reply(text, history, state, regenerate=False, _continue=False, loading_message=True): + if regenerate or _continue: + text = '' + if (len(history['visible']) == 1 and not history['visible'][0][0]) or len(history['internal']) == 0: + yield history + return + + for history in chatbot_wrapper(text, history, state, regenerate=regenerate, _continue=_continue, loading_message=loading_message): + yield history + + +# Same as above but returns HTML for the UI +def generate_chat_reply_wrapper(text, start_with, state, regenerate=False, _continue=False): + if start_with != '' and not _continue: + if regenerate: + text = remove_last_message() + regenerate = False + + _continue = True + send_dummy_message(text) + send_dummy_reply(start_with) + + for i, history in enumerate(generate_chat_reply(text, shared.history, state, regenerate, _continue, loading_message=True)): + if i != 0: + shared.history = copy.deepcopy(history) + + yield chat_html_wrapper(history['visible'], state['name1'], state['name2'], state['mode'], state['chat_style']) + + +def remove_last_message(): + if len(shared.history['visible']) > 0 and shared.history['internal'][-1][0] != '<|BEGIN-VISIBLE-CHAT|>': + last = shared.history['visible'].pop() + shared.history['internal'].pop() + else: + last = ['', ''] + + return last[0] + + +def send_last_reply_to_input(): + if len(shared.history['internal']) > 0: + return shared.history['internal'][-1][1] + else: + return '' + + +def replace_last_reply(text): + if len(shared.history['visible']) > 0: + shared.history['visible'][-1][1] = text + shared.history['internal'][-1][1] = apply_extensions("input", text) + + +def send_dummy_message(text): + shared.history['visible'].append([text, '']) + shared.history['internal'].append([apply_extensions("input", text), '']) + + +def send_dummy_reply(text): + if len(shared.history['visible']) > 0 and not shared.history['visible'][-1][1] == '': + shared.history['visible'].append(['', '']) + shared.history['internal'].append(['', '']) + + shared.history['visible'][-1][1] = text + shared.history['internal'][-1][1] = apply_extensions("input", text) + + +def clear_chat_log(greeting, mode): + shared.history['visible'] = [] + shared.history['internal'] = [] + + if mode != 'instruct': + if greeting != '': + shared.history['internal'] += [['<|BEGIN-VISIBLE-CHAT|>', greeting]] + shared.history['visible'] += [['', apply_extensions("output", greeting)]] + + save_history(mode) + + +def redraw_html(name1, name2, mode, style, reset_cache=False): + return chat_html_wrapper(shared.history['visible'], name1, name2, mode, style, reset_cache=reset_cache) + + +def tokenize_dialogue(dialogue, name1, name2): + history = [] + messages = [] + dialogue = re.sub('', '', dialogue) + dialogue = re.sub('', '', dialogue) + dialogue = re.sub('(\n|^)[Aa]non:', '\\1You:', dialogue) + dialogue = re.sub('(\n|^)\[CHARACTER\]:', f'\\g<1>{name2}:', dialogue) + idx = [m.start() for m in re.finditer(f"(^|\n)({re.escape(name1)}|{re.escape(name2)}):", dialogue)] + if len(idx) == 0: + return history + + for i in range(len(idx) - 1): + messages.append(dialogue[idx[i]:idx[i + 1]].strip()) + + messages.append(dialogue[idx[-1]:].strip()) + entry = ['', ''] + for i in messages: + if i.startswith(f'{name1}:'): + entry[0] = i[len(f'{name1}:'):].strip() + elif i.startswith(f'{name2}:'): + entry[1] = i[len(f'{name2}:'):].strip() + if not (len(entry[0]) == 0 and len(entry[1]) == 0): + history.append(entry) + + entry = ['', ''] + + print("\033[1;32;1m\nDialogue tokenized to:\033[0;37;0m\n", end='') + for row in history: + for column in row: + print("\n") + for line in column.strip().split('\n'): + print("| " + line + "\n") + + print("|\n") + print("------------------------------") + + return history + + +def save_history(mode, timestamp=False, user_request=False): + # Instruct mode histories should not be saved as if + # Alpaca or Vicuna were characters + if mode == 'instruct': + if not timestamp: + return + + fname = f"Instruct_{datetime.now().strftime('%Y%m%d-%H%M%S')}.json" + else: + if shared.character == 'None' and not user_request: + return + + if timestamp: + fname = f"{shared.character}_{datetime.now().strftime('%Y%m%d-%H%M%S')}.json" + else: + fname = f"{shared.character}_persistent.json" + + if not Path('logs').exists(): + Path('logs').mkdir() + + with open(Path(f'logs/{fname}'), 'w', encoding='utf-8') as f: + f.write(json.dumps({'data': shared.history['internal'], 'data_visible': shared.history['visible']}, indent=2)) + + return Path(f'logs/{fname}') + + +def load_history(file, name1, name2): + file = file.decode('utf-8') + try: + j = json.loads(file) + if 'data' in j: + shared.history['internal'] = j['data'] + if 'data_visible' in j: + shared.history['visible'] = j['data_visible'] + else: + shared.history['visible'] = copy.deepcopy(shared.history['internal']) + except: + shared.history['internal'] = tokenize_dialogue(file, name1, name2) + shared.history['visible'] = copy.deepcopy(shared.history['internal']) + + +def replace_character_names(text, name1, name2): + text = text.replace('{{user}}', name1).replace('{{char}}', name2) + return text.replace('', name1).replace('', name2) + + +def build_pygmalion_style_context(data): + context = "" + if 'char_persona' in data and data['char_persona'] != '': + context += f"{data['char_name']}'s Persona: {data['char_persona']}\n" + + if 'world_scenario' in data and data['world_scenario'] != '': + context += f"Scenario: {data['world_scenario']}\n" + + context = f"{context.strip()}\n\n" + return context + + +def generate_pfp_cache(character): + cache_folder = Path("cache") + if not cache_folder.exists(): + cache_folder.mkdir() + + for path in [Path(f"characters/{character}.{extension}") for extension in ['png', 'jpg', 'jpeg']]: + if path.exists(): + img = make_thumbnail(Image.open(path)) + img.save(Path('cache/pfp_character.png'), format='PNG') + return img + + return None + + +def load_character(character, name1, name2, instruct=False): + shared.character = character + context = greeting = turn_template = "" + greeting_field = 'greeting' + picture = None + + # Deleting the profile picture cache, if any + if Path("cache/pfp_character.png").exists(): + Path("cache/pfp_character.png").unlink() + + if character != 'None': + folder = 'characters' if not instruct else 'characters/instruction-following' + picture = generate_pfp_cache(character) + for extension in ["yml", "yaml", "json"]: + filepath = Path(f'{folder}/{character}.{extension}') + if filepath.exists(): + break + + file_contents = open(filepath, 'r', encoding='utf-8').read() + data = json.loads(file_contents) if extension == "json" else yaml.safe_load(file_contents) + + # Finding the bot's name + for k in ['name', 'bot', '<|bot|>', 'char_name']: + if k in data and data[k] != '': + name2 = data[k] + break + + # Find the user name (if any) + for k in ['your_name', 'user', '<|user|>']: + if k in data and data[k] != '': + name1 = data[k] + break + + for field in ['context', 'greeting', 'example_dialogue', 'char_persona', 'char_greeting', 'world_scenario']: + if field in data: + data[field] = replace_character_names(data[field], name1, name2) + + if 'context' in data: + context = data['context'] + if not instruct: + context = context.strip() + '\n' + elif "char_persona" in data: + context = build_pygmalion_style_context(data) + greeting_field = 'char_greeting' + + if 'example_dialogue' in data: + context += f"{data['example_dialogue'].strip()}\n" + + if greeting_field in data: + greeting = data[greeting_field] + + if 'turn_template' in data: + turn_template = data['turn_template'] + + else: + context = shared.settings['context'] + name2 = shared.settings['name2'] + greeting = shared.settings['greeting'] + turn_template = shared.settings['turn_template'] + + if not instruct: + shared.history['internal'] = [] + shared.history['visible'] = [] + if shared.character != 'None' and Path(f'logs/{shared.character}_persistent.json').exists(): + load_history(open(Path(f'logs/{shared.character}_persistent.json'), 'rb').read(), name1, name2) + else: + # Insert greeting if it exists + if greeting != "": + shared.history['internal'] += [['<|BEGIN-VISIBLE-CHAT|>', greeting]] + shared.history['visible'] += [['', apply_extensions("output", greeting)]] + + # Create .json log files since they don't already exist + save_history('instruct' if instruct else 'chat') + + return name1, name2, picture, greeting, context, turn_template.replace("\n", r"\n") + + +@functools.cache +def load_character_memoized(character, name1, name2, instruct=False): + return load_character(character, name1, name2, instruct=instruct) + + +def upload_character(json_file, img, tavern=False): + json_file = json_file if type(json_file) == str else json_file.decode('utf-8') + data = json.loads(json_file) + outfile_name = data["char_name"] + i = 1 + while Path(f'characters/{outfile_name}.json').exists(): + outfile_name = f'{data["char_name"]}_{i:03d}' + i += 1 + + if tavern: + outfile_name = f'TavernAI-{outfile_name}' + + with open(Path(f'characters/{outfile_name}.json'), 'w', encoding='utf-8') as f: + f.write(json_file) + + if img is not None: + img.save(Path(f'characters/{outfile_name}.png')) + + logger.info(f'New character saved to "characters/{outfile_name}.json".') + return gr.update(value=outfile_name, choices=utils.get_available_characters()) + + +def upload_tavern_character(img, _json): + _json = {"char_name": _json['name'], "char_persona": _json['description'], "char_greeting": _json["first_mes"], "example_dialogue": _json['mes_example'], "world_scenario": _json['scenario']} + return upload_character(json.dumps(_json), img, tavern=True) + + +def check_tavern_character(img): + if "chara" not in img.info: + return "Not a TavernAI card", None, None, gr.update(interactive=False) + decoded_string = base64.b64decode(img.info['chara']) + _json = json.loads(decoded_string) + if "data" in _json: + _json = _json["data"] + return _json['name'], _json['description'], _json, gr.update(interactive=True) + + +def upload_your_profile_picture(img): + cache_folder = Path("cache") + if not cache_folder.exists(): + cache_folder.mkdir() + + if img is None: + if Path("cache/pfp_me.png").exists(): + Path("cache/pfp_me.png").unlink() + else: + img = make_thumbnail(img) + img.save(Path('cache/pfp_me.png')) + logger.info('Profile picture saved to "cache/pfp_me.png"') + + +def generate_character_yaml(name, greeting, context): + data = { + 'name': name, + 'greeting': greeting, + 'context': context, + } + + data = {k: v for k, v in data.items() if v} # Strip falsy + return yaml.dump(data, sort_keys=False) + + +def generate_instruction_template_yaml(user, bot, context, turn_template): + data = { + 'user': user, + 'bot': bot, + 'turn_template': turn_template, + 'context': context, + } + + data = {k: v for k, v in data.items() if v} # Strip falsy + return yaml.dump(data, sort_keys=False) + + +def save_character(name, greeting, context, picture, filename): + if filename == "": + logger.error("The filename is empty, so the character will not be saved.") + return + + data = generate_character_yaml(name, greeting, context) + filepath = Path(f'characters/{filename}.yaml') + save_file(filepath, data) + path_to_img = Path(f'characters/{filename}.png') + if picture is not None: + picture.save(path_to_img) + logger.info(f'Saved {path_to_img}.') + + +def delete_character(name, instruct=False): + for extension in ["yml", "yaml", "json"]: + delete_file(Path(f'characters/{name}.{extension}')) + + delete_file(Path(f'characters/{name}.png')) diff --git a/modules/deepspeed_parameters.py b/modules/deepspeed_parameters.py new file mode 100644 index 0000000000000000000000000000000000000000..9116f5792fea4edf4b536b6605ee40e254109a98 --- /dev/null +++ b/modules/deepspeed_parameters.py @@ -0,0 +1,74 @@ +def generate_ds_config(ds_bf16, train_batch_size, nvme_offload_dir): + ''' + DeepSpeed configration + https://huggingface.co/docs/transformers/main_classes/deepspeed + ''' + + if nvme_offload_dir: + ds_config = { + "fp16": { + "enabled": not ds_bf16, + }, + "bf16": { + "enabled": ds_bf16, + }, + "zero_optimization": { + "stage": 3, + "offload_param": { + "device": "nvme", + "nvme_path": nvme_offload_dir, + "pin_memory": True, + "buffer_count": 5, + "buffer_size": 1e9, + "max_in_cpu": 1e9 + }, + "overlap_comm": True, + "reduce_bucket_size": "auto", + "contiguous_gradients": True, + "sub_group_size": 1e8, + "stage3_prefetch_bucket_size": "auto", + "stage3_param_persistence_threshold": "auto", + "stage3_max_live_parameters": "auto", + "stage3_max_reuse_distance": "auto", + }, + "aio": { + "block_size": 262144, + "queue_depth": 32, + "thread_count": 1, + "single_submit": False, + "overlap_events": True + }, + "steps_per_print": 2000, + "train_batch_size": train_batch_size, + "train_micro_batch_size_per_gpu": 1, + "wall_clock_breakdown": False + } + else: + ds_config = { + "fp16": { + "enabled": not ds_bf16, + }, + "bf16": { + "enabled": ds_bf16, + }, + "zero_optimization": { + "stage": 3, + "offload_param": { + "device": "cpu", + "pin_memory": True + }, + "overlap_comm": True, + "contiguous_gradients": True, + "reduce_bucket_size": "auto", + "stage3_prefetch_bucket_size": "auto", + "stage3_param_persistence_threshold": "auto", + "stage3_max_live_parameters": "auto", + "stage3_max_reuse_distance": "auto", + }, + "steps_per_print": 2000, + "train_batch_size": train_batch_size, + "train_micro_batch_size_per_gpu": 1, + "wall_clock_breakdown": False + } + + return ds_config diff --git a/modules/evaluate.py b/modules/evaluate.py new file mode 100644 index 0000000000000000000000000000000000000000..d94863d978e51e3240b967df622a5fd313713501 --- /dev/null +++ b/modules/evaluate.py @@ -0,0 +1,154 @@ +import datetime +from pathlib import Path + +import pandas as pd +import torch +from datasets import load_dataset +from tqdm import tqdm + +from modules import shared +from modules.models import load_model, unload_model +from modules.models_settings import ( + get_model_settings_from_yamls, + update_model_parameters +) +from modules.text_generation import encode + + +def load_past_evaluations(): + if Path('logs/evaluations.csv').exists(): + df = pd.read_csv(Path('logs/evaluations.csv'), dtype=str) + df['Perplexity'] = pd.to_numeric(df['Perplexity']) + return df + else: + return pd.DataFrame(columns=['Model', 'LoRAs', 'Dataset', 'Perplexity', 'stride', 'max_length', 'Date', 'Comment']) + + +past_evaluations = load_past_evaluations() + + +def save_past_evaluations(df): + global past_evaluations + past_evaluations = df + filepath = Path('logs/evaluations.csv') + filepath.parent.mkdir(parents=True, exist_ok=True) + df.to_csv(filepath, index=False) + + +def calculate_perplexity(models, input_dataset, stride, _max_length): + ''' + Based on: + https://huggingface.co/docs/transformers/perplexity#calculating-ppl-with-fixedlength-models + ''' + + global past_evaluations + cumulative_log = '' + cumulative_log += "Loading the input dataset...\n\n" + yield cumulative_log + + # Copied from https://github.com/qwopqwop200/GPTQ-for-LLaMa/blob/triton/utils/datautils.py + if input_dataset == 'wikitext': + data = load_dataset('wikitext', 'wikitext-2-raw-v1', split='test') + text = "\n\n".join(data['text']) + elif input_dataset == 'ptb': + data = load_dataset('ptb_text_only', 'penn_treebank', split='validation') + text = "\n\n".join(data['sentence']) + elif input_dataset == 'ptb_new': + data = load_dataset('ptb_text_only', 'penn_treebank', split='test') + text = " ".join(data['sentence']) + else: + with open(Path(f'training/datasets/{input_dataset}.txt'), 'r', encoding='utf-8') as f: + text = f.read() + + for model in models: + if is_in_past_evaluations(model, input_dataset, stride, _max_length): + cumulative_log += f"{model} has already been tested. Ignoring.\n\n" + yield cumulative_log + continue + + if model != 'current model': + try: + yield cumulative_log + f"Loading {model}...\n\n" + model_settings = get_model_settings_from_yamls(model) + shared.settings.update(model_settings) # hijacking the interface defaults + update_model_parameters(model_settings) # hijacking the command-line arguments + shared.model_name = model + unload_model() + shared.model, shared.tokenizer = load_model(shared.model_name) + except: + cumulative_log += f"Failed to load {model}. Moving on.\n\n" + yield cumulative_log + continue + + cumulative_log += f"Processing {shared.model_name}...\n\n" + yield cumulative_log + "Tokenizing the input dataset...\n\n" + encodings = encode(text, add_special_tokens=False) + seq_len = encodings.shape[1] + if _max_length: + max_length = _max_length + elif hasattr(shared.model.config, 'max_position_embeddings'): + max_length = shared.model.config.max_position_embeddings + else: + max_length = 2048 + + nlls = [] + prev_end_loc = 0 + for begin_loc in tqdm(range(0, seq_len, stride)): + yield cumulative_log + f"Evaluating... {100*begin_loc/seq_len:.2f}%" + end_loc = min(begin_loc + max_length, seq_len) + trg_len = end_loc - prev_end_loc # may be different from stride on last loop + input_ids = encodings[:, begin_loc:end_loc] + target_ids = input_ids.clone() + target_ids[:, :-trg_len] = -100 + + with torch.no_grad(): + outputs = shared.model(input_ids=input_ids, labels=target_ids) + + # loss is calculated using CrossEntropyLoss which averages over valid labels + # N.B. the model only calculates loss over trg_len - 1 labels, because it internally shifts the labels + # to the left by 1. + neg_log_likelihood = outputs.loss + + nlls.append(neg_log_likelihood) + + prev_end_loc = end_loc + if end_loc == seq_len: + break + + ppl = torch.exp(torch.stack(nlls).mean()) + add_entry_to_past_evaluations(float(ppl), shared.model_name, input_dataset, stride, _max_length) + save_past_evaluations(past_evaluations) + cumulative_log += f"The perplexity for {shared.model_name} is: {float(ppl)}\n\n" + yield cumulative_log + + +def add_entry_to_past_evaluations(perplexity, model, dataset, stride, max_length): + global past_evaluations + entry = { + 'Model': model, + 'LoRAs': ', '.join(shared.lora_names) or '-', + 'Dataset': dataset, + 'Perplexity': perplexity, + 'stride': str(stride), + 'max_length': str(max_length), + 'Date': datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), + 'Comment': '' + } + past_evaluations = pd.concat([past_evaluations, pd.DataFrame([entry])], ignore_index=True) + + +def is_in_past_evaluations(model, dataset, stride, max_length): + entries = past_evaluations[(past_evaluations['Model'] == model) & + (past_evaluations['Dataset'] == dataset) & + (past_evaluations['max_length'] == str(max_length)) & + (past_evaluations['stride'] == str(stride))] + + if entries.shape[0] > 0: + return True + else: + return False + + +def generate_markdown_table(): + sorted_df = past_evaluations.sort_values(by=['Dataset', 'stride', 'Perplexity', 'Date']) + return sorted_df diff --git a/modules/exllama.py b/modules/exllama.py new file mode 100644 index 0000000000000000000000000000000000000000..0d16f4ddc2d450fe14bbeab715f747c154bef917 --- /dev/null +++ b/modules/exllama.py @@ -0,0 +1,114 @@ +import sys +from pathlib import Path + +from torch import version as torch_version + +from modules import shared +from modules.logging_colors import logger + +try: + from exllama.generator import ExLlamaGenerator + from exllama.model import ExLlama, ExLlamaCache, ExLlamaConfig + from exllama.tokenizer import ExLlamaTokenizer +except: + logger.warning('Exllama module failed to load. Will attempt to load from repositories.') + try: + from modules.relative_imports import RelativeImport + + with RelativeImport("repositories/exllama"): + from generator import ExLlamaGenerator + from model import ExLlama, ExLlamaCache, ExLlamaConfig + from tokenizer import ExLlamaTokenizer + except: + logger.error("Could not find repositories/exllama/. Make sure that exllama is cloned inside repositories/ and is up to date.") + raise + + +class ExllamaModel: + def __init__(self): + pass + + @classmethod + def from_pretrained(self, path_to_model): + + path_to_model = Path(f'{shared.args.model_dir}') / Path(path_to_model) + tokenizer_model_path = path_to_model / "tokenizer.model" + model_config_path = path_to_model / "config.json" + + # Find the model checkpoint + model_path = None + for ext in ['.safetensors', '.pt', '.bin']: + found = list(path_to_model.glob(f"*{ext}")) + if len(found) > 0: + if len(found) > 1: + logger.warning(f'More than one {ext} model has been found. The last one will be selected. It could be wrong.') + + model_path = found[-1] + break + + config = ExLlamaConfig(str(model_config_path)) + config.model_path = str(model_path) + config.max_seq_len = shared.args.max_seq_len + config.compress_pos_emb = shared.args.compress_pos_emb + if shared.args.gpu_split: + config.set_auto_map(shared.args.gpu_split) + config.gpu_peer_fix = True + if torch_version.hip: + config.rmsnorm_no_half2 = True + config.rope_no_half2 = True + config.matmul_no_half2 = True + config.silu_no_half2 = True + + + model = ExLlama(config) + tokenizer = ExLlamaTokenizer(str(tokenizer_model_path)) + cache = ExLlamaCache(model) + generator = ExLlamaGenerator(model, tokenizer, cache) + + result = self() + result.config = config + result.model = model + result.cache = cache + result.tokenizer = tokenizer + result.generator = generator + return result, result + + def generate_with_streaming(self, prompt, state): + self.generator.settings.temperature = state['temperature'] + self.generator.settings.top_p = state['top_p'] + self.generator.settings.top_k = state['top_k'] + self.generator.settings.typical = state['typical_p'] + self.generator.settings.token_repetition_penalty_max = state['repetition_penalty'] + self.generator.settings.token_repetition_penalty_sustain = -1 if state['repetition_penalty_range'] <= 0 else state['repetition_penalty_range'] + if state['ban_eos_token']: + self.generator.disallow_tokens([self.tokenizer.eos_token_id]) + else: + self.generator.disallow_tokens(None) + + self.generator.end_beam_search() + ids = self.generator.tokenizer.encode(prompt) + self.generator.gen_begin_reuse(ids) + initial_len = self.generator.sequence[0].shape[0] + has_leading_space = False + for i in range(state['max_new_tokens']): + token = self.generator.gen_single_token() + if i == 0 and self.generator.tokenizer.tokenizer.IdToPiece(int(token)).startswith('▁'): + has_leading_space = True + + decoded_text = self.generator.tokenizer.decode(self.generator.sequence[0][initial_len:]) + if has_leading_space: + decoded_text = ' ' + decoded_text + + yield decoded_text + if token.item() == self.generator.tokenizer.eos_token_id or shared.stop_everything: + break + + def generate(self, prompt, state): + output = '' + for output in self.generate_with_streaming(prompt, state): + pass + + return output + + def encode(self, string, **kwargs): + return self.tokenizer.encode(string) diff --git a/modules/exllama_hf.py b/modules/exllama_hf.py new file mode 100644 index 0000000000000000000000000000000000000000..181a77a6d7d1ab6648130606539ad183929d36f7 --- /dev/null +++ b/modules/exllama_hf.py @@ -0,0 +1,111 @@ +import os +from pathlib import Path +from typing import Any, Dict, Optional, Union + +import torch +from torch.nn import CrossEntropyLoss +from transformers import GenerationConfig, PretrainedConfig, PreTrainedModel +from transformers.modeling_outputs import CausalLMOutputWithPast + +from modules import shared +from modules.logging_colors import logger + +try: + from exllama.model import ExLlama, ExLlamaCache, ExLlamaConfig +except: + logger.warning('Exllama module failed to load. Will attempt to load from repositories.') + try: + from modules.relative_imports import RelativeImport + + with RelativeImport("repositories/exllama"): + from model import ExLlama, ExLlamaCache, ExLlamaConfig + except: + logger.error("Could not find repositories/exllama/. Make sure that exllama is cloned inside repositories/ and is up to date.") + raise + + +class ExllamaHF(PreTrainedModel): + def __init__(self, config: ExLlamaConfig): + super().__init__(PretrainedConfig()) + self.ex_config = config + self.ex_model = ExLlama(self.ex_config) + self.generation_config = GenerationConfig() + self.lora = None + + def _validate_model_class(self): + pass + + def _validate_model_kwargs(self, model_kwargs: Dict[str, Any]): + pass + + def prepare_inputs_for_generation(self, input_ids, **kwargs): + return {'input_ids': input_ids, **kwargs} + + @property + def device(self) -> torch.device: + return torch.device(0) + + def __call__(self, *args, **kwargs): + # TODO: Some decoding methods (such as Contrastive Search) may not work at this time + assert len(args) == 0, 'no *args should be passed to forward' + use_cache = kwargs.get('use_cache', True) + labels = kwargs.get('labels', None) + seq = kwargs['input_ids'][0].tolist() + cache = kwargs['past_key_values'] if 'past_key_values' in kwargs else None + if cache is None: + cache = ExLlamaCache(self.ex_model) + self.ex_model.forward(torch.tensor([seq[:-1]], dtype=torch.long), cache, preprocess_only=True, lora=self.lora) + + logits = self.ex_model.forward(torch.tensor([seq[-1:]], dtype=torch.long), cache, lora=self.lora).to(kwargs['input_ids'].device) + + loss = None + if labels is not None: + # Shift so that tokens < n predict n + shift_logits = logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + # Flatten the tokens + loss_fct = CrossEntropyLoss() + shift_logits = shift_logits.view(-1, logits.shape[-1]) + shift_labels = shift_labels.view(-1) + # Enable model parallelism + shift_labels = shift_labels.to(shift_logits.device) + loss = loss_fct(shift_logits, shift_labels) + + return CausalLMOutputWithPast(logits=logits, past_key_values=cache if use_cache else None) + + @classmethod + def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs): + assert len(model_args) == 0 and len(kwargs) == 0, "extra args is currently not supported" + if isinstance(pretrained_model_name_or_path, str): + pretrained_model_name_or_path = Path(pretrained_model_name_or_path) + + pretrained_model_name_or_path = Path(f'{shared.args.model_dir}') / Path(pretrained_model_name_or_path) + config = ExLlamaConfig(pretrained_model_name_or_path / 'config.json') + + # from 'oobabooga/text-generation-webui/modules/exllama.py' + weight_path = None + for ext in ['.safetensors', '.pt', '.bin']: + found = list(pretrained_model_name_or_path.glob(f"*{ext}")) + if len(found) > 0: + weight_path = found[-1] + break + assert weight_path is not None, f'could not find weight in "{pretrained_model_name_or_path}"' + + config.model_path = str(weight_path) + config.max_seq_len = shared.args.max_seq_len + config.compress_pos_emb = shared.args.compress_pos_emb + if shared.args.gpu_split: + config.set_auto_map(shared.args.gpu_split) + config.gpu_peer_fix = True + if torch.version.hip: + config.rmsnorm_no_half2 = True + config.rope_no_half2 = True + config.matmul_no_half2 = True + config.silu_no_half2 = True + + # This slowes down a bit but align better with autogptq generation. + # TODO: Should give user choice to tune the exllama config + # config.fused_attn = False + # config.fused_mlp_thd = 0 + + return ExllamaHF(config) diff --git a/modules/extensions.py b/modules/extensions.py new file mode 100644 index 0000000000000000000000000000000000000000..4950e04e19080d764881c29ced8d6cc3433faf97 --- /dev/null +++ b/modules/extensions.py @@ -0,0 +1,193 @@ +import traceback +from functools import partial + +import gradio as gr + +import extensions +import modules.shared as shared +from modules.logging_colors import logger + +state = {} +available_extensions = [] +setup_called = set() + + +def apply_settings(extension, name): + if not hasattr(extension, 'params'): + return + + for param in extension.params: + _id = f"{name}-{param}" + if _id not in shared.settings: + continue + + extension.params[param] = shared.settings[_id] + + +def load_extensions(): + global state, setup_called + for i, name in enumerate(shared.args.extensions): + if name in available_extensions: + if name != 'api': + logger.info(f'Loading the extension "{name}"...') + try: + exec(f"import extensions.{name}.script") + extension = getattr(extensions, name).script + apply_settings(extension, name) + if extension not in setup_called and hasattr(extension, "setup"): + setup_called.add(extension) + extension.setup() + + state[name] = [True, i] + except: + logger.error(f'Failed to load the extension "{name}".') + traceback.print_exc() + + +# This iterator returns the extensions in the order specified in the command-line +def iterator(): + for name in sorted(state, key=lambda x: state[x][1]): + if state[name][0]: + yield getattr(extensions, name).script, name + + +# Extension functions that map string -> string +def _apply_string_extensions(function_name, text): + for extension, _ in iterator(): + if hasattr(extension, function_name): + text = getattr(extension, function_name)(text) + + return text + + +# Input hijack of extensions +def _apply_input_hijack(text, visible_text): + for extension, _ in iterator(): + if hasattr(extension, 'input_hijack') and extension.input_hijack['state']: + extension.input_hijack['state'] = False + if callable(extension.input_hijack['value']): + text, visible_text = extension.input_hijack['value'](text, visible_text) + else: + text, visible_text = extension.input_hijack['value'] + + return text, visible_text + + +# custom_generate_chat_prompt handling - currently only the first one will work +def _apply_custom_generate_chat_prompt(text, state, **kwargs): + for extension, _ in iterator(): + if hasattr(extension, 'custom_generate_chat_prompt'): + return extension.custom_generate_chat_prompt(text, state, **kwargs) + + return None + + +# Extension that modifies the input parameters before they are used +def _apply_state_modifier_extensions(state): + for extension, _ in iterator(): + if hasattr(extension, "state_modifier"): + state = getattr(extension, "state_modifier")(state) + + return state + + +# Extension that modifies the chat history before it is used +def _apply_history_modifier_extensions(history): + for extension, _ in iterator(): + if hasattr(extension, "history_modifier"): + history = getattr(extension, "history_modifier")(history) + + return history + + +# Extension functions that override the default tokenizer output - currently only the first one will work +def _apply_tokenizer_extensions(function_name, state, prompt, input_ids, input_embeds): + for extension, _ in iterator(): + if hasattr(extension, function_name): + return getattr(extension, function_name)(state, prompt, input_ids, input_embeds) + + return prompt, input_ids, input_embeds + + +# Get prompt length in tokens after applying extension functions which override the default tokenizer output +# currently only the first one will work +def _apply_custom_tokenized_length(prompt): + for extension, _ in iterator(): + if hasattr(extension, 'custom_tokenized_length'): + return getattr(extension, 'custom_tokenized_length')(prompt) + + return None + + +# Custom generate reply handling - currently only the first one will work +def _apply_custom_generate_reply(): + for extension, _ in iterator(): + if hasattr(extension, 'custom_generate_reply'): + return getattr(extension, 'custom_generate_reply') + + return None + + +def _apply_custom_css(): + all_css = '' + for extension, _ in iterator(): + if hasattr(extension, 'custom_css'): + all_css += getattr(extension, 'custom_css')() + + return all_css + + +def _apply_custom_js(): + all_js = '' + for extension, _ in iterator(): + if hasattr(extension, 'custom_js'): + all_js += getattr(extension, 'custom_js')() + + return all_js + + +def create_extensions_block(): + to_display = [] + for extension, name in iterator(): + if hasattr(extension, "ui") and not (hasattr(extension, 'params') and extension.params.get('is_tab', False)): + to_display.append((extension, name)) + + # Creating the extension ui elements + if len(to_display) > 0: + with gr.Column(elem_id="extensions"): + for row in to_display: + extension, name = row + display_name = getattr(extension, 'params', {}).get('display_name', name) + gr.Markdown(f"\n### {display_name}") + extension.ui() + + +def create_extensions_tabs(): + for extension, name in iterator(): + if hasattr(extension, "ui") and (hasattr(extension, 'params') and extension.params.get('is_tab', False)): + display_name = getattr(extension, 'params', {}).get('display_name', name) + with gr.Tab(display_name, elem_classes="extension-tab"): + extension.ui() + + +EXTENSION_MAP = { + "input": partial(_apply_string_extensions, "input_modifier"), + "output": partial(_apply_string_extensions, "output_modifier"), + "state": _apply_state_modifier_extensions, + "history": _apply_history_modifier_extensions, + "bot_prefix": partial(_apply_string_extensions, "bot_prefix_modifier"), + "tokenizer": partial(_apply_tokenizer_extensions, "tokenizer_modifier"), + "input_hijack": _apply_input_hijack, + "custom_generate_chat_prompt": _apply_custom_generate_chat_prompt, + "custom_generate_reply": _apply_custom_generate_reply, + "tokenized_length": _apply_custom_tokenized_length, + "css": _apply_custom_css, + "js": _apply_custom_js +} + + +def apply_extensions(typ, *args, **kwargs): + if typ not in EXTENSION_MAP: + raise ValueError(f"Invalid extension type {typ}") + + return EXTENSION_MAP[typ](*args, **kwargs) diff --git a/modules/github.py b/modules/github.py new file mode 100644 index 0000000000000000000000000000000000000000..75101538e8a0cc6305b98c0b76ed7a0aca583cab --- /dev/null +++ b/modules/github.py @@ -0,0 +1,29 @@ +import os +import subprocess + + +def clone_or_pull_repository(github_url): + repository_folder = "extensions" + repo_name = github_url.split("/")[-1].split(".")[0] + + # Check if the repository folder exists + if not os.path.exists(repository_folder): + os.makedirs(repository_folder) + + repo_path = os.path.join(repository_folder, repo_name) + + # Check if the repository is already cloned + if os.path.exists(repo_path): + # Perform a 'git pull' to update the repository + try: + pull_output = subprocess.check_output(["git", "-C", repo_path, "pull"], stderr=subprocess.STDOUT) + return pull_output.decode() + except subprocess.CalledProcessError as e: + return str(e) + + # Clone the repository + try: + clone_output = subprocess.check_output(["git", "clone", github_url, repo_path], stderr=subprocess.STDOUT) + return clone_output.decode() + except subprocess.CalledProcessError as e: + return str(e) diff --git a/modules/html_generator.py b/modules/html_generator.py new file mode 100644 index 0000000000000000000000000000000000000000..509fe70b7e64b354e9549f475a0e5e956528ef8e --- /dev/null +++ b/modules/html_generator.py @@ -0,0 +1,273 @@ +import os +import re +import time +from pathlib import Path + +import markdown +from PIL import Image, ImageOps + +from modules.utils import get_available_chat_styles + +# This is to store the paths to the thumbnails of the profile pictures +image_cache = {} + +with open(Path(__file__).resolve().parent / '../css/html_readable_style.css', 'r') as f: + readable_css = f.read() +with open(Path(__file__).resolve().parent / '../css/html_4chan_style.css', 'r') as css_f: + _4chan_css = css_f.read() +with open(Path(__file__).resolve().parent / '../css/html_instruct_style.css', 'r') as f: + instruct_css = f.read() + +# Custom chat styles +chat_styles = {} +for k in get_available_chat_styles(): + chat_styles[k] = open(Path(f'css/chat_style-{k}.css'), 'r').read() + + +def fix_newlines(string): + string = string.replace('\n', '\n\n') + string = re.sub(r"\n{3,}", "\n\n", string) + string = string.strip() + return string + + +def replace_blockquote(m): + return m.group().replace('\n', '\n> ').replace('\\begin{blockquote}', '').replace('\\end{blockquote}', '') + + +def convert_to_markdown(string): + + # Blockquote + pattern = re.compile(r'\\begin{blockquote}(.*?)\\end{blockquote}', re.DOTALL) + string = pattern.sub(replace_blockquote, string) + + # Code + string = string.replace('\\begin{code}', '```') + string = string.replace('\\end{code}', '```') + string = re.sub(r"(.)```", r"\1\n```", string) + + result = '' + is_code = False + for line in string.split('\n'): + if line.lstrip(' ').startswith('```'): + is_code = not is_code + + result += line + if is_code or line.startswith('|'): # Don't add an extra \n for tables or code + result += '\n' + else: + result += '\n\n' + + if is_code: + result = result + '```' # Unfinished code block + + string = result.strip() + return markdown.markdown(string, extensions=['fenced_code', 'tables']) + + +def generate_basic_html(string): + string = convert_to_markdown(string) + string = f'
{string}
' + return string + + +def process_post(post, c): + t = post.split('\n') + number = t[0].split(' ')[1] + if len(t) > 1: + src = '\n'.join(t[1:]) + else: + src = '' + src = re.sub('>', '>', src) + src = re.sub('(>>[0-9]*)', '\\1', src) + src = re.sub('\n', '
\n', src) + src = f'
{src}\n' + src = f'Anonymous No.{number}\n{src}' + return src + + +def generate_4chan_html(f): + posts = [] + post = '' + c = -2 + for line in f.splitlines(): + line += "\n" + if line == '-----\n': + continue + elif line.startswith('--- '): + c += 1 + if post != '': + src = process_post(post, c) + posts.append(src) + post = line + else: + post += line + if post != '': + src = process_post(post, c) + posts.append(src) + + for i in range(len(posts)): + if i == 0: + posts[i] = f'
{posts[i]}
\n' + else: + posts[i] = f'
{posts[i]}
\n' + + output = '' + output += f'
' + for post in posts: + output += post + output += '
' + output = output.split('\n') + for i in range(len(output)): + output[i] = re.sub(r'^(>(.*?)(
|))', r'\1', output[i]) + output[i] = re.sub(r'^
(>(.*?)(
|))', r'
\1', output[i]) + output = '\n'.join(output) + + return output + + +def make_thumbnail(image): + image = image.resize((350, round(image.size[1] / image.size[0] * 350)), Image.Resampling.LANCZOS) + if image.size[1] > 470: + image = ImageOps.fit(image, (350, 470), Image.LANCZOS) + + return image + + +def get_image_cache(path): + cache_folder = Path("cache") + if not cache_folder.exists(): + cache_folder.mkdir() + + mtime = os.stat(path).st_mtime + if (path in image_cache and mtime != image_cache[path][0]) or (path not in image_cache): + img = make_thumbnail(Image.open(path)) + output_file = Path(f'cache/{path.name}_cache.png') + img.convert('RGB').save(output_file, format='PNG') + image_cache[path] = [mtime, output_file.as_posix()] + + return image_cache[path][1] + + +def generate_instruct_html(history): + output = f'
' + for i, _row in enumerate(history[::-1]): + row = [convert_to_markdown(entry) for entry in _row] + + output += f""" +
+
+
+ {row[1]} +
+
+
+ """ + + if len(row[0]) == 0: # don't display empty user messages + continue + + output += f""" +
+
+
+ {row[0]} +
+
+
+ """ + + output += "
" + + return output + + +def generate_cai_chat_html(history, name1, name2, style, reset_cache=False): + output = f'
' + + # We use ?name2 and ?time.time() to force the browser to reset caches + img_bot = f'' if Path("cache/pfp_character.png").exists() else '' + img_me = f'' if Path("cache/pfp_me.png").exists() else '' + + for i, _row in enumerate(history[::-1]): + row = [convert_to_markdown(entry) for entry in _row] + + output += f""" +
+
+ {img_bot} +
+
+
+ {name2} +
+
+ {row[1]} +
+
+
+ """ + + if len(row[0]) == 0: # don't display empty user messages + continue + + output += f""" +
+
+ {img_me} +
+
+
+ {name1} +
+
+ {row[0]} +
+
+
+ """ + + output += "
" + return output + + +def generate_chat_html(history, name1, name2, reset_cache=False): + output = f'
' + + for i, _row in enumerate(history[::-1]): + row = [convert_to_markdown(entry) for entry in _row] + + output += f""" +
+
+
+ {row[1]} +
+
+
+ """ + + if len(row[0]) == 0: # don't display empty user messages + continue + + output += f""" +
+
+
+ {row[0]} +
+
+
+ """ + + output += "
" + return output + + +def chat_html_wrapper(history, name1, name2, mode, style, reset_cache=False): + if mode == 'instruct': + return generate_instruct_html(history) + elif style == 'wpp': + return generate_chat_html(history, name1, name2) + else: + return generate_cai_chat_html(history, name1, name2, style, reset_cache) diff --git a/modules/llama_attn_hijack.py b/modules/llama_attn_hijack.py new file mode 100644 index 0000000000000000000000000000000000000000..925cdaa352326fdc23a3585699883d27b8de5c73 --- /dev/null +++ b/modules/llama_attn_hijack.py @@ -0,0 +1,171 @@ +import math +import sys +from typing import Optional, Tuple + +import torch +import torch.nn as nn +import transformers.models.llama.modeling_llama + +import modules.shared as shared +from modules.logging_colors import logger + +if shared.args.xformers: + try: + import xformers.ops + except Exception: + logger.error("xformers not found! Please install it before trying to use it.", file=sys.stderr) + + +def hijack_llama_attention(): + if shared.args.xformers: + transformers.models.llama.modeling_llama.LlamaAttention.forward = xformers_forward + logger.info("Replaced attention with xformers_attention") + elif shared.args.sdp_attention: + transformers.models.llama.modeling_llama.LlamaAttention.forward = sdp_attention_forward + logger.info("Replaced attention with sdp_attention") + + +def xformers_forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + output_attentions: bool = False, + use_cache: bool = False, +) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + bsz, q_len, _ = hidden_states.size() + + query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) + key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) + value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) + + kv_seq_len = key_states.shape[-2] + if past_key_value is not None: + kv_seq_len += past_key_value[0].shape[-2] + cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) + query_states, key_states = transformers.models.llama.modeling_llama.apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) + # [bsz, nh, t, hd] + + if past_key_value is not None: + # reuse k, v, self_attention + key_states = torch.cat([past_key_value[0], key_states], dim=2) + value_states = torch.cat([past_key_value[1], value_states], dim=2) + + past_key_value = (key_states, value_states) if use_cache else None + + # We only apply xformers optimizations if we don't need to output the whole attention matrix + if not output_attentions: + query_states = query_states.transpose(1, 2) + key_states = key_states.transpose(1, 2) + value_states = value_states.transpose(1, 2) + + # This is a nasty hack. We know attention_mask in transformers is either LowerTriangular or all Zeros. + # We therefore check if one element in the upper triangular portion is zero. If it is, then the mask is all zeros. + if attention_mask is None or attention_mask[0, 0, 0, 1] == 0: + # input and output should be of form (bsz, q_len, num_heads, head_dim) + attn_output = xformers.ops.memory_efficient_attention(query_states, key_states, value_states, attn_bias=None) + else: + # input and output should be of form (bsz, q_len, num_heads, head_dim) + attn_output = xformers.ops.memory_efficient_attention(query_states, key_states, value_states, attn_bias=xformers.ops.LowerTriangularMask()) + attn_weights = None + else: + attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) + + if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): + raise ValueError( + f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is" + f" {attn_weights.size()}" + ) + + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" + ) + attn_weights = attn_weights + attention_mask + attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)) + + # upcast attention to fp32 + attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) + attn_output = torch.matmul(attn_weights, value_states) + + if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.transpose(1, 2) + + attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) + attn_output = self.o_proj(attn_output) + return attn_output, attn_weights, past_key_value + + +def sdp_attention_forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + output_attentions: bool = False, + use_cache: bool = False, +) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + bsz, q_len, _ = hidden_states.size() + + query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) + key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) + value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) + + kv_seq_len = key_states.shape[-2] + if past_key_value is not None: + kv_seq_len += past_key_value[0].shape[-2] + cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) + query_states, key_states = transformers.models.llama.modeling_llama.apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) + # [bsz, nh, t, hd] + + if past_key_value is not None: + # reuse k, v, self_attention + key_states = torch.cat([past_key_value[0], key_states], dim=2) + value_states = torch.cat([past_key_value[1], value_states], dim=2) + + past_key_value = (key_states, value_states) if use_cache else None + + # We only apply sdp attention if we don't need to output the whole attention matrix + if not output_attentions: + attn_output = torch.nn.functional.scaled_dot_product_attention(query_states, key_states, value_states, attn_mask=attention_mask, is_causal=False) + attn_weights = None + else: + attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) + + if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): + raise ValueError( + f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is" + f" {attn_weights.size()}" + ) + + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" + ) + attn_weights = attn_weights + attention_mask + attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)) + + # upcast attention to fp32 + attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) + attn_output = torch.matmul(attn_weights, value_states) + + if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.transpose(1, 2) + attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) + + attn_output = self.o_proj(attn_output) + + return attn_output, attn_weights, past_key_value diff --git a/modules/llamacpp_model.py b/modules/llamacpp_model.py new file mode 100644 index 0000000000000000000000000000000000000000..10a852dbc356929f780d2dbed727e14f43eb5433 --- /dev/null +++ b/modules/llamacpp_model.py @@ -0,0 +1,101 @@ +''' +Based on +https://github.com/abetlen/llama-cpp-python + +Documentation: +https://abetlen.github.io/llama-cpp-python/ +''' + +import re +from functools import partial + +from llama_cpp import Llama, LlamaCache, LogitsProcessorList + +from modules import shared +from modules.callbacks import Iteratorize +from modules.logging_colors import logger + + +def ban_eos_logits_processor(eos_token, input_ids, logits): + logits[eos_token] = -float('inf') + return logits + + +class LlamaCppModel: + def __init__(self): + self.initialized = False + + def __del__(self): + self.model.__del__() + + @classmethod + def from_pretrained(self, path): + result = self() + cache_capacity = 0 + if shared.args.cache_capacity is not None: + if 'GiB' in shared.args.cache_capacity: + cache_capacity = int(re.sub('[a-zA-Z]', '', shared.args.cache_capacity)) * 1000 * 1000 * 1000 + elif 'MiB' in shared.args.cache_capacity: + cache_capacity = int(re.sub('[a-zA-Z]', '', shared.args.cache_capacity)) * 1000 * 1000 + else: + cache_capacity = int(shared.args.cache_capacity) + + logger.info("Cache capacity is " + str(cache_capacity) + " bytes") + params = { + 'model_path': str(path), + 'n_ctx': shared.args.n_ctx, + 'seed': int(shared.args.llama_cpp_seed), + 'n_threads': shared.args.threads or None, + 'n_batch': shared.args.n_batch, + 'use_mmap': not shared.args.no_mmap, + 'use_mlock': shared.args.mlock, + 'n_gpu_layers': shared.args.n_gpu_layers + } + + result.model = Llama(**params) + if cache_capacity > 0: + result.model.set_cache(LlamaCache(capacity_bytes=cache_capacity)) + + # This is ugly, but the model and the tokenizer are the same object in this library. + return result, result + + def encode(self, string): + if type(string) is str: + string = string.encode() + + return self.model.tokenize(string) + + def generate(self, prompt, state, callback=None): + prompt = prompt if type(prompt) is str else prompt.decode() + completion_chunks = self.model.create_completion( + prompt=prompt, + max_tokens=state['max_new_tokens'], + temperature=state['temperature'], + top_p=state['top_p'], + top_k=state['top_k'], + repeat_penalty=state['repetition_penalty'], + tfs_z=state['tfs'], + mirostat_mode=int(state['mirostat_mode']), + mirostat_tau=state['mirostat_tau'], + mirostat_eta=state['mirostat_eta'], + stream=True, + logits_processor=LogitsProcessorList([ + partial(ban_eos_logits_processor, self.model.token_eos()), + ]) if state['ban_eos_token'] else None, + ) + + output = "" + for completion_chunk in completion_chunks: + text = completion_chunk['choices'][0]['text'] + output += text + if callback: + callback(text) + + return output + + def generate_with_streaming(self, *args, **kwargs): + with Iteratorize(self.generate, args, kwargs, callback=None) as generator: + reply = '' + for token in generator: + reply += token + yield reply diff --git a/modules/loaders.py b/modules/loaders.py new file mode 100644 index 0000000000000000000000000000000000000000..44e893fbffb1644f801ba5d90a99f7180ca8ff68 --- /dev/null +++ b/modules/loaders.py @@ -0,0 +1,100 @@ +import functools + +import gradio as gr + +from modules import shared + +loaders_and_params = { + 'AutoGPTQ': [ + 'triton', + 'no_inject_fused_attention', + 'no_inject_fused_mlp', + 'no_use_cuda_fp16', + 'wbits', + 'groupsize', + 'desc_act', + 'gpu_memory', + 'cpu_memory', + 'cpu', + 'disk', + 'auto_devices', + 'trust_remote_code', + 'autogptq_info', + ], + 'GPTQ-for-LLaMa': [ + 'wbits', + 'groupsize', + 'model_type', + 'pre_layer', + 'gptq_for_llama_info', + ], + 'llama.cpp': [ + 'n_ctx', + 'n_gpu_layers', + 'n_batch', + 'threads', + 'no_mmap', + 'mlock', + 'llama_cpp_seed', + ], + 'Transformers': [ + 'cpu_memory', + 'gpu_memory', + 'trust_remote_code', + 'load_in_8bit', + 'bf16', + 'cpu', + 'disk', + 'auto_devices', + 'load_in_4bit', + 'use_double_quant', + 'quant_type', + 'compute_dtype', + 'trust_remote_code', + 'transformers_info' + ], + 'ExLlama' : [ + 'gpu_split', + 'max_seq_len', + 'compress_pos_emb', + 'exllama_info', + ], + 'ExLlama_HF' : [ + 'gpu_split', + 'max_seq_len', + 'compress_pos_emb', + 'exllama_HF_info', + ] +} + + +def get_gpu_memory_keys(): + return [k for k in shared.gradio if k.startswith('gpu_memory')] + + +@functools.cache +def get_all_params(): + all_params = set() + for k in loaders_and_params: + for el in loaders_and_params[k]: + all_params.add(el) + + if 'gpu_memory' in all_params: + all_params.remove('gpu_memory') + for k in get_gpu_memory_keys(): + all_params.add(k) + + return sorted(all_params) + + +def make_loader_params_visible(loader): + params = [] + all_params = get_all_params() + if loader in loaders_and_params: + params = loaders_and_params[loader] + + if 'gpu_memory' in params: + params.remove('gpu_memory') + params += get_gpu_memory_keys() + + return [gr.update(visible=True) if k in params else gr.update(visible=False) for k in all_params] diff --git a/modules/logging_colors.py b/modules/logging_colors.py new file mode 100644 index 0000000000000000000000000000000000000000..a0c97c3a76cfc17eb5d8d8bb310a5389ab5db719 --- /dev/null +++ b/modules/logging_colors.py @@ -0,0 +1,117 @@ +# Copied from https://stackoverflow.com/a/1336640 + +import logging +import platform + +logging.basicConfig( + format='%(asctime)s %(levelname)s:%(message)s', + datefmt='%Y-%m-%d %H:%M:%S', +) + + +def add_coloring_to_emit_windows(fn): + # add methods we need to the class + def _out_handle(self): + import ctypes + return ctypes.windll.kernel32.GetStdHandle(self.STD_OUTPUT_HANDLE) + out_handle = property(_out_handle) + + def _set_color(self, code): + import ctypes + + # Constants from the Windows API + self.STD_OUTPUT_HANDLE = -11 + hdl = ctypes.windll.kernel32.GetStdHandle(self.STD_OUTPUT_HANDLE) + ctypes.windll.kernel32.SetConsoleTextAttribute(hdl, code) + + setattr(logging.StreamHandler, '_set_color', _set_color) + + def new(*args): + FOREGROUND_BLUE = 0x0001 # text color contains blue. + FOREGROUND_GREEN = 0x0002 # text color contains green. + FOREGROUND_RED = 0x0004 # text color contains red. + FOREGROUND_INTENSITY = 0x0008 # text color is intensified. + FOREGROUND_WHITE = FOREGROUND_BLUE | FOREGROUND_GREEN | FOREGROUND_RED + # winbase.h + # STD_INPUT_HANDLE = -10 + # STD_OUTPUT_HANDLE = -11 + # STD_ERROR_HANDLE = -12 + + # wincon.h + # FOREGROUND_BLACK = 0x0000 + FOREGROUND_BLUE = 0x0001 + FOREGROUND_GREEN = 0x0002 + # FOREGROUND_CYAN = 0x0003 + FOREGROUND_RED = 0x0004 + FOREGROUND_MAGENTA = 0x0005 + FOREGROUND_YELLOW = 0x0006 + # FOREGROUND_GREY = 0x0007 + FOREGROUND_INTENSITY = 0x0008 # foreground color is intensified. + + # BACKGROUND_BLACK = 0x0000 + # BACKGROUND_BLUE = 0x0010 + # BACKGROUND_GREEN = 0x0020 + # BACKGROUND_CYAN = 0x0030 + # BACKGROUND_RED = 0x0040 + # BACKGROUND_MAGENTA = 0x0050 + BACKGROUND_YELLOW = 0x0060 + # BACKGROUND_GREY = 0x0070 + BACKGROUND_INTENSITY = 0x0080 # background color is intensified. + + levelno = args[1].levelno + if (levelno >= 50): + color = BACKGROUND_YELLOW | FOREGROUND_RED | FOREGROUND_INTENSITY | BACKGROUND_INTENSITY + elif (levelno >= 40): + color = FOREGROUND_RED | FOREGROUND_INTENSITY + elif (levelno >= 30): + color = FOREGROUND_YELLOW | FOREGROUND_INTENSITY + elif (levelno >= 20): + color = FOREGROUND_GREEN + elif (levelno >= 10): + color = FOREGROUND_MAGENTA + else: + color = FOREGROUND_WHITE + args[0]._set_color(color) + + ret = fn(*args) + args[0]._set_color(FOREGROUND_WHITE) + # print "after" + return ret + return new + + +def add_coloring_to_emit_ansi(fn): + # add methods we need to the class + def new(*args): + levelno = args[1].levelno + if (levelno >= 50): + color = '\x1b[31m' # red + elif (levelno >= 40): + color = '\x1b[31m' # red + elif (levelno >= 30): + color = '\x1b[33m' # yellow + elif (levelno >= 20): + color = '\x1b[32m' # green + elif (levelno >= 10): + color = '\x1b[35m' # pink + else: + color = '\x1b[0m' # normal + args[1].msg = color + args[1].msg + '\x1b[0m' # normal + # print "after" + return fn(*args) + return new + + +if platform.system() == 'Windows': + # Windows does not support ANSI escapes and we are using API calls to set the console color + logging.StreamHandler.emit = add_coloring_to_emit_windows(logging.StreamHandler.emit) +else: + # all non-Windows platforms are supporting ANSI escapes so we use them + logging.StreamHandler.emit = add_coloring_to_emit_ansi(logging.StreamHandler.emit) + # log = logging.getLogger() + # log.addFilter(log_filter()) + # //hdlr = logging.StreamHandler() + # //hdlr.setFormatter(formatter()) + +logger = logging.getLogger('text-generation-webui') +logger.setLevel(logging.DEBUG) diff --git a/modules/models.py b/modules/models.py new file mode 100644 index 0000000000000000000000000000000000000000..f12e700c2345fc574dcf8274ab3dbdefeba82a3f --- /dev/null +++ b/modules/models.py @@ -0,0 +1,334 @@ +import gc +import os +import re +import time +from pathlib import Path + +import torch +import transformers +from accelerate import infer_auto_device_map, init_empty_weights +from transformers import ( + AutoConfig, + AutoModel, + AutoModelForCausalLM, + AutoModelForSeq2SeqLM, + AutoTokenizer, + BitsAndBytesConfig, + LlamaTokenizer +) + +import modules.shared as shared +from modules import llama_attn_hijack, sampler_hijack +from modules.logging_colors import logger +from modules.models_settings import infer_loader + +transformers.logging.set_verbosity_error() + +local_rank = None +if shared.args.deepspeed: + import deepspeed + from transformers.deepspeed import ( + HfDeepSpeedConfig, + is_deepspeed_zero3_enabled + ) + + from modules.deepspeed_parameters import generate_ds_config + + # Distributed setup + local_rank = shared.args.local_rank if shared.args.local_rank is not None else int(os.getenv("LOCAL_RANK", "0")) + world_size = int(os.getenv("WORLD_SIZE", "1")) + torch.cuda.set_device(local_rank) + deepspeed.init_distributed() + ds_config = generate_ds_config(shared.args.bf16, 1 * world_size, shared.args.nvme_offload_dir) + dschf = HfDeepSpeedConfig(ds_config) # Keep this object alive for the Transformers integration + +sampler_hijack.hijack_samplers() + + +def load_model(model_name, loader=None): + logger.info(f"Loading {model_name}...") + t0 = time.time() + + shared.is_seq2seq = False + load_func_map = { + 'Transformers': huggingface_loader, + 'AutoGPTQ': AutoGPTQ_loader, + 'GPTQ-for-LLaMa': GPTQ_loader, + 'llama.cpp': llamacpp_loader, + 'FlexGen': flexgen_loader, + 'RWKV': RWKV_loader, + 'ExLlama': ExLlama_loader, + 'ExLlama_HF': ExLlama_HF_loader + } + + if loader is None: + if shared.args.loader is not None: + loader = shared.args.loader + else: + loader = infer_loader(model_name) + if loader is None: + logger.error('The path to the model does not exist. Exiting.') + return None, None + + shared.args.loader = loader + output = load_func_map[loader](model_name) + if type(output) is tuple: + model, tokenizer = output + else: + model = output + if model is None: + return None, None + else: + tokenizer = load_tokenizer(model_name, model) + + # Hijack attention with xformers + if any((shared.args.xformers, shared.args.sdp_attention)): + llama_attn_hijack.hijack_llama_attention() + + logger.info(f"Loaded the model in {(time.time()-t0):.2f} seconds.\n") + return model, tokenizer + + +def load_tokenizer(model_name, model): + tokenizer = None + if any(s in model_name.lower() for s in ['gpt-4chan', 'gpt4chan']) and Path(f"{shared.args.model_dir}/gpt-j-6B/").exists(): + tokenizer = AutoTokenizer.from_pretrained(Path(f"{shared.args.model_dir}/gpt-j-6B/")) + elif model.__class__.__name__ in ['LlamaForCausalLM', 'LlamaGPTQForCausalLM', 'ExllamaHF']: + # Try to load an universal LLaMA tokenizer + if not any(s in shared.model_name.lower() for s in ['llava', 'oasst']): + for p in [Path(f"{shared.args.model_dir}/llama-tokenizer/"), Path(f"{shared.args.model_dir}/oobabooga_llama-tokenizer/")]: + if p.exists(): + logger.info(f"Loading the universal LLaMA tokenizer from {p}...") + tokenizer = LlamaTokenizer.from_pretrained(p, clean_up_tokenization_spaces=True) + return tokenizer + + # Otherwise, load it from the model folder and hope that these + # are not outdated tokenizer files. + tokenizer = LlamaTokenizer.from_pretrained(Path(f"{shared.args.model_dir}/{model_name}/"), clean_up_tokenization_spaces=True) + try: + tokenizer.eos_token_id = 2 + tokenizer.bos_token_id = 1 + tokenizer.pad_token_id = 0 + except: + pass + else: + path_to_model = Path(f"{shared.args.model_dir}/{model_name}/") + if path_to_model.exists(): + tokenizer = AutoTokenizer.from_pretrained(path_to_model, trust_remote_code=shared.args.trust_remote_code) + + return tokenizer + + +def huggingface_loader(model_name): + path_to_model = Path(f'{shared.args.model_dir}/{model_name}') + if 'chatglm' in model_name.lower(): + LoaderClass = AutoModel + else: + config = AutoConfig.from_pretrained(path_to_model, trust_remote_code=shared.args.trust_remote_code) + if config.to_dict().get("is_encoder_decoder", False): + LoaderClass = AutoModelForSeq2SeqLM + shared.is_seq2seq = True + else: + LoaderClass = AutoModelForCausalLM + + # Load the model in simple 16-bit mode by default + if not any([shared.args.cpu, shared.args.load_in_8bit, shared.args.load_in_4bit, shared.args.auto_devices, shared.args.disk, shared.args.deepspeed, shared.args.gpu_memory is not None, shared.args.cpu_memory is not None]): + model = LoaderClass.from_pretrained(Path(f"{shared.args.model_dir}/{model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16, trust_remote_code=shared.args.trust_remote_code) + if torch.has_mps: + device = torch.device('mps') + model = model.to(device) + else: + model = model.cuda() + + # DeepSpeed ZeRO-3 + elif shared.args.deepspeed: + model = LoaderClass.from_pretrained(Path(f"{shared.args.model_dir}/{model_name}"), torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16) + model = deepspeed.initialize(model=model, config_params=ds_config, model_parameters=None, optimizer=None, lr_scheduler=None)[0] + model.module.eval() # Inference + logger.info(f"DeepSpeed ZeRO-3 is enabled: {is_deepspeed_zero3_enabled()}") + + # Custom + else: + params = { + "low_cpu_mem_usage": True, + "trust_remote_code": shared.args.trust_remote_code + } + + if not any((shared.args.cpu, torch.cuda.is_available(), torch.has_mps)): + logger.warning("torch.cuda.is_available() returned False. This means that no GPU has been detected. Falling back to CPU mode.") + shared.args.cpu = True + + if shared.args.cpu: + params["torch_dtype"] = torch.float32 + else: + params["device_map"] = 'auto' + if shared.args.load_in_4bit: + + # See https://github.com/huggingface/transformers/pull/23479/files + # and https://huggingface.co/blog/4bit-transformers-bitsandbytes + quantization_config_params = { + 'load_in_4bit': True, + 'bnb_4bit_compute_dtype': eval("torch.{}".format(shared.args.compute_dtype)) if shared.args.compute_dtype in ["bfloat16", "float16", "float32"] else None, + 'bnb_4bit_quant_type': shared.args.quant_type, + 'bnb_4bit_use_double_quant': shared.args.use_double_quant, + } + + logger.warning("Using the following 4-bit params: " + str(quantization_config_params)) + params['quantization_config'] = BitsAndBytesConfig(**quantization_config_params) + + elif shared.args.load_in_8bit and any((shared.args.auto_devices, shared.args.gpu_memory)): + params['quantization_config'] = BitsAndBytesConfig(load_in_8bit=True, llm_int8_enable_fp32_cpu_offload=True) + elif shared.args.load_in_8bit: + params['quantization_config'] = BitsAndBytesConfig(load_in_8bit=True) + elif shared.args.bf16: + params["torch_dtype"] = torch.bfloat16 + else: + params["torch_dtype"] = torch.float16 + + params['max_memory'] = get_max_memory_dict() + if shared.args.disk: + params["offload_folder"] = shared.args.disk_cache_dir + + checkpoint = Path(f'{shared.args.model_dir}/{model_name}') + if shared.args.load_in_8bit and params.get('max_memory', None) is not None and params['device_map'] == 'auto': + config = AutoConfig.from_pretrained(checkpoint, trust_remote_code=shared.args.trust_remote_code) + with init_empty_weights(): + model = LoaderClass.from_config(config, trust_remote_code=shared.args.trust_remote_code) + + model.tie_weights() + params['device_map'] = infer_auto_device_map( + model, + dtype=torch.int8, + max_memory=params['max_memory'], + no_split_module_classes=model._no_split_modules + ) + + model = LoaderClass.from_pretrained(checkpoint, **params) + + return model + + +def flexgen_loader(model_name): + from flexgen.flex_opt import CompressionConfig, ExecutionEnv, OptLM, Policy + + # Initialize environment + env = ExecutionEnv.create(shared.args.disk_cache_dir) + + # Offloading policy + policy = Policy(1, 1, + shared.args.percent[0], shared.args.percent[1], + shared.args.percent[2], shared.args.percent[3], + shared.args.percent[4], shared.args.percent[5], + overlap=True, sep_layer=True, pin_weight=shared.args.pin_weight, + cpu_cache_compute=False, attn_sparsity=1.0, + compress_weight=shared.args.compress_weight, + comp_weight_config=CompressionConfig( + num_bits=4, group_size=64, + group_dim=0, symmetric=False), + compress_cache=False, + comp_cache_config=CompressionConfig( + num_bits=4, group_size=64, + group_dim=2, symmetric=False)) + + model = OptLM(f"facebook/{model_name}", env, shared.args.model_dir, policy) + return model + + +def RWKV_loader(model_name): + from modules.RWKV import RWKVModel, RWKVTokenizer + + model = RWKVModel.from_pretrained(Path(f'{shared.args.model_dir}/{model_name}'), dtype="fp32" if shared.args.cpu else "bf16" if shared.args.bf16 else "fp16", device="cpu" if shared.args.cpu else "cuda") + tokenizer = RWKVTokenizer.from_pretrained(Path(shared.args.model_dir)) + return model, tokenizer + + +def llamacpp_loader(model_name): + from modules.llamacpp_model import LlamaCppModel + + path = Path(f'{shared.args.model_dir}/{model_name}') + if path.is_file(): + model_file = path + else: + model_file = list(Path(f'{shared.args.model_dir}/{model_name}').glob('*ggml*.bin'))[0] + + logger.info(f"llama.cpp weights detected: {model_file}\n") + model, tokenizer = LlamaCppModel.from_pretrained(model_file) + return model, tokenizer + + +def GPTQ_loader(model_name): + + # Monkey patch + if shared.args.monkey_patch: + logger.warning("Applying the monkey patch for using LoRAs with GPTQ models. It may cause undefined behavior outside its intended scope.") + from modules.monkey_patch_gptq_lora import load_model_llama + + model, _ = load_model_llama(model_name) + + # No monkey patch + else: + import modules.GPTQ_loader + + model = modules.GPTQ_loader.load_quantized(model_name) + + return model + + +def AutoGPTQ_loader(model_name): + import modules.AutoGPTQ_loader + + return modules.AutoGPTQ_loader.load_quantized(model_name) + + +def ExLlama_loader(model_name): + from modules.exllama import ExllamaModel + + model, tokenizer = ExllamaModel.from_pretrained(model_name) + return model, tokenizer + + +def ExLlama_HF_loader(model_name): + from modules.exllama_hf import ExllamaHF + + return ExllamaHF.from_pretrained(model_name) + + +def get_max_memory_dict(): + max_memory = {} + if shared.args.gpu_memory: + memory_map = list(map(lambda x: x.strip(), shared.args.gpu_memory)) + for i in range(len(memory_map)): + max_memory[i] = f'{memory_map[i]}GiB' if not re.match('.*ib$', memory_map[i].lower()) else memory_map[i] + + max_cpu_memory = shared.args.cpu_memory.strip() if shared.args.cpu_memory is not None else '99GiB' + max_memory['cpu'] = f'{max_cpu_memory}GiB' if not re.match('.*ib$', max_cpu_memory.lower()) else max_cpu_memory + + # If --auto-devices is provided standalone, try to get a reasonable value + # for the maximum memory of device :0 + elif shared.args.auto_devices: + total_mem = (torch.cuda.get_device_properties(0).total_memory / (1024 * 1024)) + suggestion = round((total_mem - 1000) / 1000) * 1000 + if total_mem - suggestion < 800: + suggestion -= 1000 + + suggestion = int(round(suggestion / 1000)) + logger.warning(f"Auto-assiging --gpu-memory {suggestion} for your GPU to try to prevent out-of-memory errors. You can manually set other values.") + max_memory = {0: f'{suggestion}GiB', 'cpu': f'{shared.args.cpu_memory or 99}GiB'} + + return max_memory if len(max_memory) > 0 else None + + +def clear_torch_cache(): + gc.collect() + if not shared.args.cpu: + torch.cuda.empty_cache() + + +def unload_model(): + shared.model = shared.tokenizer = None + clear_torch_cache() + + +def reload_model(): + unload_model() + shared.model, shared.tokenizer = load_model(shared.model_name) diff --git a/modules/models_settings.py b/modules/models_settings.py new file mode 100644 index 0000000000000000000000000000000000000000..0207e7de76e54f438ee98d3b4e8344446796dd47 --- /dev/null +++ b/modules/models_settings.py @@ -0,0 +1,134 @@ +import re +from pathlib import Path + +import yaml + +from modules import shared, ui + + +def get_model_settings_from_yamls(model): + settings = shared.model_config + model_settings = {} + for pat in settings: + if re.match(pat.lower(), model.lower()): + for k in settings[pat]: + model_settings[k] = settings[pat][k] + + return model_settings + + +def infer_loader(model_name): + path_to_model = Path(f'{shared.args.model_dir}/{model_name}') + model_settings = get_model_settings_from_yamls(model_name) + if not path_to_model.exists(): + loader = None + elif Path(f'{shared.args.model_dir}/{model_name}/quantize_config.json').exists() or ('wbits' in model_settings and type(model_settings['wbits']) is int and model_settings['wbits'] > 0): + loader = 'AutoGPTQ' + elif len(list(path_to_model.glob('*ggml*.bin'))) > 0: + loader = 'llama.cpp' + elif re.match('.*ggml.*\.bin', model_name.lower()): + loader = 'llama.cpp' + elif re.match('.*rwkv.*\.pth', model_name.lower()): + loader = 'RWKV' + elif shared.args.flexgen: + loader = 'FlexGen' + else: + loader = 'Transformers' + + return loader + + +# UI: update the command-line arguments based on the interface values +def update_model_parameters(state, initial=False): + elements = ui.list_model_elements() # the names of the parameters + gpu_memories = [] + + for i, element in enumerate(elements): + if element not in state: + continue + + value = state[element] + if element.startswith('gpu_memory'): + gpu_memories.append(value) + continue + + if initial and vars(shared.args)[element] != vars(shared.args_defaults)[element]: + continue + + # Setting null defaults + if element in ['wbits', 'groupsize', 'model_type'] and value == 'None': + value = vars(shared.args_defaults)[element] + elif element in ['cpu_memory'] and value == 0: + value = vars(shared.args_defaults)[element] + + # Making some simple conversions + if element in ['wbits', 'groupsize', 'pre_layer']: + value = int(value) + elif element == 'cpu_memory' and value is not None: + value = f"{value}MiB" + + if element in ['pre_layer']: + value = [value] if value > 0 else None + + setattr(shared.args, element, value) + + found_positive = False + for i in gpu_memories: + if i > 0: + found_positive = True + break + + if not (initial and vars(shared.args)['gpu_memory'] != vars(shared.args_defaults)['gpu_memory']): + if found_positive: + shared.args.gpu_memory = [f"{i}MiB" for i in gpu_memories] + else: + shared.args.gpu_memory = None + + +# UI: update the state variable with the model settings +def apply_model_settings_to_state(model, state): + model_settings = get_model_settings_from_yamls(model) + if 'loader' not in model_settings: + loader = infer_loader(model) + if 'wbits' in model_settings and type(model_settings['wbits']) is int and model_settings['wbits'] > 0: + loader = 'AutoGPTQ' + + # If the user is using an alternative GPTQ loader, let them keep using it + if not (loader == 'AutoGPTQ' and state['loader'] in ['GPTQ-for-LLaMa', 'ExLlama', 'ExLlama_HF']): + state['loader'] = loader + + for k in model_settings: + if k in state: + state[k] = model_settings[k] + + return state + + +# Save the settings for this model to models/config-user.yaml +def save_model_settings(model, state): + if model == 'None': + yield ("Not saving the settings because no model is loaded.") + return + + with Path(f'{shared.args.model_dir}/config-user.yaml') as p: + if p.exists(): + user_config = yaml.safe_load(open(p, 'r').read()) + else: + user_config = {} + + model_regex = model + '$' # For exact matches + for _dict in [user_config, shared.model_config]: + if model_regex not in _dict: + _dict[model_regex] = {} + + if model_regex not in user_config: + user_config[model_regex] = {} + + for k in ui.list_model_elements(): + user_config[model_regex][k] = state[k] + shared.model_config[model_regex][k] = state[k] + + with open(p, 'w') as f: + f.write(yaml.dump(user_config, sort_keys=False)) + + yield (f"Settings for {model} saved to {p}") diff --git a/modules/monkey_patch_gptq_lora.py b/modules/monkey_patch_gptq_lora.py new file mode 100644 index 0000000000000000000000000000000000000000..bf8d478d8b76eae296e1fb80a4266b0475b7d0c2 --- /dev/null +++ b/modules/monkey_patch_gptq_lora.py @@ -0,0 +1,43 @@ +# Copied from https://github.com/johnsmith0031/alpaca_lora_4bit + +import sys +from pathlib import Path + +sys.path.insert(0, str(Path("repositories/alpaca_lora_4bit"))) + +import autograd_4bit +from amp_wrapper import AMPWrapper +from autograd_4bit import ( + Autograd4bitQuantLinear, + load_llama_model_4bit_low_ram +) +from monkeypatch.peft_tuners_lora_monkey_patch import ( + Linear4bitLt, + replace_peft_model_with_gptq_lora_model +) + +from modules import shared +from modules.GPTQ_loader import find_quantized_model_file + +replace_peft_model_with_gptq_lora_model() + + +def load_model_llama(model_name): + config_path = str(Path(f'{shared.args.model_dir}/{model_name}')) + model_path = str(find_quantized_model_file(model_name)) + model, tokenizer = load_llama_model_4bit_low_ram(config_path, model_path, groupsize=shared.args.groupsize, is_v1_model=False) + for n, m in model.named_modules(): + if isinstance(m, Autograd4bitQuantLinear) or isinstance(m, Linear4bitLt): + if m.is_v1_model: + m.zeros = m.zeros.half() + m.scales = m.scales.half() + m.bias = m.bias.half() + + autograd_4bit.use_new = True + autograd_4bit.auto_switch = True + + model.half() + wrapper = AMPWrapper(model) + wrapper.apply_generate() + + return model, tokenizer diff --git a/modules/presets.py b/modules/presets.py new file mode 100644 index 0000000000000000000000000000000000000000..d8ae6e192326363a905ef25ebcb3d89c63a4de6d --- /dev/null +++ b/modules/presets.py @@ -0,0 +1,55 @@ +import functools +from pathlib import Path + +import yaml + + +def load_preset(name): + generate_params = { + 'do_sample': True, + 'temperature': 1, + 'top_p': 1, + 'typical_p': 1, + 'epsilon_cutoff': 0, + 'eta_cutoff': 0, + 'tfs': 1, + 'top_a': 0, + 'repetition_penalty': 1, + 'repetition_penalty_range': 0, + 'encoder_repetition_penalty': 1, + 'top_k': 0, + 'num_beams': 1, + 'penalty_alpha': 0, + 'min_length': 0, + 'length_penalty': 1, + 'no_repeat_ngram_size': 0, + 'early_stopping': False, + 'mirostat_mode': 0, + 'mirostat_tau': 5.0, + 'mirostat_eta': 0.1, + } + + with open(Path(f'presets/{name}.yaml'), 'r') as infile: + preset = yaml.safe_load(infile) + + for k in preset: + generate_params[k] = preset[k] + + generate_params['temperature'] = min(1.99, generate_params['temperature']) + return generate_params + + +@functools.cache +def load_preset_memoized(name): + return load_preset(name) + + +def load_preset_for_ui(name, state): + generate_params = load_preset(name) + state.update(generate_params) + return state, *[generate_params[k] for k in ['do_sample', 'temperature', 'top_p', 'typical_p', 'epsilon_cutoff', 'eta_cutoff', 'repetition_penalty', 'repetition_penalty_range', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta', 'tfs', 'top_a']] + + +def generate_preset_yaml(state): + data = {k: state[k] for k in ['do_sample', 'temperature', 'top_p', 'typical_p', 'epsilon_cutoff', 'eta_cutoff', 'repetition_penalty', 'repetition_penalty_range', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta', 'tfs', 'top_a']} + return yaml.dump(data, sort_keys=False) diff --git a/modules/relative_imports.py b/modules/relative_imports.py new file mode 100644 index 0000000000000000000000000000000000000000..3c0eb56b77c6cb6b38fdbdeebabe9ad3b8d91b97 --- /dev/null +++ b/modules/relative_imports.py @@ -0,0 +1,13 @@ +import sys +from pathlib import Path + + +class RelativeImport: + def __init__(self, path): + self.import_path = Path(path) + + def __enter__(self): + sys.path.insert(0, str(self.import_path)) + + def __exit__(self, exc_type, exc_value, traceback): + sys.path.remove(str(self.import_path)) diff --git a/modules/sampler_hijack.py b/modules/sampler_hijack.py new file mode 100644 index 0000000000000000000000000000000000000000..391ece929e46bf4e85f10b8cfe6c76352ff114fa --- /dev/null +++ b/modules/sampler_hijack.py @@ -0,0 +1,204 @@ +import math + +import torch +import transformers +from transformers import LogitsWarper +from transformers.generation.logits_process import ( + LogitNormalization, + LogitsProcessor, + LogitsProcessorList, + TemperatureLogitsWarper +) + + +class TailFreeLogitsWarper(LogitsWarper): + def __init__(self, tfs: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1): + tfs = float(tfs) + if tfs < 0 or tfs > 1.0: + raise ValueError(f"`tfs` has to be a float >= 0 and <= 1, but is {tfs}") + self.tfs = tfs + self.filter_value = filter_value + self.min_tokens_to_keep = min_tokens_to_keep + + def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: + sorted_logits, sorted_indices = torch.sort(scores, descending=True) + probs = sorted_logits.softmax(dim=-1) + + # Compute second derivative normalized CDF + d2 = probs.diff().diff().abs() + normalized_d2 = d2 / d2.sum(dim=-1, keepdim=True) + normalized_d2_cdf = normalized_d2.cumsum(dim=-1) + + # Remove tokens with CDF value above the threshold (token with 0 are kept) + sorted_indices_to_remove = normalized_d2_cdf > self.tfs + + # Centre the distribution around the cutoff as in the original implementation of the algorithm + sorted_indices_to_remove = torch.cat( + ( + torch.zeros(scores.shape[0], 1, dtype=torch.bool, device=scores.device), + sorted_indices_to_remove, + torch.ones(scores.shape[0], 1, dtype=torch.bool, device=scores.device), + ), + dim=-1, + ) + + if self.min_tokens_to_keep > 1: + # Keep at least min_tokens_to_keep + sorted_indices_to_remove[..., : self.min_tokens_to_keep] = 0 + + indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove) + scores = scores.masked_fill(indices_to_remove, self.filter_value) + return scores + + +class TopALogitsWarper(LogitsWarper): + def __init__(self, top_a: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1): + top_a = float(top_a) + if top_a < 0 or top_a > 1.0: + raise ValueError(f"`top_a` has to be a float >= 0 and <= 1, but is {top_a}") + self.top_a = top_a + self.filter_value = filter_value + self.min_tokens_to_keep = min_tokens_to_keep + + def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: + sorted_logits, sorted_indices = torch.sort(scores, descending=True) + probs = sorted_logits.softmax(dim=-1) + + # Remove tokens with probability less than top_a*(max(probs))^2 (token with 0 are kept) + probs_max = probs[..., 0, None] + sorted_indices_to_remove = probs < probs_max * probs_max * self.top_a + + if self.min_tokens_to_keep > 1: + # Keep at least min_tokens_to_keep + sorted_indices_to_remove[..., : self.min_tokens_to_keep] = 0 + + indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove) + scores = scores.masked_fill(indices_to_remove, self.filter_value) + return scores + + +class MirostatLogitsWarper(LogitsWarper): + def __init__(self, mirostat_mode: int, mirostat_tau: float, mirostat_eta: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1): + if mirostat_mode not in [2]: + raise ValueError(f"`mirostat` has to be a an integer 2, but is {mirostat_mode}") + self.mirostat_mode = mirostat_mode + self.mirostat_eta = mirostat_eta + self.mirostat_tau = mirostat_tau + self.filter_value = filter_value + self.min_tokens_to_keep = min_tokens_to_keep + self.mu = 2 * self.mirostat_tau + self.e = 0 + + def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: + logits = scores[0] + sorted_logits, sorted_indices = torch.sort(logits, descending=True) + prob_original = torch.softmax(sorted_logits, dim=-1).tolist() # candidates + + # Truncate the words with surprise values greater than mu + for i, candidate in enumerate(prob_original): + if candidate > 0 and -math.log2(candidate) > self.mu: + if (i == 0): + sorted_logits = sorted_logits[:1] + else: + sorted_logits = sorted_logits[:i] + break + + # Normalize the probabilities of the remaining words + prob_topk = torch.softmax(sorted_logits, dim=0) + + prev_i = torch.multinomial(prob_topk, num_samples=1, replacement=True).to('cuda') + + observed_surprise = -math.log2(prob_topk[prev_i]) + self.e = observed_surprise - self.mirostat_tau + + # Update mu using the learning rate and error + self.mu -= self.mirostat_eta * self.e + + sorted_indices_to_remove = torch.ones_like(scores[0], dtype=torch.bool) + sorted_indices_to_remove[prev_i] = False + + indices_to_remove = sorted_indices_to_remove.unsqueeze(0).scatter(1, sorted_indices.unsqueeze(0), sorted_indices_to_remove.unsqueeze(0)) + scores = scores.masked_fill(indices_to_remove, self.filter_value) + return scores + + +class RepetitionPenaltyLogitsProcessorWithRange(LogitsProcessor): + ''' + Copied from the transformers library + ''' + def __init__(self, penalty: float, _range: int): + if not isinstance(penalty, float) or not (penalty > 0): + raise ValueError(f"`penalty` has to be a strictly positive float, but is {penalty}") + + self.penalty = penalty + self._range = _range + + def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: + + input_ids = input_ids[:, -self._range:] + score = torch.gather(scores, 1, input_ids) + + # if score < 0 then repetition penalty has to be multiplied to reduce the previous token probability + score = torch.where(score < 0, score * self.penalty, score / self.penalty) + + scores.scatter_(1, input_ids, score) + return scores + + +def get_logits_warper_patch(self, generation_config): + warpers = self._get_logits_warper_old(generation_config) + warpers_to_add = LogitsProcessorList() + min_tokens_to_keep = 2 if generation_config.num_beams > 1 else 1 + + if generation_config.mirostat_mode is not None and generation_config.mirostat_mode == 2: + warpers_to_add.append(MirostatLogitsWarper(mirostat_mode=generation_config.mirostat_mode, mirostat_eta=generation_config.mirostat_eta, mirostat_tau=generation_config.mirostat_tau, min_tokens_to_keep=min_tokens_to_keep)) + # We need to disable samplers other than temperature + for warper in warpers: + if not isinstance(warper, TemperatureLogitsWarper): + warpers.remove(warper) + else: + if generation_config.tfs is not None and 0.0 <= generation_config.tfs <= 1.0: + warpers_to_add.append(TailFreeLogitsWarper(tfs=generation_config.tfs, min_tokens_to_keep=min_tokens_to_keep)) + if generation_config.top_a is not None and 0.0 <= generation_config.top_a <= 1.0: + warpers_to_add.append(TopALogitsWarper(top_a=generation_config.top_a, min_tokens_to_keep=min_tokens_to_keep)) + + if warpers and isinstance(warpers[-1], LogitNormalization): + warpers = warpers[:-1] + warpers_to_add + [warpers[-1]] + else: + warpers += warpers_to_add + + return warpers + + +def get_logits_processor_patch(self, **kwargs): + result = self._get_logits_processor_old(**kwargs) + repetition_penalty_range = kwargs['generation_config'].repetition_penalty_range + repetition_penalty = kwargs['generation_config'].repetition_penalty + + if repetition_penalty_range > 0: + for i in range(len(result)): + if result[i].__class__.__name__ == 'RepetitionPenaltyLogitsProcessor': + result[i] = RepetitionPenaltyLogitsProcessorWithRange(repetition_penalty, repetition_penalty_range) + + return result + + +def generation_config_init_patch(self, **kwargs): + self.__init___old(**kwargs) + self.tfs = kwargs.pop("tfs", 1.0) + self.top_a = kwargs.pop("top_a", 0.0) + self.mirostat_mode = kwargs.pop("mirostat_mode", 0) + self.mirostat_eta = kwargs.pop("mirostat_eta", 0.1) + self.mirostat_tau = kwargs.pop("mirostat_tau", 5) + self.repetition_penalty_range = kwargs.pop("repetition_penalty_range", 0) + + +def hijack_samplers(): + transformers.GenerationMixin._get_logits_warper_old = transformers.GenerationMixin._get_logits_warper + transformers.GenerationMixin._get_logits_warper = get_logits_warper_patch + + transformers.GenerationMixin._get_logits_processor_old = transformers.GenerationMixin._get_logits_processor + transformers.GenerationMixin._get_logits_processor = get_logits_processor_patch + + transformers.GenerationConfig.__init___old = transformers.GenerationConfig.__init__ + transformers.GenerationConfig.__init__ = generation_config_init_patch diff --git a/modules/shared.py b/modules/shared.py new file mode 100644 index 0000000000000000000000000000000000000000..dfa9cd3822fb9662836e576061de663be8ea1058 --- /dev/null +++ b/modules/shared.py @@ -0,0 +1,266 @@ +import argparse +from collections import OrderedDict +from pathlib import Path + +import yaml + +from modules.logging_colors import logger + +generation_lock = None +model = None +tokenizer = None +is_seq2seq = False +model_name = "None" +lora_names = [] + +# Chat variables +history = {'internal': [], 'visible': []} +character = 'None' +stop_everything = False +processing_message = '*Is typing...*' + +# UI elements (buttons, sliders, HTML, etc) +gradio = {} + +# For keeping the values of UI elements on page reload +persistent_interface_state = {} + +input_params = [] # Generation input parameters +reload_inputs = [] # Parameters for reloading the chat interface + +# For restarting the interface +need_restart = False + +settings = { + 'dark_theme': False, + 'autoload_model': True, + 'max_new_tokens': 200, + 'max_new_tokens_min': 1, + 'max_new_tokens_max': 2000, + 'seed': -1, + 'character': 'None', + 'name1': 'You', + 'name2': 'Assistant', + 'context': 'This is a conversation with your Assistant. It is a computer program designed to help you with various tasks such as answering questions, providing recommendations, and helping with decision making. You can ask it anything you want and it will do its best to give you accurate and relevant information.', + 'greeting': '', + 'turn_template': '', + 'custom_stopping_strings': '', + 'stop_at_newline': False, + 'add_bos_token': True, + 'ban_eos_token': False, + 'skip_special_tokens': True, + 'truncation_length': 2048, + 'truncation_length_min': 0, + 'truncation_length_max': 16384, + 'mode': 'chat', + 'start_with': '', + 'chat_style': 'cai-chat', + 'instruction_template': 'None', + 'chat-instruct_command': 'Continue the chat dialogue below. Write a single reply for the character "<|character|>".\n\n<|prompt|>', + 'chat_generation_attempts': 1, + 'chat_generation_attempts_min': 1, + 'chat_generation_attempts_max': 10, + 'default_extensions': [], + 'chat_default_extensions': ['gallery'], + 'preset': 'simple-1', + 'prompt': 'QA', +} + + +def str2bool(v): + if isinstance(v, bool): + return v + if v.lower() in ('yes', 'true', 't', 'y', '1'): + return True + elif v.lower() in ('no', 'false', 'f', 'n', '0'): + return False + else: + raise argparse.ArgumentTypeError('Boolean value expected.') + + +parser = argparse.ArgumentParser(formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=54)) + +# Basic settings +parser.add_argument('--notebook', action='store_true', help='Launch the web UI in notebook mode, where the output is written to the same text box as the input.') +parser.add_argument('--chat', action='store_true', help='Launch the web UI in chat mode with a style similar to the Character.AI website.') +parser.add_argument('--character', type=str, help='The name of the character to load in chat mode by default.') +parser.add_argument('--model', type=str, help='Name of the model to load by default.') +parser.add_argument('--lora', type=str, nargs="+", help='The list of LoRAs to load. If you want to load more than one LoRA, write the names separated by spaces.') +parser.add_argument("--model-dir", type=str, default='models/', help="Path to directory with all the models") +parser.add_argument("--lora-dir", type=str, default='loras/', help="Path to directory with all the loras") +parser.add_argument('--model-menu', action='store_true', help='Show a model menu in the terminal when the web UI is first launched.') +parser.add_argument('--no-stream', action='store_true', help='Don\'t stream the text output in real time.') +parser.add_argument('--settings', type=str, help='Load the default interface settings from this yaml file. See settings-template.yaml for an example. If you create a file called settings.yaml, this file will be loaded by default without the need to use the --settings flag.') +parser.add_argument('--extensions', type=str, nargs="+", help='The list of extensions to load. If you want to load more than one extension, write the names separated by spaces.') +parser.add_argument('--verbose', action='store_true', help='Print the prompts to the terminal.') + +# Model loader +parser.add_argument('--loader', type=str, help='Choose the model loader manually, otherwise, it will get autodetected. Valid options: transformers, autogptq, gptq-for-llama, exllama, exllama_hf, llamacpp, rwkv, flexgen') + +# Accelerate/transformers +parser.add_argument('--cpu', action='store_true', help='Use the CPU to generate text. Warning: Training on CPU is extremely slow.') +parser.add_argument('--auto-devices', action='store_true', help='Automatically split the model across the available GPU(s) and CPU.') +parser.add_argument('--gpu-memory', type=str, nargs="+", help='Maximum GPU memory in GiB to be allocated per GPU. Example: --gpu-memory 10 for a single GPU, --gpu-memory 10 5 for two GPUs. You can also set values in MiB like --gpu-memory 3500MiB.') +parser.add_argument('--cpu-memory', type=str, help='Maximum CPU memory in GiB to allocate for offloaded weights. Same as above.') +parser.add_argument('--disk', action='store_true', help='If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk.') +parser.add_argument('--disk-cache-dir', type=str, default="cache", help='Directory to save the disk cache to. Defaults to "cache".') +parser.add_argument('--load-in-8bit', action='store_true', help='Load the model with 8-bit precision (using bitsandbytes).') +parser.add_argument('--bf16', action='store_true', help='Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU.') +parser.add_argument('--no-cache', action='store_true', help='Set use_cache to False while generating text. This reduces the VRAM usage a bit at a performance cost.') +parser.add_argument('--xformers', action='store_true', help="Use xformer's memory efficient attention. This should increase your tokens/s.") +parser.add_argument('--sdp-attention', action='store_true', help="Use torch 2.0's sdp attention.") +parser.add_argument('--trust-remote-code', action='store_true', help="Set trust_remote_code=True while loading a model. Necessary for ChatGLM and Falcon.") + +# Accelerate 4-bit +parser.add_argument('--load-in-4bit', action='store_true', help='Load the model with 4-bit precision (using bitsandbytes).') +parser.add_argument('--compute_dtype', type=str, default="float16", help="compute dtype for 4-bit. Valid options: bfloat16, float16, float32.") +parser.add_argument('--quant_type', type=str, default="nf4", help='quant_type for 4-bit. Valid options: nf4, fp4.') +parser.add_argument('--use_double_quant', action='store_true', help='use_double_quant for 4-bit.') + +# llama.cpp +parser.add_argument('--threads', type=int, default=0, help='Number of threads to use.') +parser.add_argument('--n_batch', type=int, default=512, help='Maximum number of prompt tokens to batch together when calling llama_eval.') +parser.add_argument('--no-mmap', action='store_true', help='Prevent mmap from being used.') +parser.add_argument('--mlock', action='store_true', help='Force the system to keep the model in RAM.') +parser.add_argument('--cache-capacity', type=str, help='Maximum cache capacity. Examples: 2000MiB, 2GiB. When provided without units, bytes will be assumed.') +parser.add_argument('--n-gpu-layers', type=int, default=0, help='Number of layers to offload to the GPU.') +parser.add_argument('--n_ctx', type=int, default=2048, help='Size of the prompt context.') +parser.add_argument('--llama_cpp_seed', type=int, default=0, help='Seed for llama-cpp models. Default 0 (random)') + +# GPTQ +parser.add_argument('--wbits', type=int, default=0, help='Load a pre-quantized model with specified precision in bits. 2, 3, 4 and 8 are supported.') +parser.add_argument('--model_type', type=str, help='Model type of pre-quantized model. Currently LLaMA, OPT, and GPT-J are supported.') +parser.add_argument('--groupsize', type=int, default=-1, help='Group size.') +parser.add_argument('--pre_layer', type=int, nargs="+", help='The number of layers to allocate to the GPU. Setting this parameter enables CPU offloading for 4-bit models. For multi-gpu, write the numbers separated by spaces, eg --pre_layer 30 60.') +parser.add_argument('--checkpoint', type=str, help='The path to the quantized checkpoint file. If not specified, it will be automatically detected.') +parser.add_argument('--monkey-patch', action='store_true', help='Apply the monkey patch for using LoRAs with quantized models.') +parser.add_argument('--quant_attn', action='store_true', help='(triton) Enable quant attention.') +parser.add_argument('--warmup_autotune', action='store_true', help='(triton) Enable warmup autotune.') +parser.add_argument('--fused_mlp', action='store_true', help='(triton) Enable fused mlp.') + +# AutoGPTQ +parser.add_argument('--gptq-for-llama', action='store_true', help='DEPRECATED') +parser.add_argument('--autogptq', action='store_true', help='DEPRECATED') +parser.add_argument('--triton', action='store_true', help='Use triton.') +parser.add_argument('--no_inject_fused_attention', action='store_true', help='Do not use fused attention (lowers VRAM requirements).') +parser.add_argument('--no_inject_fused_mlp', action='store_true', help='Triton mode only: Do not use fused MLP (lowers VRAM requirements).') +parser.add_argument('--no_use_cuda_fp16', action='store_true', help='This can make models faster on some systems.') +parser.add_argument('--desc_act', action='store_true', help='For models that don\'t have a quantize_config.json, this parameter is used to define whether to set desc_act or not in BaseQuantizeConfig.') + +# ExLlama +parser.add_argument('--gpu-split', type=str, help="Comma-separated list of VRAM (in GB) to use per GPU device for model layers, e.g. 20,7,7") +parser.add_argument('--max_seq_len', type=int, default=2048, help="Maximum sequence length.") +parser.add_argument('--compress_pos_emb', type=int, default=1, help="Positional embeddings compression factor. Should typically be set to max_seq_len / 2048.") + +# FlexGen +parser.add_argument('--flexgen', action='store_true', help='DEPRECATED') +parser.add_argument('--percent', type=int, nargs="+", default=[0, 100, 100, 0, 100, 0], help='FlexGen: allocation percentages. Must be 6 numbers separated by spaces (default: 0, 100, 100, 0, 100, 0).') +parser.add_argument("--compress-weight", action="store_true", help="FlexGen: activate weight compression.") +parser.add_argument("--pin-weight", type=str2bool, nargs="?", const=True, default=True, help="FlexGen: whether to pin weights (setting this to False reduces CPU memory by 20%%).") + +# DeepSpeed +parser.add_argument('--deepspeed', action='store_true', help='Enable the use of DeepSpeed ZeRO-3 for inference via the Transformers integration.') +parser.add_argument('--nvme-offload-dir', type=str, help='DeepSpeed: Directory to use for ZeRO-3 NVME offloading.') +parser.add_argument('--local_rank', type=int, default=0, help='DeepSpeed: Optional argument for distributed setups.') + +# RWKV +parser.add_argument('--rwkv-strategy', type=str, default=None, help='RWKV: The strategy to use while loading the model. Examples: "cpu fp32", "cuda fp16", "cuda fp16i8".') +parser.add_argument('--rwkv-cuda-on', action='store_true', help='RWKV: Compile the CUDA kernel for better performance.') + +# Gradio +parser.add_argument('--listen', action='store_true', help='Make the web UI reachable from your local network.') +parser.add_argument('--listen-host', type=str, help='The hostname that the server will use.') +parser.add_argument('--listen-port', type=int, help='The listening port that the server will use.') +parser.add_argument('--share', action='store_true', help='Create a public URL. This is useful for running the web UI on Google Colab or similar.') +parser.add_argument('--auto-launch', action='store_true', default=False, help='Open the web UI in the default browser upon launch.') +parser.add_argument("--gradio-auth", type=str, help='set gradio authentication like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3"', default=None) +parser.add_argument("--gradio-auth-path", type=str, help='Set the gradio authentication file path. The file should contain one or more user:password pairs in this format: "u1:p1,u2:p2,u3:p3"', default=None) + +# API +parser.add_argument('--api', action='store_true', help='Enable the API extension.') +parser.add_argument('--api-blocking-port', type=int, default=5000, help='The listening port for the blocking API.') +parser.add_argument('--api-streaming-port', type=int, default=5005, help='The listening port for the streaming API.') +parser.add_argument('--public-api', action='store_true', help='Create a public URL for the API using Cloudfare.') + +# Multimodal +parser.add_argument('--multimodal-pipeline', type=str, default=None, help='The multimodal pipeline to use. Examples: llava-7b, llava-13b.') + +args = parser.parse_args() +args_defaults = parser.parse_args([]) + +# Deprecation warnings +if args.autogptq: + logger.warning('--autogptq has been deprecated and will be removed soon. Use --loader autogptq instead.') + args.loader = 'autogptq' +if args.gptq_for_llama: + logger.warning('--gptq-for-llama has been deprecated and will be removed soon. Use --loader gptq-for-llama instead.') + args.loader = 'gptq-for-llama' +if args.flexgen: + logger.warning('--flexgen has been deprecated and will be removed soon. Use --loader flexgen instead.') + args.loader = 'FlexGen' + +# Security warnings +if args.trust_remote_code: + logger.warning("trust_remote_code is enabled. This is dangerous.") +if args.share: + logger.warning("The gradio \"share link\" feature uses a proprietary executable to create a reverse tunnel. Use it with care.") + + +def fix_loader_name(name): + name = name.lower() + if name in ['llamacpp', 'llama.cpp', 'llama-cpp', 'llama cpp']: + return 'llama.cpp' + elif name in ['transformers', 'huggingface', 'hf', 'hugging_face', 'hugging face']: + return 'Transformers' + elif name in ['autogptq', 'auto-gptq', 'auto_gptq', 'auto gptq']: + return 'AutoGPTQ' + elif name in ['gptq-for-llama', 'gptqforllama', 'gptqllama', 'gptq for llama', 'gptq_for_llama']: + return 'GPTQ-for-LLaMa' + elif name in ['exllama', 'ex-llama', 'ex_llama', 'exlama']: + return 'ExLlama' + elif name in ['exllama-hf', 'exllama_hf', 'exllama hf', 'ex-llama-hf', 'ex_llama_hf']: + return 'ExLlama_HF' + + +if args.loader is not None: + args.loader = fix_loader_name(args.loader) + + +def add_extension(name): + if args.extensions is None: + args.extensions = [name] + elif 'api' not in args.extensions: + args.extensions.append(name) + + +# Activating the API extension +if args.api or args.public_api: + add_extension('api') + +# Activating the multimodal extension +if args.multimodal_pipeline is not None: + add_extension('multimodal') + + +def is_chat(): + return args.chat + + +# Loading model-specific settings +with Path(f'{args.model_dir}/config.yaml') as p: + if p.exists(): + model_config = yaml.safe_load(open(p, 'r').read()) + else: + model_config = {} + +# Applying user-defined model settings +with Path(f'{args.model_dir}/config-user.yaml') as p: + if p.exists(): + user_config = yaml.safe_load(open(p, 'r').read()) + for k in user_config: + if k in model_config: + model_config[k].update(user_config[k]) + else: + model_config[k] = user_config[k] + +model_config = OrderedDict(model_config) diff --git a/modules/text_generation.py b/modules/text_generation.py new file mode 100644 index 0000000000000000000000000000000000000000..171da53f98d7b811fefcf1fe4acea7b8a080462b --- /dev/null +++ b/modules/text_generation.py @@ -0,0 +1,396 @@ +import ast +import copy +import random +import re +import time +import traceback + +import numpy as np +import torch +import transformers + +import modules.shared as shared +from modules.callbacks import ( + Iteratorize, + Stream, + _StopEverythingStoppingCriteria +) +from modules.extensions import apply_extensions +from modules.html_generator import generate_4chan_html, generate_basic_html +from modules.logging_colors import logger +from modules.models import clear_torch_cache, local_rank + + +def generate_reply(*args, **kwargs): + shared.generation_lock.acquire() + try: + for result in _generate_reply(*args, **kwargs): + yield result + finally: + shared.generation_lock.release() + + +def get_max_prompt_length(state): + return state['truncation_length'] - state['max_new_tokens'] + + +def encode(prompt, add_special_tokens=True, add_bos_token=True, truncation_length=None): + if shared.model.__class__.__name__ in ['LlamaCppModel', 'RWKVModel']: + input_ids = shared.tokenizer.encode(str(prompt)) + input_ids = np.array(input_ids).reshape(1, len(input_ids)) + return input_ids + else: + input_ids = shared.tokenizer.encode(str(prompt), return_tensors='pt', add_special_tokens=add_special_tokens) + + # This is a hack for making replies more creative. + if not add_bos_token and input_ids[0][0] == shared.tokenizer.bos_token_id: + input_ids = input_ids[:, 1:] + + # Handling truncation + if truncation_length is not None: + input_ids = input_ids[:, -truncation_length:] + + if shared.model.__class__.__name__ in ['LlamaCppModel', 'RWKVModel', 'ExllamaModel'] or shared.args.cpu: + return input_ids + elif shared.args.flexgen: + return input_ids.numpy() + elif shared.args.deepspeed: + return input_ids.to(device=local_rank) + elif torch.has_mps: + device = torch.device('mps') + return input_ids.to(device) + else: + return input_ids.cuda() + + +def get_encoded_length(prompt): + length_after_extensions = apply_extensions('tokenized_length', prompt) + if length_after_extensions is not None: + return length_after_extensions + + return len(encode(prompt)[0]) + + +def decode(output_ids, skip_special_tokens=True): + return shared.tokenizer.decode(output_ids, skip_special_tokens) + + +# Removes empty replies from gpt4chan outputs +def fix_gpt4chan(s): + for i in range(10): + s = re.sub("--- [0-9]*\n>>[0-9]*\n---", "---", s) + s = re.sub("--- [0-9]*\n *\n---", "---", s) + s = re.sub("--- [0-9]*\n\n\n---", "---", s) + + return s + + +# Fix the LaTeX equations in galactica +def fix_galactica(s): + s = s.replace(r'\[', r'$') + s = s.replace(r'\]', r'$') + s = s.replace(r'\(', r'$') + s = s.replace(r'\)', r'$') + s = s.replace(r'$$', r'$') + s = re.sub(r'\n', r'\n\n', s) + s = re.sub(r"\n{3,}", "\n\n", s) + return s + + +def get_reply_from_output_ids(output_ids, input_ids, original_question, state, is_chat=False): + if shared.is_seq2seq: + reply = decode(output_ids, state['skip_special_tokens']) + else: + new_tokens = len(output_ids) - len(input_ids[0]) + reply = decode(output_ids[-new_tokens:], state['skip_special_tokens']) + # Prevent LlamaTokenizer from skipping a space + if type(shared.tokenizer) in [transformers.LlamaTokenizer, transformers.LlamaTokenizerFast] and len(output_ids) > 0: + if shared.tokenizer.convert_ids_to_tokens(int(output_ids[-new_tokens])).startswith('▁'): + reply = ' ' + reply + + return reply + + +def formatted_outputs(reply, model_name): + if any(s in model_name for s in ['gpt-4chan', 'gpt4chan']): + reply = fix_gpt4chan(reply) + return reply, generate_4chan_html(reply) + else: + return reply, generate_basic_html(reply) + + +def set_manual_seed(seed): + seed = int(seed) + if seed == -1: + seed = random.randint(1, 2**31) + + torch.manual_seed(seed) + if torch.cuda.is_available(): + torch.cuda.manual_seed_all(seed) + + return seed + + +def stop_everything_event(): + shared.stop_everything = True + + +def generate_reply_wrapper(question, state, stopping_strings=None): + reply = question if not shared.is_seq2seq else '' + yield formatted_outputs(reply, shared.model_name) + + for reply in generate_reply(question, state, stopping_strings, is_chat=False): + if not shared.is_seq2seq: + reply = question + reply + + yield formatted_outputs(reply, shared.model_name) + + +def apply_stopping_strings(reply, all_stop_strings): + stop_found = False + for string in all_stop_strings: + idx = reply.find(string) + if idx != -1: + reply = reply[:idx] + stop_found = True + break + + if not stop_found: + # If something like "\nYo" is generated just before "\nYou:" + # is completed, trim it + for string in all_stop_strings: + for j in range(len(string) - 1, 0, -1): + if reply[-j:] == string[:j]: + reply = reply[:-j] + break + else: + continue + + break + + return reply, stop_found + + +def _generate_reply(question, state, stopping_strings=None, is_chat=False): + generate_func = apply_extensions('custom_generate_reply') + if generate_func is None: + if shared.model_name == 'None' or shared.model is None: + logger.error("No model is loaded! Select one in the Model tab.") + yield '' + return + + if shared.model.__class__.__name__ in ['LlamaCppModel', 'RWKVModel', 'ExllamaModel']: + generate_func = generate_reply_custom + elif shared.args.flexgen: + generate_func = generate_reply_flexgen + else: + generate_func = generate_reply_HF + + # Preparing the input + original_question = question + if not is_chat: + state = apply_extensions('state', state) + question = apply_extensions('input', question) + + # Finding the stopping strings + all_stop_strings = [] + for st in (stopping_strings, ast.literal_eval(f"[{state['custom_stopping_strings']}]")): + if type(st) is list and len(st) > 0: + all_stop_strings += st + + if shared.args.verbose: + print(f'\n\n{question}\n--------------------\n') + + shared.stop_everything = False + clear_torch_cache() + seed = set_manual_seed(state['seed']) + last_update = -1 + reply = '' + is_stream = state['stream'] + if len(all_stop_strings) > 0 and not state['stream']: + state = copy.deepcopy(state) + state['stream'] = True + + for reply in generate_func(question, original_question, seed, state, stopping_strings, is_chat=is_chat): + reply, stop_found = apply_stopping_strings(reply, all_stop_strings) + if is_stream: + cur_time = time.time() + if cur_time - last_update > 0.041666666666666664: # Limit streaming to 24 fps + last_update = cur_time + yield reply + + if stop_found: + break + + if not is_chat: + reply = apply_extensions('output', reply) + + yield reply + + +def generate_reply_HF(question, original_question, seed, state, stopping_strings=None, is_chat=False): + generate_params = {} + for k in ['max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'repetition_penalty_range', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'tfs', 'top_a', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta']: + generate_params[k] = state[k] + + for k in ['epsilon_cutoff', 'eta_cutoff']: + if state[k] > 0: + generate_params[k] = state[k] * 1e-4 + + if state['ban_eos_token']: + generate_params['suppress_tokens'] = [shared.tokenizer.eos_token_id] + + if shared.args.no_cache: + generate_params.update({'use_cache': False}) + + if shared.args.deepspeed: + generate_params.update({'synced_gpus': True}) + + # Encode the input + input_ids = encode(question, add_bos_token=state['add_bos_token'], truncation_length=get_max_prompt_length(state)) + output = input_ids[0] + cuda = not any((shared.args.cpu, shared.args.deepspeed)) + + # Add the encoded tokens to generate_params + question, input_ids, inputs_embeds = apply_extensions('tokenizer', state, question, input_ids, None) + original_input_ids = input_ids + generate_params.update({'inputs': input_ids}) + if inputs_embeds is not None: + generate_params.update({'inputs_embeds': inputs_embeds}) + + # Stopping criteria / eos token + eos_token_ids = [shared.tokenizer.eos_token_id] if shared.tokenizer.eos_token_id is not None else [] + generate_params['eos_token_id'] = eos_token_ids + generate_params['stopping_criteria'] = transformers.StoppingCriteriaList() + generate_params['stopping_criteria'].append(_StopEverythingStoppingCriteria()); + + t0 = time.time() + try: + if not is_chat and not shared.is_seq2seq: + yield '' + + # Generate the entire reply at once. + if not state['stream']: + with torch.no_grad(): + output = shared.model.generate(**generate_params)[0] + if cuda: + output = output.cuda() + + yield get_reply_from_output_ids(output, input_ids, original_question, state, is_chat=is_chat) + + # Stream the reply 1 token at a time. + # This is based on the trick of using 'stopping_criteria' to create an iterator. + else: + + def generate_with_callback(callback=None, *args, **kwargs): + kwargs['stopping_criteria'].append(Stream(callback_func=callback)) + clear_torch_cache() + with torch.no_grad(): + shared.model.generate(**kwargs) + + def generate_with_streaming(**kwargs): + return Iteratorize(generate_with_callback, [], kwargs, callback=None) + + with generate_with_streaming(**generate_params) as generator: + for output in generator: + yield get_reply_from_output_ids(output, input_ids, original_question, state, is_chat=is_chat) + if output[-1] in eos_token_ids: + break + + except Exception: + traceback.print_exc() + finally: + t1 = time.time() + original_tokens = len(original_input_ids[0]) + new_tokens = len(output) - (original_tokens if not shared.is_seq2seq else 0) + print(f'Output generated in {(t1-t0):.2f} seconds ({new_tokens/(t1-t0):.2f} tokens/s, {new_tokens} tokens, context {original_tokens}, seed {seed})') + return + + +def generate_reply_custom(question, original_question, seed, state, stopping_strings=None, is_chat=False): + seed = set_manual_seed(state['seed']) + + t0 = time.time() + reply = '' + try: + if not is_chat: + yield '' + + if not state['stream']: + reply = shared.model.generate(question, state) + yield reply + else: + for reply in shared.model.generate_with_streaming(question, state): + yield reply + + except Exception: + traceback.print_exc() + finally: + t1 = time.time() + original_tokens = len(encode(original_question)[0]) + new_tokens = len(encode(original_question + reply)[0]) - original_tokens + print(f'Output generated in {(t1-t0):.2f} seconds ({new_tokens/(t1-t0):.2f} tokens/s, {new_tokens} tokens, context {original_tokens}, seed {seed})') + return + + +def generate_reply_flexgen(question, original_question, seed, state, stopping_strings=None, is_chat=False): + generate_params = {} + for k in ['max_new_tokens', 'do_sample', 'temperature']: + generate_params[k] = state[k] + + if state['stream']: + generate_params['max_new_tokens'] = 8 + + # Encode the input + input_ids = encode(question, add_bos_token=state['add_bos_token'], truncation_length=get_max_prompt_length(state)) + output = input_ids[0] + + # Find the eos tokens + eos_token_ids = [shared.tokenizer.eos_token_id] if shared.tokenizer.eos_token_id is not None else [] + if not state['ban_eos_token']: + generate_params['stop'] = eos_token_ids[-1] + + # Add the encoded tokens to generate_params + question, input_ids, inputs_embeds = apply_extensions('tokenizer', state, question, input_ids, None) + original_input_ids = input_ids + generate_params.update({'inputs': input_ids}) + if inputs_embeds is not None: + generate_params.update({'inputs_embeds': inputs_embeds}) + + t0 = time.time() + try: + if not is_chat: + yield '' + + # Generate the entire reply at once. + if not state['stream']: + with torch.no_grad(): + output = shared.model.generate(**generate_params)[0] + + yield get_reply_from_output_ids(output, input_ids, original_question, state, is_chat=is_chat) + + # Stream the output naively for FlexGen since it doesn't support 'stopping_criteria' + else: + for i in range(state['max_new_tokens'] // 8 + 1): + if shared.stop_everything: + break + + clear_torch_cache() + with torch.no_grad(): + output = shared.model.generate(**generate_params)[0] + + if np.count_nonzero(np.isin(input_ids[0], eos_token_ids)) < np.count_nonzero(np.isin(output, eos_token_ids)): + break + + yield get_reply_from_output_ids(output, original_input_ids, original_question, state) + input_ids = np.reshape(output, (1, output.shape[0])) + generate_params.update({'inputs': input_ids}) + + except Exception: + traceback.print_exc() + finally: + t1 = time.time() + original_tokens = len(original_input_ids[0]) + new_tokens = len(output) - (original_tokens if not shared.is_seq2seq else 0) + print(f'Output generated in {(t1-t0):.2f} seconds ({new_tokens/(t1-t0):.2f} tokens/s, {new_tokens} tokens, context {original_tokens}, seed {seed})') + return diff --git a/modules/training.py b/modules/training.py new file mode 100644 index 0000000000000000000000000000000000000000..855ed914a4e21f3a384e811fc3ef7f5529f5f2b9 --- /dev/null +++ b/modules/training.py @@ -0,0 +1,636 @@ +import json +import math +import random +import sys +import threading +import time +import traceback +from pathlib import Path + +import gradio as gr +import torch +import transformers + +import shutil +from datetime import datetime + +from datasets import Dataset, load_dataset +from peft import ( + LoraConfig, + get_peft_model, + prepare_model_for_int8_training, + set_peft_model_state_dict +) + +from modules import shared, ui, utils +from modules.evaluate import ( + calculate_perplexity, + generate_markdown_table, + save_past_evaluations +) +from modules.logging_colors import logger + +# This mapping is from a very recent commit, not yet released. +# If not available, default to a backup map for some common model types. +try: + from peft.utils.other import \ + TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING as \ + model_to_lora_modules + from transformers.models.auto.modeling_auto import ( + MODEL_FOR_CAUSAL_LM_MAPPING_NAMES + ) + MODEL_CLASSES = {v: k for k, v in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES} +except: + standard_modules = ["q_proj", "v_proj"] + model_to_lora_modules = {"llama": standard_modules, "opt": standard_modules, "gptj": standard_modules, "gpt_neox": ["query_key_value"], "rw": ["query_key_value"]} + MODEL_CLASSES = { + "LlamaForCausalLM": "llama", + "OPTForCausalLM": "opt", + "GPTJForCausalLM": "gptj", + "GPTNeoXForCausalLM": "gpt_neox", + "RWForCausalLM": "rw" + + } + +train_log = {} +train_template = {} + +WANT_INTERRUPT = False +PARAMETERS = ["lora_name", "always_override", "save_steps", "micro_batch_size", "batch_size", "epochs", "learning_rate", "lr_scheduler_type", "lora_rank", "lora_alpha", "lora_dropout", "cutoff_len", "dataset", "eval_dataset", "format", "eval_steps", "raw_text_file", "overlap_len", "newline_favor_len", "higher_rank_limit", "warmup_steps", "optimizer", "hard_cut_string", "train_only_after", "stop_at_loss"] + + +def create_train_interface(): + with gr.Tab('Train LoRA', elem_id='lora-train-tab'): + gr.Markdown("Confused? [[Click here for a guide]](https://github.com/oobabooga/text-generation-webui/blob/main/docs/Training-LoRAs.md)") + + with gr.Row(): + lora_name = gr.Textbox(label='Name', info='The name of your new LoRA file') + always_override = gr.Checkbox(label='Override Existing Files', value=False, info='If the name given is the same as an existing file, checking this will replace that file. Leaving unchecked will load that file and continue from it (must use the same rank value as the original had).') + save_steps = gr.Number(label='Save every n steps', value=0, info='If above 0, a checkpoint of the LoRA will be saved every time this many steps pass.') + + with gr.Row(): + copy_from = gr.Dropdown(label='Copy parameters from', value='None', choices=utils.get_available_loras()) + ui.create_refresh_button(copy_from, lambda: None, lambda: {'choices': utils.get_available_loras()}, 'refresh-button') + + with gr.Row(): + # TODO: Implement multi-device support. + micro_batch_size = gr.Slider(label='Micro Batch Size', value=4, minimum=1, maximum=128, step=1, info='Per-device batch size (NOTE: multiple devices not yet implemented). Increasing this will increase VRAM usage.') + batch_size = gr.Slider(label='Batch Size', value=128, minimum=0, maximum=1024, step=4, info='Global batch size. The two batch sizes together determine gradient accumulation (gradientAccum = batch / microBatch). Higher gradient accum values lead to better quality training.') + + with gr.Row(): + epochs = gr.Number(label='Epochs', value=3, info='Number of times every entry in the dataset should be fed into training. So 1 means feed each item in once, 5 means feed it in five times, etc.') + learning_rate = gr.Textbox(label='Learning Rate', value='3e-4', info='Learning rate, in scientific notation. 3e-4 is a good starting base point. 1e-2 is extremely high, 1e-6 is extremely low.') + lr_scheduler_type = gr.Dropdown(label='LR Scheduler', value='linear', choices=['linear', 'constant', 'constant_with_warmup', 'cosine', 'cosine_with_restarts', 'polynomial', 'inverse_sqrt'], info='Learning rate scheduler - defines how the learning rate changes over time. "Constant" means never change, "linear" means to go in a straight line from the learning rate down to 0, cosine follows a curve, etc.') + + # TODO: What is the actual maximum rank? Likely distinct per model. This might be better to somehow be on a log scale. + lora_rank = gr.Slider(label='LoRA Rank', value=32, minimum=0, maximum=1024, step=4, info='LoRA Rank, or dimension count. Higher values produce a larger file with better control over the model\'s content. Smaller values produce a smaller file with less overall control. Small values like 4 or 8 are great for stylistic guidance, higher values like 128 or 256 are good for teaching content upgrades, extremely high values (1024+) are difficult to train but may improve fine-detail learning for large datasets. Higher ranks also require higher VRAM.') + lora_alpha = gr.Slider(label='LoRA Alpha', value=64, minimum=0, maximum=2048, step=4, info='LoRA Alpha. This divided by the rank becomes the scaling of the LoRA. Higher means stronger. A good standard value is twice your Rank.') + + cutoff_len = gr.Slider(label='Cutoff Length', minimum=0, maximum=2048, value=256, step=32, info='Cutoff length for text input. Essentially, how long of a line of text to feed in at a time. Higher values require drastically more VRAM.') + + with gr.Tab(label='Formatted Dataset'): + with gr.Row(): + dataset = gr.Dropdown(choices=utils.get_datasets('training/datasets', 'json'), value='None', label='Dataset', info='The dataset file to use for training.') + ui.create_refresh_button(dataset, lambda: None, lambda: {'choices': utils.get_datasets('training/datasets', 'json')}, 'refresh-button') + eval_dataset = gr.Dropdown(choices=utils.get_datasets('training/datasets', 'json'), value='None', label='Evaluation Dataset', info='The (optional) dataset file used to evaluate the model after training.') + ui.create_refresh_button(eval_dataset, lambda: None, lambda: {'choices': utils.get_datasets('training/datasets', 'json')}, 'refresh-button') + format = gr.Dropdown(choices=utils.get_datasets('training/formats', 'json'), value='None', label='Data Format', info='The format file used to decide how to format the dataset input.') + ui.create_refresh_button(format, lambda: None, lambda: {'choices': utils.get_datasets('training/formats', 'json')}, 'refresh-button') + + eval_steps = gr.Number(label='Evaluate every n steps', value=100, info='If an evaluation dataset is given, test it every time this many steps pass.') + + with gr.Tab(label="Raw text file"): + with gr.Row(): + raw_text_file = gr.Dropdown(choices=utils.get_datasets('training/datasets', 'txt'), value='None', label='Text file', info='The raw text file to use for training.') + ui.create_refresh_button(raw_text_file, lambda: None, lambda: {'choices': utils.get_datasets('training/datasets', 'txt')}, 'refresh-button') + hard_cut_string = gr.Textbox(label='Hard Cut String', value='\\n\\n\\n', info='String that indicates a hard cut between text parts. Helps prevent unwanted overlap.') + + with gr.Row(): + overlap_len = gr.Slider(label='Overlap Length', minimum=0, maximum=512, value=128, step=16, info='Overlap length - ie how many tokens from the prior chunk of text to include into the next chunk. (The chunks themselves will be of a size determined by Cutoff Length below). Setting overlap to exactly half the cutoff length may be ideal.') + newline_favor_len = gr.Slider(label='Prefer Newline Cut Length', minimum=0, maximum=512, value=128, step=16, info='Length (in characters, not tokens) of the maximum distance to shift an overlap cut by to ensure chunks cut at newlines. If too low, cuts may occur in the middle of lines.') + + with gr.Accordion(label='Advanced Options', open=False): + lora_dropout = gr.Slider(label='LoRA Dropout', minimum=0.0, maximum=1.0, step=0.025, value=0.05, info='Percentage probability for dropout of LoRA layers. This can help reduce overfitting. Most users should leave at default.') + warmup_steps = gr.Number(label='Warmup Steps', value=100, info='For this many steps at the start, the learning rate will be lower than normal. This helps the trainer prepare the model and precompute statistics to improve the quality of training after the start.') + optimizer = gr.Dropdown(label='Optimizer', value='adamw_torch', choices=['adamw_hf', 'adamw_torch', 'adamw_torch_fused', 'adamw_torch_xla', 'adamw_apex_fused', 'adafactor', 'adamw_bnb_8bit', 'adamw_anyprecision', 'sgd', 'adagrad'], info='Different optimizer implementation options, for advanced users. Effects of different options are not well documented yet.') + train_only_after = gr.Textbox(label='Train Only After', value='', info='Only consider text *after* this string in any given chunk for training. For Alpaca datasets, use "### Response:" to only train the response and ignore the input.') + stop_at_loss = gr.Slider(label='Stop at loss', minimum=0.0, maximum=3.0, step=0.1, value=0.00, info='The process will automatically stop once the desired loss value is reached. (reasonable numbers are 1.5-1.8)') + + with gr.Row(): + higher_rank_limit = gr.Checkbox(label='Enable higher ranks', value=False, info='If checked, changes Rank/Alpha slider above to go much higher. This will not work without a datacenter-class GPU.') + + with gr.Row(): + start_button = gr.Button("Start LoRA Training") + stop_button = gr.Button("Interrupt") + + output = gr.Markdown(value="Ready") + + with gr.Tab('Perplexity evaluation', elem_id='evaluate-tab'): + with gr.Row(): + with gr.Column(): + models = gr.Dropdown(utils.get_available_models(), label='Models', multiselect=True) + evaluate_text_file = gr.Dropdown(choices=['wikitext', 'ptb', 'ptb_new'] + utils.get_datasets('training/datasets', 'txt')[1:], value='wikitext', label='Input dataset', info='The raw text file on which the model will be evaluated. The first options are automatically downloaded: wikitext, ptb, and ptb_new. The next options are your local text files under training/datasets.') + with gr.Row(): + stride_length = gr.Slider(label='Stride', minimum=1, maximum=2048, value=512, step=1, info='Used to make the evaluation faster at the cost of accuracy. 1 = slowest but most accurate. 512 is a common value.') + max_length = gr.Slider(label='max_length', minimum=0, maximum=8096, value=0, step=1, info='The context for each evaluation. If set to 0, the maximum context length for the model will be used.') + + with gr.Row(): + start_current_evaluation = gr.Button("Evaluate loaded model") + start_evaluation = gr.Button("Evaluate selected models") + stop_evaluation = gr.Button("Interrupt") + + with gr.Column(): + evaluation_log = gr.Markdown(value='') + + evaluation_table = gr.Dataframe(value=generate_markdown_table(), interactive=True) + with gr.Row(): + save_comments = gr.Button('Save comments', elem_classes="small-button") + refresh_table = gr.Button('Refresh the table', elem_classes="small-button") + + # Training events + all_params = [lora_name, always_override, save_steps, micro_batch_size, batch_size, epochs, learning_rate, lr_scheduler_type, lora_rank, lora_alpha, lora_dropout, cutoff_len, dataset, eval_dataset, format, eval_steps, raw_text_file, overlap_len, newline_favor_len, higher_rank_limit, warmup_steps, optimizer, hard_cut_string, train_only_after, stop_at_loss] + copy_from.change(do_copy_params, [copy_from] + all_params, all_params) + start_button.click(do_train, all_params, output) + stop_button.click(do_interrupt, None, None, queue=False) + higher_rank_limit.change(change_rank_limit, [higher_rank_limit], [lora_rank, lora_alpha]) + + # Evaluation events. For some reason, the interrupt event + # doesn't work with the .then() syntax, so I write them one + # by one in this ugly but functional way. + ev = start_evaluation.click(calculate_perplexity, [models, evaluate_text_file, stride_length, max_length], evaluation_log, show_progress=False) + start_evaluation.click(generate_markdown_table, None, evaluation_table, show_progress=False) + + tmp = gr.State('') + start_current_evaluation.click(lambda: ['current model'], None, tmp) + ev_cur = start_current_evaluation.click(calculate_perplexity, [tmp, evaluate_text_file, stride_length, max_length], evaluation_log, show_progress=False) + start_current_evaluation.click(generate_markdown_table, None, evaluation_table, show_progress=False) + + stop_evaluation.click(None, None, None, cancels=[ev, ev_cur], queue=False) + refresh_table.click(generate_markdown_table, None, evaluation_table, show_progress=True) + save_comments.click( + save_past_evaluations, evaluation_table, None).then( + lambda: "Comments saved.", None, evaluation_log, show_progress=False) + + +def do_interrupt(): + global WANT_INTERRUPT + WANT_INTERRUPT = True + + +def do_copy_params(lora_name: str, *args): + f_name = f"{shared.args.lora_dir}/{clean_path(None, lora_name)}/training_parameters.json" + if Path(f_name).is_file(): + with open(f_name, 'r', encoding='utf-8') as format_file: + params: dict[str, str] = json.load(format_file) + else: + params = {} + + result = list() + for i in range(0, len(PARAMETERS)): + key = PARAMETERS[i] + if key in params: + result.append(params[key]) + else: + result.append(args[i]) + + return result + + +def change_rank_limit(use_higher_ranks: bool): + mult = 2 if use_higher_ranks else 1 + return {"maximum": 1024 * mult, "__type__": "update"}, {"maximum": 2048 * mult, "__type__": "update"} + + +def clean_path(base_path: str, path: str): + """Strips unusual symbols and forcibly builds a path as relative to the intended directory.""" + # TODO: Probably could do with a security audit to guarantee there's no ways this can be bypassed to target an unwanted path. + # Or swap it to a strict whitelist of [a-zA-Z_0-9] + path = path.replace('\\', '/').replace('..', '_') + if base_path is None: + return path + + return f'{Path(base_path).absolute()}/{path}' + + +def backup_adapter(input_folder): + # Get the creation date of the file adapter_model.bin + try: + adapter_file = Path(f"{input_folder}/adapter_model.bin") + if adapter_file.is_file(): + + logger.info("Backing up existing LoRA adapter...") + creation_date = datetime.fromtimestamp(adapter_file.stat().st_ctime) + creation_date_str = creation_date.strftime("Backup-%Y-%m-%d") + + # Create the new subfolder + subfolder_path = Path(f"{input_folder}/{creation_date_str}") + subfolder_path.mkdir(parents=True, exist_ok=True) + + # Check if the file already exists in the subfolder + backup_adapter_file = Path(f"{input_folder}/{creation_date_str}/adapter_model.bin") + if backup_adapter_file.is_file(): + print(" - Backup already exists. Skipping backup process.") + return + + # Copy existing files to the new subfolder + existing_files = Path(input_folder).iterdir() + for file in existing_files: + if file.is_file(): + shutil.copy2(file, subfolder_path) + except Exception as e: + print("An error occurred in backup_adapter:", str(e)) + + +def do_train(lora_name: str, always_override: bool, save_steps: int, micro_batch_size: int, batch_size: int, epochs: int, learning_rate: str, lr_scheduler_type: str, lora_rank: int, lora_alpha: int, lora_dropout: float, cutoff_len: int, dataset: str, eval_dataset: str, format: str, eval_steps: int, raw_text_file: str, overlap_len: int, newline_favor_len: int, higher_rank_limit: bool, warmup_steps: int, optimizer: str, hard_cut_string: str, train_only_after: str, stop_at_loss: float): + + if shared.args.monkey_patch: + from monkeypatch.peft_tuners_lora_monkey_patch import ( + replace_peft_model_with_gptq_lora_model + ) + replace_peft_model_with_gptq_lora_model() + + global WANT_INTERRUPT + WANT_INTERRUPT = False + + # == Input validation / processing == + yield "Prepping..." + lora_file_path = clean_path(None, lora_name) + if lora_file_path.strip() == '': + yield "Missing or invalid LoRA file name input." + return + + lora_file_path = f"{shared.args.lora_dir}/{lora_file_path}" + actual_lr = float(learning_rate) + model_type = type(shared.model).__name__ + + if model_type in MODEL_CLASSES: + model_id = MODEL_CLASSES[model_type] + else: + model_id = "llama" + if model_type == "PeftModelForCausalLM": + if len(shared.args.lora_names) > 0: + yield "You are trying to train a LoRA while you already have another LoRA loaded. This will work, but may have unexpected effects. *(Will continue anyway in 5 seconds, press `Interrupt` to stop.)*" + logger.warning("Training LoRA over top of another LoRA. May have unexpected effects.") + else: + yield "Model ID not matched due to LoRA loading. Consider reloading base model. *(Will continue anyway in 5 seconds, press `Interrupt` to stop.)*" + logger.warning("Model ID not matched due to LoRA loading. Consider reloading base model.") + else: + yield "LoRA training has only currently been validated for LLaMA, OPT, GPT-J, and GPT-NeoX models. Unexpected errors may follow. *(Will continue anyway in 5 seconds, press `Interrupt` to stop.)*" + logger.warning(f"LoRA training has only currently been validated for LLaMA, OPT, GPT-J, and GPT-NeoX models. (Found model type: {model_type})") + + time.sleep(5) + + if shared.args.wbits > 0 and not shared.args.monkey_patch: + yield "LoRA training with GPTQ models requires loading with `--monkey-patch`" + return + + elif not (shared.args.load_in_8bit or shared.args.load_in_4bit) and shared.args.wbits <= 0: + yield "It is highly recommended you use `--load-in-8bit` for LoRA training. *(Will continue anyway in 2 seconds, press `Interrupt` to stop.)*" + logger.warning("It is highly recommended you use `--load-in-8bit` for LoRA training.") + time.sleep(2) # Give it a moment for the message to show in UI before continuing + + if cutoff_len <= 0 or micro_batch_size <= 0 or batch_size <= 0 or actual_lr <= 0 or lora_rank <= 0 or lora_alpha <= 0: + yield "Cannot input zeroes." + return + + gradient_accumulation_steps = batch_size // micro_batch_size + shared.tokenizer.pad_token_id = 0 + shared.tokenizer.padding_side = "left" + + def encode(text, add_bos_token): + result = shared.tokenizer.encode(text, truncation=True, max_length=cutoff_len) + if not add_bos_token and result[0] == shared.tokenizer.bos_token_id: + result = result[1:] + return result + + def tokenize(prompt): + + if train_only_after == '' or train_only_after not in prompt: + input_ids = encode(prompt, True) + input_ids = [shared.tokenizer.pad_token_id] * (cutoff_len - len(input_ids)) + input_ids + labels = [1] * len(input_ids) + + else: + ind = prompt.index(train_only_after) + len(train_only_after) + before_tokens = encode(prompt[:ind], True) + after_tokens = encode(prompt[ind:], False) + + full_length = len(after_tokens) + len(before_tokens) + if full_length > cutoff_len: + after_tokens = after_tokens[:cutoff_len - len(before_tokens)] + else: + before_tokens = [shared.tokenizer.pad_token_id] * (cutoff_len - full_length) + before_tokens + + input_ids = before_tokens + after_tokens + labels = [-100] * len(before_tokens) + [1] * len(after_tokens) + + input_ids = torch.tensor(input_ids) + return { + "input_ids": input_ids, + "labels": labels, + "attention_mask": input_ids.ne(shared.tokenizer.pad_token_id), + } + + train_template.clear() + + # == Prep the dataset, format, etc == + if raw_text_file not in ['None', '']: + logger.info("Loading raw text file dataset...") + + train_template["template_type"] = "raw_text" + + with open(clean_path('training/datasets', f'{raw_text_file}.txt'), 'r', encoding='utf-8') as file: + raw_text = file.read().replace('\r', '') + + cut_string = hard_cut_string.replace('\\n', '\n') + out_tokens = [] + for text_part in raw_text.split(cut_string): + if text_part.strip() == '': + continue + + tokens = shared.tokenizer.encode(text_part) + step = cutoff_len - overlap_len + if step <= 0: + yield f"Error: overlap_len ({overlap_len}) cannot be greater than or equal to cutoff_len ({cutoff_len})" + return + + tokens = list(split_chunks(tokens, step)) + for i in range(1, len(tokens)): + tokens[i] = tokens[i - 1][-overlap_len:] + tokens[i] + + out_tokens.extend(tokens) + del tokens + + del raw_text # Note: could be a gig for a large dataset, so delete redundant data as we go to be safe on RAM + text_chunks = [shared.tokenizer.decode(x) for x in out_tokens] + del out_tokens + if newline_favor_len > 0: + text_chunks = [cut_chunk_for_newline(x, newline_favor_len) for x in text_chunks] + + train_data = Dataset.from_list([tokenize(x) for x in text_chunks]) + del text_chunks + eval_data = None + else: + if dataset in ['None', '']: + yield "**Missing dataset choice input, cannot continue.**" + return + + if format in ['None', '']: + yield "**Missing format choice input, cannot continue.**" + return + + train_template["template_type"] = "dataset" + + with open(clean_path('training/formats', f'{format}.json'), 'r', encoding='utf-8-sig') as formatFile: + format_data: dict[str, str] = json.load(formatFile) + + # == store training prompt == + for _, value in format_data.items(): + prompt_key = f"template_{len(train_template)}" + train_template[prompt_key] = value + + def generate_prompt(data_point: dict[str, str]): + for options, data in format_data.items(): + if set(options.split(',')) == set(x[0] for x in data_point.items() if (x[1] is not None and len(x[1].strip()) > 0)): + for key, val in data_point.items(): + if val is not None: + data = data.replace(f'%{key}%', val) + return data + raise RuntimeError(f'Data-point "{data_point}" has no keyset match within format "{list(format_data.keys())}"') + + def generate_and_tokenize_prompt(data_point): + prompt = generate_prompt(data_point) + return tokenize(prompt) + + logger.info("Loading JSON datasets...") + data = load_dataset("json", data_files=clean_path('training/datasets', f'{dataset}.json')) + train_data = data['train'].map(generate_and_tokenize_prompt, new_fingerprint='%030x' % random.randrange(16**30)) + + if eval_dataset == 'None': + eval_data = None + else: + eval_data = load_dataset("json", data_files=clean_path('training/datasets', f'{eval_dataset}.json')) + eval_data = eval_data['train'].map(generate_and_tokenize_prompt, new_fingerprint='%030x' % random.randrange(16**30)) + + # == Start prepping the model itself == + if not hasattr(shared.model, 'lm_head') or hasattr(shared.model.lm_head, 'weight'): + logger.info("Getting model ready...") + prepare_model_for_int8_training(shared.model) + + logger.info("Prepping for training...") + config = LoraConfig( + r=lora_rank, + lora_alpha=lora_alpha, + target_modules=model_to_lora_modules[model_id], + lora_dropout=lora_dropout, + bias="none", + task_type="CAUSAL_LM" + ) + + # == Backup the existing adapter == + if not always_override: + backup_adapter(lora_file_path) + + try: + logger.info("Creating LoRA model...") + lora_model = get_peft_model(shared.model, config) + if not always_override and Path(f"{lora_file_path}/adapter_model.bin").is_file(): + logger.info("Loading existing LoRA data...") + state_dict_peft = torch.load(f"{lora_file_path}/adapter_model.bin") + set_peft_model_state_dict(lora_model, state_dict_peft) + except: + yield traceback.format_exc() + return + + if shared.args.monkey_patch: + for n, m in lora_model.named_modules(): + if '4bit' in str(type(m)): + if m.is_v1_model: + m.zeros = m.zeros.half() + + m.scales = m.scales.half() + + class Tracked(): + def __init__(self): + self.current_steps = 0 + self.max_steps = 0 + self.did_save = False + + tracked = Tracked() + actual_save_steps = math.ceil(save_steps / gradient_accumulation_steps) + + class Callbacks(transformers.TrainerCallback): + def on_step_begin(self, args: transformers.TrainingArguments, state: transformers.TrainerState, control: transformers.TrainerControl, **kwargs): + tracked.current_steps = state.global_step * gradient_accumulation_steps + tracked.max_steps = state.max_steps * gradient_accumulation_steps + if WANT_INTERRUPT: + control.should_epoch_stop = True + control.should_training_stop = True + elif state.global_step > 0 and actual_save_steps > 0 and state.global_step % actual_save_steps == 0: + lora_model.save_pretrained(f"{lora_file_path}/checkpoint-{tracked.current_steps}/") + # Save log + with open(f"{lora_file_path}/checkpoint-{tracked.current_steps}/training_log.json", 'w', encoding='utf-8') as file: + json.dump(train_log, file, indent=2) + # == Save training prompt == + with open(f"{lora_file_path}/checkpoint-{tracked.current_steps}/training_prompt.json", 'w', encoding='utf-8') as file: + json.dump(train_template, file, indent=2) + + def on_substep_end(self, args: transformers.TrainingArguments, state: transformers.TrainerState, control: transformers.TrainerControl, **kwargs): + tracked.current_steps += 1 + if WANT_INTERRUPT: + control.should_epoch_stop = True + control.should_training_stop = True + + def on_log(self, args: transformers.TrainingArguments, state: transformers.TrainerState, control: transformers.TrainerControl, logs, **kwargs): + train_log.update(logs) + train_log.update({"current_steps": tracked.current_steps}) + if WANT_INTERRUPT: + print("\033[1;31;1mInterrupted by user\033[0;37;0m") + + print(f"\033[1;30;40mStep: {tracked.current_steps} \033[0;37;0m", end='') + if 'loss' in logs: + loss = float(logs['loss']) + if loss <= stop_at_loss: + control.should_epoch_stop = True + control.should_training_stop = True + print(f"\033[1;31;1mStop Loss {stop_at_loss} reached.\033[0;37;0m") + + trainer = transformers.Trainer( + model=lora_model, + train_dataset=train_data, + eval_dataset=eval_data, + args=transformers.TrainingArguments( + per_device_train_batch_size=micro_batch_size, + gradient_accumulation_steps=gradient_accumulation_steps, + warmup_steps=math.ceil(warmup_steps / gradient_accumulation_steps), + num_train_epochs=epochs, + learning_rate=actual_lr, + fp16=False if shared.args.cpu else True, + optim=optimizer, + logging_steps=2 if stop_at_loss > 0 else 5, + evaluation_strategy="steps" if eval_data is not None else "no", + eval_steps=math.ceil(eval_steps / gradient_accumulation_steps) if eval_data is not None else None, + save_strategy="steps" if eval_data is not None else "no", + output_dir=lora_file_path, + lr_scheduler_type=lr_scheduler_type, + load_best_model_at_end=eval_data is not None, + # TODO: Enable multi-device support + ddp_find_unused_parameters=None, + no_cuda=shared.args.cpu + ), + data_collator=transformers.DataCollatorForLanguageModeling(shared.tokenizer, mlm=False), + callbacks=list([Callbacks()]) + ) + + lora_model.config.use_cache = False + + if torch.__version__ >= "2" and sys.platform != "win32": + lora_model = torch.compile(lora_model) + + # == Save parameters for reuse == + with open(f"{lora_file_path}/training_parameters.json", 'w', encoding='utf-8') as file: + vars = locals() + json.dump({x: vars[x] for x in PARAMETERS}, file, indent=2) + + # == Save training prompt == + with open(f"{lora_file_path}/training_prompt.json", 'w', encoding='utf-8') as file: + json.dump(train_template, file, indent=2) + + # == Main run and monitor loop == + logger.info("Starting training...") + yield "Starting..." + + train_log.update({"base_model_name": shared.model_name}) + train_log.update({"base_model_class": shared.model.__class__.__name__}) + train_log.update({"base_loaded_in_4bit": getattr(lora_model, "is_loaded_in_4bit", False)}) + train_log.update({"base_loaded_in_8bit": getattr(lora_model, "is_loaded_in_8bit", False)}) + + if stop_at_loss > 0: + print(f"Monitoring loss \033[1;31;1m(Auto-Stop at: {stop_at_loss})\033[0;37;0m") + + if WANT_INTERRUPT: + yield "Interrupted before start." + return + + def threaded_run(): + trainer.train() + # Note: save in the thread in case the gradio thread breaks (eg browser closed) + lora_model.save_pretrained(lora_file_path) + logger.info("LoRA training run is completed and saved.") + # Save log + with open(f"{lora_file_path}/training_log.json", 'w', encoding='utf-8') as file: + json.dump(train_log, file, indent=2) + + thread = threading.Thread(target=threaded_run) + thread.start() + last_step = 0 + start_time = time.perf_counter() + + while thread.is_alive(): + time.sleep(0.5) + if WANT_INTERRUPT: + yield "Interrupting, please wait... *(Run will stop after the current training step completes.)*" + + elif tracked.current_steps != last_step: + last_step = tracked.current_steps + time_elapsed = time.perf_counter() - start_time + if time_elapsed <= 0: + timer_info = "" + total_time_estimate = 999 + else: + its = tracked.current_steps / time_elapsed + if its > 1: + timer_info = f"`{its:.2f}` it/s" + else: + timer_info = f"`{1.0/its:.2f}` s/it" + + total_time_estimate = (1.0 / its) * (tracked.max_steps) + + yield f"Running... **{tracked.current_steps}** / **{tracked.max_steps}** ... {timer_info}, {format_time(time_elapsed)} / {format_time(total_time_estimate)} ... {format_time(total_time_estimate - time_elapsed)} remaining" + + # Saving in the train thread might fail if an error occurs, so save here if so. + if not tracked.did_save: + logger.info("Training complete, saving...") + lora_model.save_pretrained(lora_file_path) + + if WANT_INTERRUPT: + logger.info("Training interrupted.") + yield f"Interrupted. Incomplete LoRA saved to `{lora_file_path}`" + else: + logger.info("Training complete!") + yield f"Done! LoRA saved to `{lora_file_path}`" + + +def split_chunks(arr, step): + for i in range(0, len(arr), step): + yield arr[i:i + step] + + +def cut_chunk_for_newline(chunk: str, max_length: int): + if '\n' not in chunk: + return chunk + + first_newline = chunk.index('\n') + if first_newline < max_length: + chunk = chunk[first_newline + 1:] + + if '\n' not in chunk: + return chunk + + last_newline = chunk.rindex('\n') + if len(chunk) - last_newline < max_length: + chunk = chunk[:last_newline] + + return chunk + + +def format_time(seconds: float): + if seconds < 120: + return f"`{seconds:.0f}` seconds" + + minutes = seconds / 60 + if minutes < 120: + return f"`{minutes:.0f}` minutes" + + hours = minutes / 60 + return f"`{hours:.0f}` hours" diff --git a/modules/ui.py b/modules/ui.py new file mode 100644 index 0000000000000000000000000000000000000000..101fb020f15c76af9bad44723a56d480c8bb7dd5 --- /dev/null +++ b/modules/ui.py @@ -0,0 +1,103 @@ +from pathlib import Path + +import gradio as gr +import torch + +from modules import shared + +with open(Path(__file__).resolve().parent / '../css/main.css', 'r') as f: + css = f.read() +with open(Path(__file__).resolve().parent / '../css/chat.css', 'r') as f: + chat_css = f.read() +with open(Path(__file__).resolve().parent / '../css/main.js', 'r') as f: + main_js = f.read() +with open(Path(__file__).resolve().parent / '../css/chat.js', 'r') as f: + chat_js = f.read() + +refresh_symbol = '\U0001f504' # 🔄 +delete_symbol = '🗑️' +save_symbol = '💾' + +theme = gr.themes.Default( + font=['Helvetica', 'ui-sans-serif', 'system-ui', 'sans-serif'], + font_mono=['IBM Plex Mono', 'ui-monospace', 'Consolas', 'monospace'], +).set( + border_color_primary='#c5c5d2', + button_large_padding='6px 12px', + body_text_color_subdued='#484848', + background_fill_secondary='#eaeaea' +) + + +def list_model_elements(): + elements = ['loader', 'cpu_memory', 'auto_devices', 'disk', 'cpu', 'bf16', 'load_in_8bit', 'trust_remote_code', 'load_in_4bit', 'compute_dtype', 'quant_type', 'use_double_quant', 'wbits', 'groupsize', 'model_type', 'pre_layer', 'triton', 'desc_act', 'no_inject_fused_attention', 'no_inject_fused_mlp', 'no_use_cuda_fp16', 'threads', 'n_batch', 'no_mmap', 'mlock', 'n_gpu_layers', 'n_ctx', 'llama_cpp_seed', 'gpu_split', 'max_seq_len', 'compress_pos_emb'] + for i in range(torch.cuda.device_count()): + elements.append(f'gpu_memory_{i}') + + return elements + + +def list_interface_input_elements(chat=False): + elements = ['max_new_tokens', 'seed', 'temperature', 'top_p', 'top_k', 'typical_p', 'epsilon_cutoff', 'eta_cutoff', 'repetition_penalty', 'repetition_penalty_range', 'encoder_repetition_penalty', 'no_repeat_ngram_size', 'min_length', 'do_sample', 'penalty_alpha', 'num_beams', 'length_penalty', 'early_stopping', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta', 'add_bos_token', 'ban_eos_token', 'truncation_length', 'custom_stopping_strings', 'skip_special_tokens', 'preset_menu', 'stream', 'tfs', 'top_a'] + if chat: + elements += ['name1', 'name2', 'greeting', 'context', 'chat_generation_attempts', 'stop_at_newline', 'mode', 'instruction_template', 'character_menu', 'name1_instruct', 'name2_instruct', 'context_instruct', 'turn_template', 'chat_style', 'chat-instruct_command'] + + elements += list_model_elements() + return elements + + +def gather_interface_values(*args): + output = {} + for i, element in enumerate(shared.input_elements): + output[element] = args[i] + + shared.persistent_interface_state = output + return output + + +def apply_interface_values(state, use_persistent=False): + if use_persistent: + state = shared.persistent_interface_state + + elements = list_interface_input_elements(chat=shared.is_chat()) + if len(state) == 0: + return [gr.update() for k in elements] # Dummy, do nothing + else: + return [state[k] if k in state else gr.update() for k in elements] + + +class ToolButton(gr.Button, gr.components.FormComponent): + """Small button with single emoji as text, fits inside gradio forms""" + + def __init__(self, **kwargs): + super().__init__(**kwargs) + + def get_block_name(self): + return "button" + + +def create_refresh_button(refresh_component, refresh_method, refreshed_args, elem_class): + def refresh(): + refresh_method() + args = refreshed_args() if callable(refreshed_args) else refreshed_args + + for k, v in args.items(): + setattr(refresh_component, k, v) + + return gr.update(**(args or {})) + + refresh_button = ToolButton(value=refresh_symbol, elem_classes=elem_class) + refresh_button.click( + fn=refresh, + inputs=[], + outputs=[refresh_component] + ) + return refresh_button + + +def create_delete_button(**kwargs): + return ToolButton(value=delete_symbol, **kwargs) + + +def create_save_button(**kwargs): + return ToolButton(value=save_symbol, **kwargs) diff --git a/modules/utils.py b/modules/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..1535ecdc065307c2c443f592a9ad23d6777cb1aa --- /dev/null +++ b/modules/utils.py @@ -0,0 +1,113 @@ +import os +import re +from datetime import datetime +from pathlib import Path + +from modules import shared +from modules.logging_colors import logger + + +def save_file(fname, contents): + if fname == '': + logger.error('File name is empty!') + return + + root_folder = Path(__file__).resolve().parent.parent + abs_path = Path(fname).resolve() + rel_path = abs_path.relative_to(root_folder) + if rel_path.parts[0] == '..': + logger.error(f'Invalid file path: {fname}') + return + + with open(abs_path, 'w', encoding='utf-8') as f: + f.write(contents) + + logger.info(f'Saved {abs_path}.') + + +def delete_file(fname): + if fname == '': + logger.error('File name is empty!') + return + + root_folder = Path(__file__).resolve().parent.parent + abs_path = Path(fname).resolve() + rel_path = abs_path.relative_to(root_folder) + if rel_path.parts[0] == '..': + logger.error(f'Invalid file path: {fname}') + return + + if abs_path.exists(): + abs_path.unlink() + logger.info(f'Deleted {fname}.') + + +def current_time(): + return f"{datetime.now().strftime('%Y-%m-%d-%H%M%S')}" + + +def atoi(text): + return int(text) if text.isdigit() else text.lower() + + +# Replace multiple string pairs in a string +def replace_all(text, dic): + for i, j in dic.items(): + text = text.replace(i, j) + + return text + + +def natural_keys(text): + return [atoi(c) for c in re.split(r'(\d+)', text)] + + +def get_available_models(): + if shared.args.flexgen: + return sorted([re.sub('-np$', '', item.name) for item in list(Path(f'{shared.args.model_dir}/').glob('*')) if item.name.endswith('-np')], key=natural_keys) + else: + return sorted([re.sub('.pth$', '', item.name) for item in list(Path(f'{shared.args.model_dir}/').glob('*')) if not item.name.endswith(('.txt', '-np', '.pt', '.json', '.yaml'))], key=natural_keys) + + +def get_available_presets(): + return sorted(set((k.stem for k in Path('presets').glob('*.yaml'))), key=natural_keys) + + +def get_available_prompts(): + prompts = [] + files = set((k.stem for k in Path('prompts').glob('*.txt'))) + prompts += sorted([k for k in files if re.match('^[0-9]', k)], key=natural_keys, reverse=True) + prompts += sorted([k for k in files if re.match('^[^0-9]', k)], key=natural_keys) + prompts += ['Instruct-' + k for k in get_available_instruction_templates() if k != 'None'] + prompts += ['None'] + return prompts + + +def get_available_characters(): + paths = (x for x in Path('characters').iterdir() if x.suffix in ('.json', '.yaml', '.yml')) + return ['None'] + sorted(set((k.stem for k in paths if k.stem != "instruction-following")), key=natural_keys) + + +def get_available_instruction_templates(): + path = "characters/instruction-following" + paths = [] + if os.path.exists(path): + paths = (x for x in Path(path).iterdir() if x.suffix in ('.json', '.yaml', '.yml')) + + return ['None'] + sorted(set((k.stem for k in paths)), key=natural_keys) + + +def get_available_extensions(): + return sorted(set(map(lambda x: x.parts[1], Path('extensions').glob('*/script.py'))), key=natural_keys) + + +def get_available_loras(): + return sorted([item.name for item in list(Path(shared.args.lora_dir).glob('*')) if not item.name.endswith(('.txt', '-np', '.pt', '.json'))], key=natural_keys) + + +def get_datasets(path: str, ext: str): + return ['None'] + sorted(set([k.stem for k in Path(path).glob(f'*.{ext}') if k.stem != 'put-trainer-datasets-here']), key=natural_keys) + + +def get_available_chat_styles(): + return sorted(set(('-'.join(k.stem.split('-')[1:]) for k in Path('css').glob('chat_style*.css'))), key=natural_keys) diff --git a/presets/Asterism.yaml b/presets/Asterism.yaml new file mode 100644 index 0000000000000000000000000000000000000000..87b56e1fa5675ba99f7845d8a729c784f5fe363d --- /dev/null +++ b/presets/Asterism.yaml @@ -0,0 +1,4 @@ +temperature: 1.68 +top_p: 0.17 +repetition_penalty: 1.02 +top_k: 77 diff --git a/presets/Big O.yaml b/presets/Big O.yaml new file mode 100644 index 0000000000000000000000000000000000000000..2ab182687647aaa04868d08024eefaacd0b48b06 --- /dev/null +++ b/presets/Big O.yaml @@ -0,0 +1,6 @@ +temperature: 0.87 +top_p: 0.99 +typical_p: 0.68 +tfs: 0.68 +repetition_penalty: 1.01 +top_k: 85 diff --git a/presets/Contrastive Search.yaml b/presets/Contrastive Search.yaml new file mode 100644 index 0000000000000000000000000000000000000000..d9a47a9f5b75ae5d2db9da0ace7a51d962fdef94 --- /dev/null +++ b/presets/Contrastive Search.yaml @@ -0,0 +1,3 @@ +do_sample: false +top_k: 4 +penalty_alpha: 0.3 diff --git a/presets/Debug-deterministic.yaml b/presets/Debug-deterministic.yaml new file mode 100644 index 0000000000000000000000000000000000000000..cbe7064f119993b9d73c8baa2454f04b6e7f79b7 --- /dev/null +++ b/presets/Debug-deterministic.yaml @@ -0,0 +1 @@ +do_sample: false diff --git a/presets/Divine Intellect.yaml b/presets/Divine Intellect.yaml new file mode 100644 index 0000000000000000000000000000000000000000..ac750e40dc94a7a622a21e692bc399b4e8d9e2df --- /dev/null +++ b/presets/Divine Intellect.yaml @@ -0,0 +1,4 @@ +temperature: 1.31 +top_p: 0.14 +repetition_penalty: 1.17 +top_k: 49 diff --git a/presets/Kobold-Godlike.yaml b/presets/Kobold-Godlike.yaml new file mode 100644 index 0000000000000000000000000000000000000000..772a802e3f712a53bdfc21cc9f510fb0fae121a2 --- /dev/null +++ b/presets/Kobold-Godlike.yaml @@ -0,0 +1,4 @@ +temperature: 0.7 +top_p: 0.5 +typical_p: 0.19 +repetition_penalty: 1.1 diff --git a/presets/LLaMA-Precise.yaml b/presets/LLaMA-Precise.yaml new file mode 100644 index 0000000000000000000000000000000000000000..c5f9cae25636cafb52a8d99c9d610c1a33a7ef3b --- /dev/null +++ b/presets/LLaMA-Precise.yaml @@ -0,0 +1,4 @@ +temperature: 0.7 +top_p: 0.1 +repetition_penalty: 1.18 +top_k: 40 diff --git a/presets/Midnight Enigma.yaml b/presets/Midnight Enigma.yaml new file mode 100644 index 0000000000000000000000000000000000000000..0bd1763c6d5aab39dd7a25ac69c453a846e93fb1 --- /dev/null +++ b/presets/Midnight Enigma.yaml @@ -0,0 +1,4 @@ +temperature: 0.98 +top_p: 0.37 +repetition_penalty: 1.18 +top_k: 100 diff --git a/presets/Mirostat.yaml b/presets/Mirostat.yaml new file mode 100644 index 0000000000000000000000000000000000000000..8bf97e808009a0a187edc2fc41b69ae6c3c5b299 --- /dev/null +++ b/presets/Mirostat.yaml @@ -0,0 +1,2 @@ +mirostat_mode: 2 +mirostat_tau: 8 diff --git a/presets/Shortwave.yaml b/presets/Shortwave.yaml new file mode 100644 index 0000000000000000000000000000000000000000..a2528abdb4b950defd50c42ef6cbe0f884560e79 --- /dev/null +++ b/presets/Shortwave.yaml @@ -0,0 +1,4 @@ +temperature: 1.53 +top_p: 0.64 +repetition_penalty: 1.07 +top_k: 33 diff --git a/presets/Space Alien.yaml b/presets/Space Alien.yaml new file mode 100644 index 0000000000000000000000000000000000000000..4c9a2dd2f0577aea3d42607ac5b94ec9c5bf15a9 --- /dev/null +++ b/presets/Space Alien.yaml @@ -0,0 +1,4 @@ +temperature: 1.31 +top_p: 0.29 +repetition_penalty: 1.09 +top_k: 72 diff --git a/presets/StarChat.yaml b/presets/StarChat.yaml new file mode 100644 index 0000000000000000000000000000000000000000..2d00898b53f33d8983e7752c81258c1bc0b6e569 --- /dev/null +++ b/presets/StarChat.yaml @@ -0,0 +1,3 @@ +temperature: 0.2 +top_p: 0.95 +top_k: 50 diff --git a/presets/Titanic.yaml b/presets/Titanic.yaml new file mode 100644 index 0000000000000000000000000000000000000000..38760c2676a628f1398a17b258935969ba41e428 --- /dev/null +++ b/presets/Titanic.yaml @@ -0,0 +1,5 @@ +temperature: 1.01 +top_p: 0.21 +repetition_penalty: 1.21 +encoder_repetition_penalty: 1.07 +top_k: 91 diff --git a/presets/Yara.yaml b/presets/Yara.yaml new file mode 100644 index 0000000000000000000000000000000000000000..87bb019ec62bb7afc395d3212b7560c25c3d36ed --- /dev/null +++ b/presets/Yara.yaml @@ -0,0 +1,4 @@ +temperature: 0.82 +top_p: 0.21 +repetition_penalty: 1.19 +top_k: 72 diff --git a/presets/simple-1.yaml b/presets/simple-1.yaml new file mode 100644 index 0000000000000000000000000000000000000000..30a106590b6d70d9c537a8b2b6c26f2a832bd8b9 --- /dev/null +++ b/presets/simple-1.yaml @@ -0,0 +1,4 @@ +temperature: 0.7 +top_p: 0.9 +repetition_penalty: 1.15 +top_k: 20 diff --git a/presets/tfs-with-top-a.yaml b/presets/tfs-with-top-a.yaml new file mode 100644 index 0000000000000000000000000000000000000000..f16127cdcfed21050a6c6c9d4d06d3f6c179dbcf --- /dev/null +++ b/presets/tfs-with-top-a.yaml @@ -0,0 +1,4 @@ +temperature: 0.7 +tfs: 0.95 +top_a: 0.2 +repetition_penalty: 1.15 diff --git a/prompts/Alpaca-with-Input.txt b/prompts/Alpaca-with-Input.txt new file mode 100644 index 0000000000000000000000000000000000000000..56df0e285be9689ab1f8ea698ce748e6d1b02af2 --- /dev/null +++ b/prompts/Alpaca-with-Input.txt @@ -0,0 +1,10 @@ +Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. + +### Instruction: +Instruction + +### Input: +Input + +### Response: + diff --git a/prompts/GPT-4chan.txt b/prompts/GPT-4chan.txt new file mode 100644 index 0000000000000000000000000000000000000000..1bc8c7f4613f982e3dfa367562a764cf5bd4c73b --- /dev/null +++ b/prompts/GPT-4chan.txt @@ -0,0 +1,6 @@ +----- +--- 865467536 +Hello, AI frens! +How are you doing on this fine day? +--- 865467537 + diff --git a/prompts/QA.txt b/prompts/QA.txt new file mode 100644 index 0000000000000000000000000000000000000000..32b0e2350f3c0a7f447dcd1aba11d6ae2247e5a8 --- /dev/null +++ b/prompts/QA.txt @@ -0,0 +1,4 @@ +Common sense questions and answers + +Question: +Factual answer: diff --git a/requirements.txt b/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..6c515ab31e7bffdc82d4883182ea477e031095d1 --- /dev/null +++ b/requirements.txt @@ -0,0 +1,33 @@ +accelerate==0.20.3 +colorama +datasets~=2.13.1 +einops +flexgen==0.1.7 +gradio_client==0.2.5 +gradio==3.33.1 +markdown~=3.4.3 +numpy~=1.25.0 +pandas~=2.0.3 +Pillow>=9.5.0 +pyyaml~=6.0 +requests~=2.31.0 +safetensors==0.3.1 +sentencepiece +tqdm~=4.65.0 +scipy +transformers==4.30.2 +git+https://github.com/huggingface/peft@03eb378eb914fbee709ff7c86ba5b1d033b89524 +bitsandbytes==0.39.1; platform_system != "Windows" +https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.39.1-py3-none-win_amd64.whl; platform_system == "Windows" +llama-cpp-python==0.1.66; platform_system != "Windows" +https://github.com/abetlen/llama-cpp-python/releases/download/v0.1.66/llama_cpp_python-0.1.66-cp310-cp310-win_amd64.whl; platform_system == "Windows" +https://github.com/PanQiWei/AutoGPTQ/releases/download/v0.2.2/auto_gptq-0.2.2+cu117-cp310-cp310-win_amd64.whl; platform_system == "Windows" +https://github.com/PanQiWei/AutoGPTQ/releases/download/v0.2.2/auto_gptq-0.2.2+cu117-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" +https://github.com/jllllll/exllama/releases/download/0.0.4/exllama-0.0.4+cu117-cp310-cp310-win_amd64.whl; platform_system == "Windows" +https://github.com/jllllll/exllama/releases/download/0.0.4/exllama-0.0.4+cu117-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" + +torch~=2.0.1 +tokenizers~=0.13.3 +matplotlib~=3.7.1 +psutil~=5.9.5 +websockets~=11.0.3 \ No newline at end of file diff --git a/server.py b/server.py new file mode 100644 index 0000000000000000000000000000000000000000..408d5f199f65645b415582d412d39eb4e4da123e --- /dev/null +++ b/server.py @@ -0,0 +1,1349 @@ +import os +import warnings + +from modules.logging_colors import logger +from modules.block_requests import RequestBlocker + +os.environ['GRADIO_ANALYTICS_ENABLED'] = 'False' +os.environ['BITSANDBYTES_NOWELCOME'] = '1' +warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated') + +with RequestBlocker(): + import gradio as gr + +import matplotlib + +matplotlib.use('Agg') # This fixes LaTeX rendering on some systems + +import importlib +import json +import math +import os +import re +import sys +import time +import traceback +from functools import partial +from pathlib import Path +from threading import Lock + +import psutil +import torch +import yaml +from PIL import Image + +import modules.extensions as extensions_module +from modules import chat, loaders, presets, shared, training, ui, utils +from modules.extensions import apply_extensions +from modules.github import clone_or_pull_repository +from modules.html_generator import chat_html_wrapper +from modules.LoRA import add_lora_to_model +from modules.models import load_model, unload_model +from modules.models_settings import ( + apply_model_settings_to_state, + get_model_settings_from_yamls, + save_model_settings, + update_model_parameters +) +from modules.text_generation import ( + generate_reply_wrapper, + get_encoded_length, + stop_everything_event +) + + +def load_model_wrapper(selected_model, loader, autoload=False): + if not autoload: + yield f"The settings for {selected_model} have been updated.\nClick on \"Load the model\" to load it." + return + + if selected_model == 'None': + yield "No model selected" + else: + try: + yield f"Loading {selected_model}..." + shared.model_name = selected_model + unload_model() + if selected_model != '': + shared.model, shared.tokenizer = load_model(shared.model_name, loader) + + if shared.model is not None: + yield f"Successfully loaded {selected_model}" + else: + yield f"Failed to load {selected_model}." + except: + exc = traceback.format_exc() + logger.error('Failed to load the model.') + print(exc) + yield exc + + +def load_lora_wrapper(selected_loras): + yield ("Applying the following LoRAs to {}:\n\n{}".format(shared.model_name, '\n'.join(selected_loras))) + add_lora_to_model(selected_loras) + yield ("Successfuly applied the LoRAs") + + +def load_prompt(fname): + if fname in ['None', '']: + return '' + elif fname.startswith('Instruct-'): + fname = re.sub('^Instruct-', '', fname) + file_path = Path(f'characters/instruction-following/{fname}.yaml') + if not file_path.exists(): + return '' + + with open(file_path, 'r', encoding='utf-8') as f: + data = yaml.safe_load(f) + output = '' + if 'context' in data: + output += data['context'] + + replacements = { + '<|user|>': data['user'], + '<|bot|>': data['bot'], + '<|user-message|>': 'Input', + } + + output += utils.replace_all(data['turn_template'].split('<|bot-message|>')[0], replacements) + return output.rstrip(' ') + else: + file_path = Path(f'prompts/{fname}.txt') + if not file_path.exists(): + return '' + + with open(file_path, 'r', encoding='utf-8') as f: + text = f.read() + if text[-1] == '\n': + text = text[:-1] + + return text + + +def count_tokens(text): + try: + tokens = get_encoded_length(text) + return f'{tokens} tokens in the input.' + except: + return 'Couldn\'t count the number of tokens. Is a tokenizer loaded?' + + +def download_model_wrapper(repo_id, progress=gr.Progress()): + try: + downloader_module = importlib.import_module("download-model") + downloader = downloader_module.ModelDownloader() + repo_id_parts = repo_id.split(":") + model = repo_id_parts[0] if len(repo_id_parts) > 0 else repo_id + branch = repo_id_parts[1] if len(repo_id_parts) > 1 else "main" + check = False + + progress(0.0) + yield ("Cleaning up the model/branch names") + model, branch = downloader.sanitize_model_and_branch_names(model, branch) + + yield ("Getting the download links from Hugging Face") + links, sha256, is_lora = downloader.get_download_links_from_huggingface(model, branch, text_only=False) + + yield ("Getting the output folder") + output_folder = downloader.get_output_folder(model, branch, is_lora) + + if check: + progress(0.5) + yield ("Checking previously downloaded files") + downloader.check_model_files(model, branch, links, sha256, output_folder) + progress(1.0) + else: + yield (f"Downloading files to {output_folder}") + downloader.download_model_files(model, branch, links, sha256, output_folder, progress_bar=progress, + threads=1) + yield ("Done!") + except: + progress(1.0) + yield traceback.format_exc() + + +def create_model_menus(): + # Finding the default values for the GPU and CPU memories + total_mem = [] + for i in range(torch.cuda.device_count()): + total_mem.append(math.floor(torch.cuda.get_device_properties(i).total_memory / (1024 * 1024))) + + default_gpu_mem = [] + if shared.args.gpu_memory is not None and len(shared.args.gpu_memory) > 0: + for i in shared.args.gpu_memory: + if 'mib' in i.lower(): + default_gpu_mem.append(int(re.sub('[a-zA-Z ]', '', i))) + else: + default_gpu_mem.append(int(re.sub('[a-zA-Z ]', '', i)) * 1000) + while len(default_gpu_mem) < len(total_mem): + default_gpu_mem.append(0) + + total_cpu_mem = math.floor(psutil.virtual_memory().total / (1024 * 1024)) + if shared.args.cpu_memory is not None: + default_cpu_mem = re.sub('[a-zA-Z ]', '', shared.args.cpu_memory) + else: + default_cpu_mem = 0 + + with gr.Row(): + with gr.Column(): + with gr.Row(): + with gr.Column(): + with gr.Row(): + shared.gradio['model_menu'] = gr.Dropdown(choices=utils.get_available_models(), + value=shared.model_name, label='Model', + elem_classes='slim-dropdown') + ui.create_refresh_button(shared.gradio['model_menu'], lambda: None, + lambda: {'choices': utils.get_available_models()}, 'refresh-button') + load = gr.Button("Load", visible=not shared.settings['autoload_model'], + elem_classes='refresh-button') + unload = gr.Button("Unload", elem_classes='refresh-button') + reload = gr.Button("Reload", elem_classes='refresh-button') + save_settings = gr.Button("Save settings", elem_classes='refresh-button') + + with gr.Column(): + with gr.Row(): + shared.gradio['lora_menu'] = gr.Dropdown(multiselect=True, choices=utils.get_available_loras(), + value=shared.lora_names, label='LoRA(s)', + elem_classes='slim-dropdown') + ui.create_refresh_button(shared.gradio['lora_menu'], lambda: None, + lambda: {'choices': utils.get_available_loras(), + 'value': shared.lora_names}, 'refresh-button') + shared.gradio['lora_menu_apply'] = gr.Button(value='Apply LoRAs', elem_classes='refresh-button') + + with gr.Row(): + with gr.Column(): + shared.gradio['loader'] = gr.Dropdown(label="Model loader", + choices=["Transformers", "AutoGPTQ", "GPTQ-for-LLaMa", "ExLlama", + "ExLlama_HF", "llama.cpp"], value=None) + with gr.Box(): + with gr.Row(): + with gr.Column(): + for i in range(len(total_mem)): + shared.gradio[f'gpu_memory_{i}'] = gr.Slider(label=f"gpu-memory in MiB for device :{i}", + maximum=total_mem[i], value=default_gpu_mem[i]) + + shared.gradio['cpu_memory'] = gr.Slider(label="cpu-memory in MiB", maximum=total_cpu_mem, + value=default_cpu_mem) + shared.gradio['transformers_info'] = gr.Markdown('load-in-4bit params:') + shared.gradio['compute_dtype'] = gr.Dropdown(label="compute_dtype", + choices=["bfloat16", "float16", "float32"], + value=shared.args.compute_dtype) + shared.gradio['quant_type'] = gr.Dropdown(label="quant_type", choices=["nf4", "fp4"], + value=shared.args.quant_type) + shared.gradio['threads'] = gr.Slider(label="threads", minimum=0, step=1, maximum=32, + value=shared.args.threads) + shared.gradio['n_batch'] = gr.Slider(label="n_batch", minimum=1, maximum=2048, + value=shared.args.n_batch) + shared.gradio['n_gpu_layers'] = gr.Slider(label="n-gpu-layers", minimum=0, maximum=128, + value=shared.args.n_gpu_layers) + shared.gradio['n_ctx'] = gr.Slider(minimum=0, maximum=16384, step=256, label="n_ctx", + value=shared.args.n_ctx) + shared.gradio['wbits'] = gr.Dropdown(label="wbits", choices=["None", 1, 2, 3, 4, 8], + value=shared.args.wbits if shared.args.wbits > 0 else "None") + shared.gradio['groupsize'] = gr.Dropdown(label="groupsize", choices=["None", 32, 64, 128, 1024], + value=shared.args.groupsize if shared.args.groupsize > 0 else "None") + shared.gradio['model_type'] = gr.Dropdown(label="model_type", + choices=["None", "llama", "opt", "gptj"], + value=shared.args.model_type or "None") + shared.gradio['pre_layer'] = gr.Slider(label="pre_layer", minimum=0, maximum=100, + value=shared.args.pre_layer[ + 0] if shared.args.pre_layer is not None else 0) + shared.gradio['autogptq_info'] = gr.Markdown( + 'On some systems, AutoGPTQ can be 2x slower than GPTQ-for-LLaMa. You can manually select the GPTQ-for-LLaMa loader above.') + shared.gradio['gpu_split'] = gr.Textbox(label='gpu-split', + info='Comma-separated list of VRAM (in GB) to use per GPU. Example: 20,7,7') + shared.gradio['max_seq_len'] = gr.Slider(label='max_seq_len', minimum=2048, maximum=16384, + step=256, info='Maximum sequence length.', + value=shared.args.max_seq_len) + shared.gradio['compress_pos_emb'] = gr.Slider(label='compress_pos_emb', minimum=1, maximum=8, + step=1, + info='Positional embeddings compression factor. Should typically be set to max_seq_len / 2048.', + value=shared.args.compress_pos_emb) + + with gr.Column(): + shared.gradio['triton'] = gr.Checkbox(label="triton", value=shared.args.triton) + shared.gradio['no_inject_fused_attention'] = gr.Checkbox(label="no_inject_fused_attention", + value=shared.args.no_inject_fused_attention, + info='Disable fused attention. Fused attention improves inference performance but uses more VRAM. Disable if running low on VRAM.') + shared.gradio['no_inject_fused_mlp'] = gr.Checkbox(label="no_inject_fused_mlp", + value=shared.args.no_inject_fused_mlp, + info='Affects Triton only. Disable fused MLP. Fused MLP improves performance but uses more VRAM. Disable if running low on VRAM.') + shared.gradio['no_use_cuda_fp16'] = gr.Checkbox(label="no_use_cuda_fp16", + value=shared.args.no_use_cuda_fp16, + info='This can make models faster on some systems.') + shared.gradio['desc_act'] = gr.Checkbox(label="desc_act", value=shared.args.desc_act, + info='\'desc_act\', \'wbits\', and \'groupsize\' are used for old models without a quantize_config.json.') + shared.gradio['cpu'] = gr.Checkbox(label="cpu", value=shared.args.cpu) + shared.gradio['load_in_8bit'] = gr.Checkbox(label="load-in-8bit", + value=shared.args.load_in_8bit) + shared.gradio['bf16'] = gr.Checkbox(label="bf16", value=shared.args.bf16) + shared.gradio['auto_devices'] = gr.Checkbox(label="auto-devices", + value=shared.args.auto_devices) + shared.gradio['disk'] = gr.Checkbox(label="disk", value=shared.args.disk) + shared.gradio['load_in_4bit'] = gr.Checkbox(label="load-in-4bit", + value=shared.args.load_in_4bit) + shared.gradio['use_double_quant'] = gr.Checkbox(label="use_double_quant", + value=shared.args.use_double_quant) + shared.gradio['no_mmap'] = gr.Checkbox(label="no-mmap", value=shared.args.no_mmap) + shared.gradio['mlock'] = gr.Checkbox(label="mlock", value=shared.args.mlock) + shared.gradio['llama_cpp_seed'] = gr.Number(label='Seed (0 for random)', + value=shared.args.llama_cpp_seed) + shared.gradio['trust_remote_code'] = gr.Checkbox(label="trust-remote-code", + value=shared.args.trust_remote_code, + info='Make sure to inspect the .py files inside the model folder before loading it with this option enabled.') + shared.gradio['gptq_for_llama_info'] = gr.Markdown( + 'GPTQ-for-LLaMa is currently 2x faster than AutoGPTQ on some systems. It is installed by default with the one-click installers. Otherwise, it has to be installed manually following the instructions here: [instructions](https://github.com/oobabooga/text-generation-webui/blob/main/docs/GPTQ-models-(4-bit-mode).md#installation-1).') + shared.gradio['exllama_info'] = gr.Markdown( + 'For more information, consult the [docs](https://github.com/oobabooga/text-generation-webui/blob/main/docs/ExLlama.md).') + shared.gradio['exllama_HF_info'] = gr.Markdown( + 'ExLlama_HF is a wrapper that lets you use ExLlama like a Transformers model, which means it can use the Transformers samplers. It\'s a bit slower than the regular ExLlama.') + + with gr.Column(): + with gr.Row(): + shared.gradio['autoload_model'] = gr.Checkbox(value=shared.settings['autoload_model'], + label='Autoload the model', + info='Whether to load the model as soon as it is selected in the Model dropdown.') + + shared.gradio['custom_model_menu'] = gr.Textbox(label="Download custom model or LoRA", + info="Enter the Hugging Face username/model path, for instance: facebook/galactica-125m. To specify a branch, add it at the end after a \":\" character like this: facebook/galactica-125m:main") + shared.gradio['download_model_button'] = gr.Button("Download") + + with gr.Row(): + shared.gradio['model_status'] = gr.Markdown( + 'No model is loaded' if shared.model_name == 'None' else 'Ready') + + shared.gradio['loader'].change(loaders.make_loader_params_visible, shared.gradio['loader'], + [shared.gradio[k] for k in loaders.get_all_params()]) + + # In this event handler, the interface state is read and updated + # with the model defaults (if any), and then the model is loaded + # unless "autoload_model" is unchecked + shared.gradio['model_menu'].change( + ui.gather_interface_values, [shared.gradio[k] for k in shared.input_elements], + shared.gradio['interface_state']).then( + apply_model_settings_to_state, [shared.gradio[k] for k in ['model_menu', 'interface_state']], + shared.gradio['interface_state']).then( + ui.apply_interface_values, shared.gradio['interface_state'], + [shared.gradio[k] for k in ui.list_interface_input_elements(chat=shared.is_chat())], show_progress=False).then( + update_model_parameters, shared.gradio['interface_state'], None).then( + load_model_wrapper, [shared.gradio[k] for k in ['model_menu', 'loader', 'autoload_model']], + shared.gradio['model_status'], show_progress=False) + + load.click( + ui.gather_interface_values, [shared.gradio[k] for k in shared.input_elements], + shared.gradio['interface_state']).then( + update_model_parameters, shared.gradio['interface_state'], None).then( + partial(load_model_wrapper, autoload=True), [shared.gradio[k] for k in ['model_menu', 'loader']], + shared.gradio['model_status'], show_progress=False) + + unload.click( + unload_model, None, None).then( + lambda: "Model unloaded", None, shared.gradio['model_status']) + + reload.click( + unload_model, None, None).then( + ui.gather_interface_values, [shared.gradio[k] for k in shared.input_elements], + shared.gradio['interface_state']).then( + update_model_parameters, shared.gradio['interface_state'], None).then( + partial(load_model_wrapper, autoload=True), [shared.gradio[k] for k in ['model_menu', 'loader']], + shared.gradio['model_status'], show_progress=False) + + save_settings.click( + ui.gather_interface_values, [shared.gradio[k] for k in shared.input_elements], + shared.gradio['interface_state']).then( + save_model_settings, [shared.gradio[k] for k in ['model_menu', 'interface_state']], + shared.gradio['model_status'], show_progress=False) + + shared.gradio['lora_menu_apply'].click(load_lora_wrapper, shared.gradio['lora_menu'], shared.gradio['model_status'], + show_progress=False) + shared.gradio['download_model_button'].click(download_model_wrapper, shared.gradio['custom_model_menu'], + shared.gradio['model_status'], show_progress=True) + shared.gradio['autoload_model'].change(lambda x: gr.update(visible=not x), shared.gradio['autoload_model'], load) + + +def create_chat_settings_menus(): + if not shared.is_chat(): + return + + with gr.Box(): + gr.Markdown("Chat parameters") + with gr.Row(): + with gr.Column(): + shared.gradio['max_new_tokens'] = gr.Slider(minimum=shared.settings['max_new_tokens_min'], + maximum=shared.settings['max_new_tokens_max'], step=1, + label='max_new_tokens', + value=shared.settings['max_new_tokens']) + shared.gradio['chat_generation_attempts'] = gr.Slider( + minimum=shared.settings['chat_generation_attempts_min'], + maximum=shared.settings['chat_generation_attempts_max'], + value=shared.settings['chat_generation_attempts'], step=1, + label='Generation attempts (for longer replies)', + info='New generations will be called until either this number is reached or no new content is generated between two iterations.') + + with gr.Column(): + shared.gradio['stop_at_newline'] = gr.Checkbox(value=shared.settings['stop_at_newline'], + label='Stop generating at new line character') + + +def create_settings_menus(default_preset): + generate_params = presets.load_preset(default_preset) + with gr.Row(): + with gr.Column(): + with gr.Row(): + shared.gradio['preset_menu'] = gr.Dropdown(choices=utils.get_available_presets(), + value=default_preset if not shared.args.flexgen else 'Naive', + label='Generation parameters preset', + elem_classes='slim-dropdown') + ui.create_refresh_button(shared.gradio['preset_menu'], lambda: None, + lambda: {'choices': utils.get_available_presets()}, 'refresh-button') + shared.gradio['save_preset'] = gr.Button('💾', elem_classes='refresh-button') + shared.gradio['delete_preset'] = gr.Button('🗑️', elem_classes='refresh-button') + + with gr.Column(): + shared.gradio['seed'] = gr.Number(value=shared.settings['seed'], label='Seed (-1 for random)') + + with gr.Row(): + with gr.Column(): + with gr.Box(): + gr.Markdown('Main parameters') + with gr.Row(): + with gr.Column(): + shared.gradio['temperature'] = gr.Slider(0.01, 1.99, value=generate_params['temperature'], + step=0.01, label='temperature') + shared.gradio['top_p'] = gr.Slider(0.0, 1.0, value=generate_params['top_p'], step=0.01, + label='top_p') + shared.gradio['top_k'] = gr.Slider(0, 200, value=generate_params['top_k'], step=1, + label='top_k') + shared.gradio['typical_p'] = gr.Slider(0.0, 1.0, value=generate_params['typical_p'], step=0.01, + label='typical_p') + shared.gradio['epsilon_cutoff'] = gr.Slider(0, 9, value=generate_params['epsilon_cutoff'], + step=0.01, label='epsilon_cutoff') + shared.gradio['eta_cutoff'] = gr.Slider(0, 20, value=generate_params['eta_cutoff'], step=0.01, + label='eta_cutoff') + + with gr.Column(): + shared.gradio['repetition_penalty'] = gr.Slider(1.0, 1.5, + value=generate_params['repetition_penalty'], + step=0.01, label='repetition_penalty') + shared.gradio['repetition_penalty_range'] = gr.Slider(0, 4096, step=64, value=generate_params[ + 'repetition_penalty_range'], label='repetition_penalty_range') + shared.gradio['encoder_repetition_penalty'] = gr.Slider(0.8, 1.5, value=generate_params[ + 'encoder_repetition_penalty'], step=0.01, label='encoder_repetition_penalty') + shared.gradio['no_repeat_ngram_size'] = gr.Slider(0, 20, step=1, + value=generate_params['no_repeat_ngram_size'], + label='no_repeat_ngram_size') + shared.gradio['min_length'] = gr.Slider(0, 2000, step=1, value=generate_params['min_length'], + label='min_length') + shared.gradio['tfs'] = gr.Slider(0.0, 1.0, value=generate_params['tfs'], step=0.01, label='tfs') + shared.gradio['top_a'] = gr.Slider(0.0, 1.0, value=generate_params['top_a'], step=0.01, + label='top_a') + shared.gradio['do_sample'] = gr.Checkbox(value=generate_params['do_sample'], label='do_sample') + + with gr.Accordion("Learn more", open=False): + gr.Markdown(""" + + Not all parameters are used by all loaders. See [this page](https://github.com/oobabooga/text-generation-webui/blob/main/docs/Generation-parameters.md) for details. + + For a technical description of the parameters, the [transformers documentation](https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.GenerationConfig) is a good reference. + + ### Temperature + Primary factor to control randomness of outputs. 0 = deterministic (only the most likely token is used). Higher value = more randomness. + ### top_p + If not set to 1, select tokens with probabilities adding up to less than this number. Higher value = higher range of possible random results. + ### top_k + Similar to top_p, but select instead only the top_k most likely tokens. Higher value = higher range of possible random results. + ### typical_p + If not set to 1, select only tokens that are at least this much more likely to appear than random tokens, given the prior text. + ### epsilon_cutoff + In units of 1e-4; a reasonable value is 3. This sets a probability floor below which tokens are excluded from being sampled. Should be used with top_p, top_k, and eta_cutoff set to 0. + ### eta_cutoff + In units of 1e-4; a reasonable value is 3. Should be used with top_p, top_k, and epsilon_cutoff set to 0. + ### repetition_penalty + Exponential penalty factor for repeating prior tokens. 1 means no penalty, higher value = less repetition, lower value = more repetition. + ### repetition_penalty_range + The number of most recent tokens to consider for repetition penalty. 0 makes all tokens be used. + ### encoder_repetition_penalty + Also known as the "Hallucinations filter". Used to penalize tokens that are *not* in the prior text. Higher value = more likely to stay in context, lower value = more likely to diverge. + ### no_repeat_ngram_size + If not set to 0, specifies the length of token sets that are completely blocked from repeating at all. Higher values = blocks larger phrases, lower values = blocks words or letters from repeating. Only 0 or high values are a good idea in most cases. + ### min_length + Minimum generation length in tokens. + ### penalty_alpha + Contrastive Search is enabled by setting this to greater than zero and unchecking "do_sample". It should be used with a low value of top_k, for instance, top_k = 4. + + """, elem_classes="markdown") + + with gr.Column(): + create_chat_settings_menus() + with gr.Box(): + with gr.Row(): + with gr.Column(): + gr.Markdown('Contrastive search') + shared.gradio['penalty_alpha'] = gr.Slider(0, 5, value=generate_params['penalty_alpha'], + label='penalty_alpha') + + gr.Markdown('Beam search') + shared.gradio['num_beams'] = gr.Slider(1, 20, step=1, value=generate_params['num_beams'], + label='num_beams') + shared.gradio['length_penalty'] = gr.Slider(-5, 5, value=generate_params['length_penalty'], + label='length_penalty') + shared.gradio['early_stopping'] = gr.Checkbox(value=generate_params['early_stopping'], + label='early_stopping') + + with gr.Column(): + gr.Markdown('Mirostat (mode=1 is only for llama.cpp)') + shared.gradio['mirostat_mode'] = gr.Slider(0, 2, step=1, value=generate_params['mirostat_mode'], + label='mirostat_mode') + shared.gradio['mirostat_tau'] = gr.Slider(0, 10, step=0.01, + value=generate_params['mirostat_tau'], + label='mirostat_tau') + shared.gradio['mirostat_eta'] = gr.Slider(0, 1, step=0.01, + value=generate_params['mirostat_eta'], + label='mirostat_eta') + + with gr.Box(): + with gr.Row(): + with gr.Column(): + shared.gradio['truncation_length'] = gr.Slider(value=shared.settings['truncation_length'], + minimum=shared.settings['truncation_length_min'], + maximum=shared.settings['truncation_length_max'], + step=256, + label='Truncate the prompt up to this length', + info='The leftmost tokens are removed if the prompt exceeds this length. Most models require this to be at most 2048.') + shared.gradio['custom_stopping_strings'] = gr.Textbox(lines=1, value=shared.settings[ + "custom_stopping_strings"] or None, + label='Custom stopping strings', + info='In addition to the defaults. Written between "" and separated by commas. For instance: "\\nYour Assistant:", "\\nThe assistant:"') + with gr.Column(): + shared.gradio['ban_eos_token'] = gr.Checkbox(value=shared.settings['ban_eos_token'], + label='Ban the eos_token', + info='Forces the model to never end the generation prematurely.') + shared.gradio['add_bos_token'] = gr.Checkbox(value=shared.settings['add_bos_token'], + label='Add the bos_token to the beginning of prompts', + info='Disabling this can make the replies more creative.') + + shared.gradio['skip_special_tokens'] = gr.Checkbox(value=shared.settings['skip_special_tokens'], + label='Skip special tokens', + info='Some specific models need this unset.') + shared.gradio['stream'] = gr.Checkbox(value=not shared.args.no_stream, + label='Activate text streaming') + + shared.gradio['preset_menu'].change(presets.load_preset_for_ui, + [shared.gradio[k] for k in ['preset_menu', 'interface_state']], + [shared.gradio[k] for k in + ['interface_state', 'do_sample', 'temperature', 'top_p', 'typical_p', + 'epsilon_cutoff', 'eta_cutoff', 'repetition_penalty', + 'repetition_penalty_range', 'encoder_repetition_penalty', 'top_k', + 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', + 'length_penalty', 'early_stopping', 'mirostat_mode', 'mirostat_tau', + 'mirostat_eta', 'tfs', 'top_a']]) + + +def create_file_saving_menus(): + # Text file saver + with gr.Box(visible=False, elem_classes='file-saver') as shared.gradio['file_saver']: + shared.gradio['save_filename'] = gr.Textbox(lines=1, label='File name') + shared.gradio['save_root'] = gr.Textbox(lines=1, label='File folder', info='For reference. Unchangeable.', + interactive=False) + shared.gradio['save_contents'] = gr.Textbox(lines=10, label='File contents') + with gr.Row(): + shared.gradio['save_confirm'] = gr.Button('Save', elem_classes="small-button") + shared.gradio['save_cancel'] = gr.Button('Cancel', elem_classes="small-button") + + # Text file deleter + with gr.Box(visible=False, elem_classes='file-saver') as shared.gradio['file_deleter']: + shared.gradio['delete_filename'] = gr.Textbox(lines=1, label='File name') + shared.gradio['delete_root'] = gr.Textbox(lines=1, label='File folder', info='For reference. Unchangeable.', + interactive=False) + with gr.Row(): + shared.gradio['delete_confirm'] = gr.Button('Delete', elem_classes="small-button", variant='stop') + shared.gradio['delete_cancel'] = gr.Button('Cancel', elem_classes="small-button") + + # Character saver/deleter + if shared.is_chat(): + with gr.Box(visible=False, elem_classes='file-saver') as shared.gradio['character_saver']: + shared.gradio['save_character_filename'] = gr.Textbox(lines=1, label='File name', + info='The character will be saved to your characters/ folder with this base filename.') + with gr.Row(): + shared.gradio['save_character_confirm'] = gr.Button('Save', elem_classes="small-button") + shared.gradio['save_character_cancel'] = gr.Button('Cancel', elem_classes="small-button") + + with gr.Box(visible=False, elem_classes='file-saver') as shared.gradio['character_deleter']: + gr.Markdown('Confirm the character deletion?') + with gr.Row(): + shared.gradio['delete_character_confirm'] = gr.Button('Delete', elem_classes="small-button", + variant='stop') + shared.gradio['delete_character_cancel'] = gr.Button('Cancel', elem_classes="small-button") + + +def create_file_saving_event_handlers(): + shared.gradio['save_confirm'].click( + lambda x, y, z: utils.save_file(x + y, z), + [shared.gradio[k] for k in ['save_root', 'save_filename', 'save_contents']], None).then( + lambda: gr.update(visible=False), None, shared.gradio['file_saver']) + + shared.gradio['delete_confirm'].click( + lambda x, y: utils.delete_file(x + y), [shared.gradio[k] for k in ['delete_root', 'delete_filename']], + None).then( + lambda: gr.update(visible=False), None, shared.gradio['file_deleter']) + + shared.gradio['delete_cancel'].click(lambda: gr.update(visible=False), None, shared.gradio['file_deleter']) + shared.gradio['save_cancel'].click(lambda: gr.update(visible=False), None, shared.gradio['file_saver']) + if shared.is_chat(): + shared.gradio['save_character_confirm'].click( + chat.save_character, [shared.gradio[k] for k in + ['name2', 'greeting', 'context', 'character_picture', 'save_character_filename']], + None).then( + lambda: gr.update(visible=False), None, shared.gradio['character_saver']) + + shared.gradio['delete_character_confirm'].click( + chat.delete_character, shared.gradio['character_menu'], None).then( + lambda: gr.update(visible=False), None, shared.gradio['character_deleter']).then( + lambda: gr.update(choices=utils.get_available_characters()), outputs=shared.gradio['character_menu']) + + shared.gradio['save_character_cancel'].click(lambda: gr.update(visible=False), None, + shared.gradio['character_saver']) + shared.gradio['delete_character_cancel'].click(lambda: gr.update(visible=False), None, + shared.gradio['character_deleter']) + + shared.gradio['save_preset'].click( + ui.gather_interface_values, [shared.gradio[k] for k in shared.input_elements], + shared.gradio['interface_state']).then( + presets.generate_preset_yaml, shared.gradio['interface_state'], shared.gradio['save_contents']).then( + lambda: 'presets/', None, shared.gradio['save_root']).then( + lambda: 'My Preset.yaml', None, shared.gradio['save_filename']).then( + lambda: gr.update(visible=True), None, shared.gradio['file_saver']) + + shared.gradio['delete_preset'].click( + lambda x: f'{x}.yaml', shared.gradio['preset_menu'], shared.gradio['delete_filename']).then( + lambda: 'presets/', None, shared.gradio['delete_root']).then( + lambda: gr.update(visible=True), None, shared.gradio['file_deleter']) + + +def set_interface_arguments(interface_mode, extensions, bool_active): + modes = ["default", "notebook", "chat", "cai_chat"] + cmd_list = vars(shared.args) + bool_list = [k for k in cmd_list if type(cmd_list[k]) is bool and k not in modes] + + shared.args.extensions = extensions + for k in modes[1:]: + setattr(shared.args, k, False) + if interface_mode != "default": + setattr(shared.args, interface_mode, True) + + for k in bool_list: + setattr(shared.args, k, False) + for k in bool_active: + setattr(shared.args, k, True) + + shared.need_restart = True + + +def create_interface(): + # Defining some variables + gen_events = [] + default_preset = shared.settings['preset'] + default_text = load_prompt(shared.settings['prompt']) + title = 'Text generation web UI' + + # Authentication variables + auth = None + gradio_auth_creds = [] + if shared.args.gradio_auth: + gradio_auth_creds += [x.strip() for x in shared.args.gradio_auth.strip('"').replace('\n', '').split(',') if + x.strip()] + if shared.args.gradio_auth_path is not None: + with open(shared.args.gradio_auth_path, 'r', encoding="utf8") as file: + for line in file.readlines(): + gradio_auth_creds += [x.strip() for x in line.split(',') if x.strip()] + if gradio_auth_creds: + auth = [tuple(cred.split(':')) for cred in gradio_auth_creds] + + # Importing the extension files and executing their setup() functions + if shared.args.extensions is not None and len(shared.args.extensions) > 0: + extensions_module.load_extensions() + + # css/js strings + css = ui.css if not shared.is_chat() else ui.css + ui.chat_css + js = ui.main_js if not shared.is_chat() else ui.main_js + ui.chat_js + css += apply_extensions('css') + js += apply_extensions('js') + + with gr.Blocks(css=css, analytics_enabled=False, title=title, theme=ui.theme) as shared.gradio['interface']: + if Path("notification.mp3").exists(): + shared.gradio['audio_notification'] = gr.Audio(interactive=False, value="notification.mp3", + elem_id="audio_notification", visible=False) + audio_notification_js = "document.querySelector('#audio_notification audio')?.play();" + else: + audio_notification_js = "" + + # Floating menus for saving/deleting files + create_file_saving_menus() + + # Create chat mode interface + if shared.is_chat(): + shared.input_elements = ui.list_interface_input_elements(chat=True) + shared.gradio['interface_state'] = gr.State({k: None for k in shared.input_elements}) + shared.gradio['Chat input'] = gr.State() + shared.gradio['dummy'] = gr.State() + + with gr.Tab('Text generation', elem_id='main'): + shared.gradio['display'] = gr.HTML( + value=chat_html_wrapper(shared.history['visible'], shared.settings['name1'], + shared.settings['name2'], 'chat', 'cai-chat')) + shared.gradio['textbox'] = gr.Textbox(label='Input') + with gr.Row(): + shared.gradio['Stop'] = gr.Button('Stop', elem_id='stop') + shared.gradio['Generate'] = gr.Button('Generate', elem_id='Generate', variant='primary') + shared.gradio['Continue'] = gr.Button('Continue') + + with gr.Row(): + shared.gradio['Impersonate'] = gr.Button('Impersonate') + shared.gradio['Regenerate'] = gr.Button('Regenerate') + shared.gradio['Remove last'] = gr.Button('Remove last') + + with gr.Row(): + shared.gradio['Copy last reply'] = gr.Button('Copy last reply') + shared.gradio['Replace last reply'] = gr.Button('Replace last reply') + shared.gradio['Send dummy message'] = gr.Button('Send dummy message') + shared.gradio['Send dummy reply'] = gr.Button('Send dummy reply') + + with gr.Row(): + shared.gradio['Clear history'] = gr.Button('Clear history') + shared.gradio['Clear history-confirm'] = gr.Button('Confirm', variant='stop', visible=False) + shared.gradio['Clear history-cancel'] = gr.Button('Cancel', visible=False) + + with gr.Row(): + shared.gradio['start_with'] = gr.Textbox(label='Start reply with', placeholder='Sure thing!', + value=shared.settings['start_with']) + + with gr.Row(): + shared.gradio['mode'] = gr.Radio(choices=['chat', 'chat-instruct', 'instruct'], + value=shared.settings['mode'] if shared.settings['mode'] in [ + 'chat', 'instruct', 'chat-instruct'] else 'chat', label='Mode', + info='Defines how the chat prompt is generated. In instruct and chat-instruct modes, the instruction template selected under "Chat settings" must match the current model.') + shared.gradio['chat_style'] = gr.Dropdown(choices=utils.get_available_chat_styles(), + label='Chat style', value=shared.settings['chat_style'], + visible=shared.settings['mode'] != 'instruct') + + with gr.Tab('Chat settings', elem_id='chat-settings'): + + with gr.Tab("Character"): + with gr.Row(): + with gr.Column(scale=8): + with gr.Row(): + shared.gradio['character_menu'] = gr.Dropdown(choices=utils.get_available_characters(), + label='Character', + elem_id='character-menu', + info='Used in chat and chat-instruct modes.', + elem_classes='slim-dropdown') + ui.create_refresh_button(shared.gradio['character_menu'], lambda: None, + lambda: {'choices': utils.get_available_characters()}, + 'refresh-button') + shared.gradio['save_character'] = gr.Button('💾', elem_classes='refresh-button') + shared.gradio['delete_character'] = gr.Button('🗑️', elem_classes='refresh-button') + + shared.gradio['name1'] = gr.Textbox(value=shared.settings['name1'], lines=1, + label='Your name') + shared.gradio['name2'] = gr.Textbox(value=shared.settings['name2'], lines=1, + label='Character\'s name') + shared.gradio['context'] = gr.Textbox(value=shared.settings['context'], lines=4, + label='Context') + shared.gradio['greeting'] = gr.Textbox(value=shared.settings['greeting'], lines=4, + label='Greeting') + + with gr.Column(scale=1): + shared.gradio['character_picture'] = gr.Image(label='Character picture', type='pil') + shared.gradio['your_picture'] = gr.Image(label='Your picture', type='pil', + value=Image.open(Path('cache/pfp_me.png')) if Path( + 'cache/pfp_me.png').exists() else None) + + with gr.Tab("Instruction template"): + with gr.Row(): + with gr.Row(): + shared.gradio['instruction_template'] = gr.Dropdown( + choices=utils.get_available_instruction_templates(), label='Instruction template', + value='None', + info='Change this according to the model/LoRA that you are using. Used in instruct and chat-instruct modes.', + elem_classes='slim-dropdown') + ui.create_refresh_button(shared.gradio['instruction_template'], lambda: None, + lambda: {'choices': utils.get_available_instruction_templates()}, + 'refresh-button') + shared.gradio['save_template'] = gr.Button('💾', elem_classes='refresh-button') + shared.gradio['delete_template'] = gr.Button('🗑️ ', elem_classes='refresh-button') + + shared.gradio['name1_instruct'] = gr.Textbox(value='', lines=2, label='User string') + shared.gradio['name2_instruct'] = gr.Textbox(value='', lines=1, label='Bot string') + shared.gradio['context_instruct'] = gr.Textbox(value='', lines=4, label='Context') + shared.gradio['turn_template'] = gr.Textbox(value=shared.settings['turn_template'], lines=1, + label='Turn template', + info='Used to precisely define the placement of spaces and new line characters in instruction prompts.') + with gr.Row(): + shared.gradio['chat-instruct_command'] = gr.Textbox( + value=shared.settings['chat-instruct_command'], lines=4, + label='Command for chat-instruct mode', + info='<|character|> gets replaced by the bot name, and <|prompt|> gets replaced by the regular chat prompt.') + + with gr.Tab('Chat history'): + with gr.Row(): + with gr.Column(): + shared.gradio['download'] = gr.File(label="Download") + shared.gradio['download_button'] = gr.Button(value='Refresh') + + with gr.Column(): + shared.gradio['upload_chat_history'] = gr.File(type='binary', file_types=['.json', '.txt'], + label="Upload") + + with gr.Tab('Upload character'): + with gr.Tab('JSON'): + with gr.Row(): + shared.gradio['upload_json'] = gr.File(type='binary', file_types=['.json'], + label='JSON File') + shared.gradio['upload_img_bot'] = gr.Image(type='pil', label='Profile Picture (optional)') + + shared.gradio['Submit character'] = gr.Button(value='Submit', interactive=False) + + with gr.Tab('TavernAI'): + with gr.Row(): + with gr.Column(): + shared.gradio['upload_img_tavern'] = gr.Image(type='pil', label='TavernAI PNG File', + elem_id="upload_img_tavern") + shared.gradio['tavern_json'] = gr.State() + with gr.Column(): + shared.gradio['tavern_name'] = gr.Textbox(value='', lines=1, label='Name', + interactive=False) + shared.gradio['tavern_desc'] = gr.Textbox(value='', lines=4, max_lines=4, + label='Description', interactive=False) + + shared.gradio['Submit tavern character'] = gr.Button(value='Submit', interactive=False) + + with gr.Tab("Parameters", elem_id="parameters"): + create_settings_menus(default_preset) + + # Create notebook mode interface + elif shared.args.notebook: + shared.input_elements = ui.list_interface_input_elements(chat=False) + shared.gradio['interface_state'] = gr.State({k: None for k in shared.input_elements}) + shared.gradio['last_input'] = gr.State('') + with gr.Tab("Text generation", elem_id="main"): + with gr.Row(): + with gr.Column(scale=4): + with gr.Tab('Raw'): + shared.gradio['textbox'] = gr.Textbox(value=default_text, elem_classes="textbox", lines=27) + + with gr.Tab('Markdown'): + shared.gradio['markdown_render'] = gr.Button('Render') + shared.gradio['markdown'] = gr.Markdown() + + with gr.Tab('HTML'): + shared.gradio['html'] = gr.HTML() + + with gr.Row(): + shared.gradio['Generate'] = gr.Button('Generate', variant='primary', + elem_classes="small-button") + shared.gradio['Stop'] = gr.Button('Stop', elem_classes="small-button") + shared.gradio['Undo'] = gr.Button('Undo', elem_classes="small-button") + shared.gradio['Regenerate'] = gr.Button('Regenerate', elem_classes="small-button") + + with gr.Column(scale=1): + gr.HTML('
') + shared.gradio['max_new_tokens'] = gr.Slider(minimum=shared.settings['max_new_tokens_min'], + maximum=shared.settings['max_new_tokens_max'], + step=1, label='max_new_tokens', + value=shared.settings['max_new_tokens']) + with gr.Row(): + shared.gradio['prompt_menu'] = gr.Dropdown(choices=utils.get_available_prompts(), + value='None', label='Prompt', + elem_classes='slim-dropdown') + ui.create_refresh_button(shared.gradio['prompt_menu'], lambda: None, + lambda: {'choices': utils.get_available_prompts()}, + ['refresh-button', 'refresh-button-small']) + shared.gradio['save_prompt'] = gr.Button('💾', elem_classes=['refresh-button', + 'refresh-button-small']) + shared.gradio['delete_prompt'] = gr.Button('🗑️', elem_classes=['refresh-button', + 'refresh-button-small']) + + shared.gradio['count_tokens'] = gr.Button('Count tokens') + shared.gradio['status'] = gr.Markdown('') + + with gr.Tab("Parameters", elem_id="parameters"): + create_settings_menus(default_preset) + + # Create default mode interface + else: + shared.input_elements = ui.list_interface_input_elements(chat=False) + shared.gradio['interface_state'] = gr.State({k: None for k in shared.input_elements}) + shared.gradio['last_input'] = gr.State('') + with gr.Tab("Text generation", elem_id="main"): + with gr.Row(): + with gr.Column(): + shared.gradio['textbox'] = gr.Textbox(value=default_text, elem_classes="textbox_default", + lines=27, label='Input') + shared.gradio['max_new_tokens'] = gr.Slider(minimum=shared.settings['max_new_tokens_min'], + maximum=shared.settings['max_new_tokens_max'], + step=1, label='max_new_tokens', + value=shared.settings['max_new_tokens']) + with gr.Row(): + shared.gradio['Generate'] = gr.Button('Generate', variant='primary') + shared.gradio['Stop'] = gr.Button('Stop') + shared.gradio['Continue'] = gr.Button('Continue') + shared.gradio['count_tokens'] = gr.Button('Count tokens') + + with gr.Row(): + shared.gradio['prompt_menu'] = gr.Dropdown(choices=utils.get_available_prompts(), + value='None', label='Prompt', + elem_classes='slim-dropdown') + ui.create_refresh_button(shared.gradio['prompt_menu'], lambda: None, + lambda: {'choices': utils.get_available_prompts()}, + 'refresh-button') + shared.gradio['save_prompt'] = gr.Button('💾', elem_classes='refresh-button') + shared.gradio['delete_prompt'] = gr.Button('🗑️', elem_classes='refresh-button') + + shared.gradio['status'] = gr.Markdown('') + + with gr.Column(): + with gr.Tab('Raw'): + shared.gradio['output_textbox'] = gr.Textbox(elem_classes="textbox_default_output", + lines=27, label='Output') + + with gr.Tab('Markdown'): + shared.gradio['markdown_render'] = gr.Button('Render') + shared.gradio['markdown'] = gr.Markdown() + + with gr.Tab('HTML'): + shared.gradio['html'] = gr.HTML() + + with gr.Tab("Parameters", elem_id="parameters"): + create_settings_menus(default_preset) + + # Model tab + with gr.Tab("Model", elem_id="model-tab"): + create_model_menus() + + # Training tab + with gr.Tab("Training", elem_id="training-tab"): + training.create_train_interface() + + # Interface mode tab + with gr.Tab("Interface mode", elem_id="interface-mode"): + modes = ["default", "notebook", "chat"] + current_mode = "default" + for mode in modes[1:]: + if getattr(shared.args, mode): + current_mode = mode + break + + cmd_list = vars(shared.args) + bool_list = sorted( + [k for k in cmd_list if type(cmd_list[k]) is bool and k not in modes + ui.list_model_elements()]) + bool_active = [k for k in bool_list if vars(shared.args)[k]] + + with gr.Row(): + shared.gradio['interface_modes_menu'] = gr.Dropdown(choices=modes, value=current_mode, label="Mode") + shared.gradio['reset_interface'] = gr.Button("Apply and restart the interface", + elem_classes="small-button") + shared.gradio['toggle_dark_mode'] = gr.Button('Toggle dark/light mode', elem_classes="small-button") + + with gr.Row(): + with gr.Column(): + shared.gradio['extensions_menu'] = gr.CheckboxGroup(choices=utils.get_available_extensions(), + value=shared.args.extensions, + label="Available extensions", + info='Note that some of these extensions may require manually installing Python requirements through the command: pip install -r extensions/extension_name/requirements.txt', + elem_classes='checkboxgroup-table') + + with gr.Column(): + shared.gradio['bool_menu'] = gr.CheckboxGroup(choices=bool_list, value=bool_active, + label="Boolean command-line flags", + elem_classes='checkboxgroup-table') + + with gr.Row(): + extension_name = gr.Textbox(lines=1, label='Install or update an extension', + info='Enter the GitHub URL below. For a list of extensions, see: https://github.com/oobabooga/text-generation-webui-extensions ⚠️ WARNING ⚠️ : extensions can execute arbitrary code. Make sure to inspect their source code before activating them.') + extension_install = gr.Button('Install or update', elem_classes="small-button") + + extension_status = gr.Markdown() + + extension_install.click( + clone_or_pull_repository, extension_name, extension_status, show_progress=False).then( + lambda: gr.update(choices=utils.get_available_extensions(), value=shared.args.extensions), + outputs=shared.gradio['extensions_menu']) + + # Reset interface event + shared.gradio['reset_interface'].click( + set_interface_arguments, + [shared.gradio[k] for k in ['interface_modes_menu', 'extensions_menu', 'bool_menu']], None).then( + lambda: None, None, None, + _js='() => {document.body.innerHTML=\'

Reloading...

\'; setTimeout(function(){location.reload()},2500); return []}') + + shared.gradio['toggle_dark_mode'].click(lambda: None, None, None, + _js='() => {document.getElementsByTagName("body")[0].classList.toggle("dark")}') + + # chat mode event handlers + if shared.is_chat(): + shared.input_params = [shared.gradio[k] for k in ['Chat input', 'start_with', 'interface_state']] + clear_arr = [shared.gradio[k] for k in ['Clear history-confirm', 'Clear history', 'Clear history-cancel']] + shared.reload_inputs = [shared.gradio[k] for k in ['name1', 'name2', 'mode', 'chat_style']] + + gen_events.append(shared.gradio['Generate'].click( + ui.gather_interface_values, [shared.gradio[k] for k in shared.input_elements], + shared.gradio['interface_state']).then( + lambda x: (x, ''), shared.gradio['textbox'], [shared.gradio['Chat input'], shared.gradio['textbox']], + show_progress=False).then( + chat.generate_chat_reply_wrapper, shared.input_params, shared.gradio['display'], + show_progress=False).then( + chat.save_history, shared.gradio['mode'], None, show_progress=False).then( + lambda: None, None, None, _js=f"() => {{{audio_notification_js}}}") + ) + + gen_events.append(shared.gradio['textbox'].submit( + ui.gather_interface_values, [shared.gradio[k] for k in shared.input_elements], + shared.gradio['interface_state']).then( + lambda x: (x, ''), shared.gradio['textbox'], [shared.gradio['Chat input'], shared.gradio['textbox']], + show_progress=False).then( + chat.generate_chat_reply_wrapper, shared.input_params, shared.gradio['display'], + show_progress=False).then( + chat.save_history, shared.gradio['mode'], None, show_progress=False).then( + lambda: None, None, None, _js=f"() => {{{audio_notification_js}}}") + ) + + gen_events.append(shared.gradio['Regenerate'].click( + ui.gather_interface_values, [shared.gradio[k] for k in shared.input_elements], + shared.gradio['interface_state']).then( + partial(chat.generate_chat_reply_wrapper, regenerate=True), shared.input_params, + shared.gradio['display'], show_progress=False).then( + chat.save_history, shared.gradio['mode'], None, show_progress=False).then( + lambda: None, None, None, _js=f"() => {{{audio_notification_js}}}") + ) + + gen_events.append(shared.gradio['Continue'].click( + ui.gather_interface_values, [shared.gradio[k] for k in shared.input_elements], + shared.gradio['interface_state']).then( + partial(chat.generate_chat_reply_wrapper, _continue=True), shared.input_params, + shared.gradio['display'], show_progress=False).then( + chat.save_history, shared.gradio['mode'], None, show_progress=False).then( + lambda: None, None, None, _js=f"() => {{{audio_notification_js}}}") + ) + + gen_events.append(shared.gradio['Impersonate'].click( + ui.gather_interface_values, [shared.gradio[k] for k in shared.input_elements], + shared.gradio['interface_state']).then( + lambda x: x, shared.gradio['textbox'], shared.gradio['Chat input'], show_progress=False).then( + chat.impersonate_wrapper, shared.input_params, shared.gradio['textbox'], show_progress=False).then( + lambda: None, None, None, _js=f"() => {{{audio_notification_js}}}") + ) + + shared.gradio['Replace last reply'].click( + chat.replace_last_reply, shared.gradio['textbox'], None).then( + lambda: '', None, shared.gradio['textbox'], show_progress=False).then( + chat.save_history, shared.gradio['mode'], None, show_progress=False).then( + chat.redraw_html, shared.reload_inputs, shared.gradio['display']) + + shared.gradio['Send dummy message'].click( + chat.send_dummy_message, shared.gradio['textbox'], None).then( + lambda: '', None, shared.gradio['textbox'], show_progress=False).then( + chat.save_history, shared.gradio['mode'], None, show_progress=False).then( + chat.redraw_html, shared.reload_inputs, shared.gradio['display']) + + shared.gradio['Send dummy reply'].click( + chat.send_dummy_reply, shared.gradio['textbox'], None).then( + lambda: '', None, shared.gradio['textbox'], show_progress=False).then( + chat.save_history, shared.gradio['mode'], None, show_progress=False).then( + chat.redraw_html, shared.reload_inputs, shared.gradio['display']) + + shared.gradio['Clear history-confirm'].click( + lambda: [gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)], None, + clear_arr).then( + chat.clear_chat_log, [shared.gradio[k] for k in ['greeting', 'mode']], None).then( + chat.save_history, shared.gradio['mode'], None, show_progress=False).then( + chat.redraw_html, shared.reload_inputs, shared.gradio['display']) + + shared.gradio['Stop'].click( + stop_everything_event, None, None, queue=False, + cancels=gen_events if shared.args.no_stream else None).then( + chat.redraw_html, shared.reload_inputs, shared.gradio['display']) + + shared.gradio['mode'].change( + lambda x: gr.update(visible=x != 'instruct'), shared.gradio['mode'], shared.gradio['chat_style'], + show_progress=False).then( + chat.redraw_html, shared.reload_inputs, shared.gradio['display']) + + shared.gradio['chat_style'].change(chat.redraw_html, shared.reload_inputs, shared.gradio['display']) + shared.gradio['instruction_template'].change( + partial(chat.load_character, instruct=True), + [shared.gradio[k] for k in ['instruction_template', 'name1_instruct', 'name2_instruct']], + [shared.gradio[k] for k in + ['name1_instruct', 'name2_instruct', 'dummy', 'dummy', 'context_instruct', 'turn_template']]) + + shared.gradio['upload_chat_history'].upload( + chat.load_history, [shared.gradio[k] for k in ['upload_chat_history', 'name1', 'name2']], None).then( + chat.redraw_html, shared.reload_inputs, shared.gradio['display']) + + shared.gradio['Copy last reply'].click(chat.send_last_reply_to_input, None, shared.gradio['textbox'], + show_progress=False) + shared.gradio['Clear history'].click( + lambda: [gr.update(visible=True), gr.update(visible=False), gr.update(visible=True)], None, clear_arr) + shared.gradio['Clear history-cancel'].click( + lambda: [gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)], None, clear_arr) + shared.gradio['Remove last'].click( + chat.remove_last_message, None, shared.gradio['textbox'], show_progress=False).then( + chat.save_history, shared.gradio['mode'], None, show_progress=False).then( + chat.redraw_html, shared.reload_inputs, shared.gradio['display']) + + # Save/delete a character + shared.gradio['save_character'].click( + lambda x: x, shared.gradio['name2'], shared.gradio['save_character_filename']).then( + lambda: gr.update(visible=True), None, shared.gradio['character_saver']) + + shared.gradio['delete_character'].click(lambda: gr.update(visible=True), None, + shared.gradio['character_deleter']) + + shared.gradio['save_template'].click( + lambda: 'My Template.yaml', None, shared.gradio['save_filename']).then( + lambda: 'characters/instruction-following/', None, shared.gradio['save_root']).then( + chat.generate_instruction_template_yaml, + [shared.gradio[k] for k in ['name1_instruct', 'name2_instruct', 'context_instruct', 'turn_template']], + shared.gradio['save_contents']).then( + lambda: gr.update(visible=True), None, shared.gradio['file_saver']) + + shared.gradio['delete_template'].click( + lambda x: f'{x}.yaml', shared.gradio['instruction_template'], shared.gradio['delete_filename']).then( + lambda: 'characters/instruction-following/', None, shared.gradio['delete_root']).then( + lambda: gr.update(visible=True), None, shared.gradio['file_deleter']) + + shared.gradio['download_button'].click(lambda x: chat.save_history(x, timestamp=True, user_request=True), + shared.gradio['mode'], shared.gradio['download']) + shared.gradio['Submit character'].click(chat.upload_character, + [shared.gradio['upload_json'], shared.gradio['upload_img_bot']], + [shared.gradio['character_menu']]) + shared.gradio['upload_json'].upload(lambda: gr.update(interactive=True), None, + [shared.gradio['Submit character']]) + shared.gradio['upload_json'].clear(lambda: gr.update(interactive=False), None, + [shared.gradio['Submit character']]) + + shared.gradio['character_menu'].change( + partial(chat.load_character, instruct=False), + [shared.gradio[k] for k in ['character_menu', 'name1', 'name2']], [shared.gradio[k] for k in + ['name1', 'name2', + 'character_picture', 'greeting', + 'context', 'dummy']]).then( + chat.redraw_html, shared.reload_inputs, shared.gradio['display']) + + shared.gradio['Submit tavern character'].click(chat.upload_tavern_character, + [shared.gradio['upload_img_tavern'], + shared.gradio['tavern_json']], + [shared.gradio['character_menu']]) + shared.gradio['upload_img_tavern'].upload(chat.check_tavern_character, shared.gradio['upload_img_tavern'], + [shared.gradio[k] for k in + ['tavern_name', 'tavern_desc', 'tavern_json', + 'Submit tavern character']], show_progress=False) + shared.gradio['upload_img_tavern'].clear(lambda: (None, None, None, gr.update(interactive=False)), None, + [shared.gradio[k] for k in + ['tavern_name', 'tavern_desc', 'tavern_json', + 'Submit tavern character']], show_progress=False) + shared.gradio['your_picture'].change( + chat.upload_your_profile_picture, shared.gradio['your_picture'], None).then( + partial(chat.redraw_html, reset_cache=True), shared.reload_inputs, shared.gradio['display']) + + # notebook/default modes event handlers + else: + shared.input_params = [shared.gradio[k] for k in ['textbox', 'interface_state']] + if shared.args.notebook: + output_params = [shared.gradio[k] for k in ['textbox', 'html']] + else: + output_params = [shared.gradio[k] for k in ['output_textbox', 'html']] + + gen_events.append(shared.gradio['Generate'].click( + lambda x: x, shared.gradio['textbox'], shared.gradio['last_input']).then( + ui.gather_interface_values, [shared.gradio[k] for k in shared.input_elements], + shared.gradio['interface_state']).then( + generate_reply_wrapper, shared.input_params, output_params, show_progress=False).then( + lambda: None, None, None, _js=f"() => {{{audio_notification_js}}}") + # lambda: None, None, None, _js="() => {element = document.getElementsByTagName('textarea')[0]; element.scrollTop = element.scrollHeight}") + ) + + gen_events.append(shared.gradio['textbox'].submit( + lambda x: x, shared.gradio['textbox'], shared.gradio['last_input']).then( + ui.gather_interface_values, [shared.gradio[k] for k in shared.input_elements], + shared.gradio['interface_state']).then( + generate_reply_wrapper, shared.input_params, output_params, show_progress=False).then( + lambda: None, None, None, _js=f"() => {{{audio_notification_js}}}") + # lambda: None, None, None, _js="() => {element = document.getElementsByTagName('textarea')[0]; element.scrollTop = element.scrollHeight}") + ) + + if shared.args.notebook: + shared.gradio['Undo'].click(lambda x: x, shared.gradio['last_input'], shared.gradio['textbox'], + show_progress=False) + shared.gradio['markdown_render'].click(lambda x: x, shared.gradio['textbox'], shared.gradio['markdown'], + queue=False) + gen_events.append(shared.gradio['Regenerate'].click( + lambda x: x, shared.gradio['last_input'], shared.gradio['textbox'], show_progress=False).then( + ui.gather_interface_values, [shared.gradio[k] for k in shared.input_elements], + shared.gradio['interface_state']).then( + generate_reply_wrapper, shared.input_params, output_params, show_progress=False).then( + lambda: None, None, None, _js=f"() => {{{audio_notification_js}}}") + # lambda: None, None, None, _js="() => {element = document.getElementsByTagName('textarea')[0]; element.scrollTop = element.scrollHeight}") + ) + else: + shared.gradio['markdown_render'].click(lambda x: x, shared.gradio['output_textbox'], + shared.gradio['markdown'], queue=False) + gen_events.append(shared.gradio['Continue'].click( + ui.gather_interface_values, [shared.gradio[k] for k in shared.input_elements], + shared.gradio['interface_state']).then( + generate_reply_wrapper, [shared.gradio['output_textbox']] + shared.input_params[1:], output_params, + show_progress=False).then( + lambda: None, None, None, _js=f"() => {{{audio_notification_js}}}") + # lambda: None, None, None, _js="() => {element = document.getElementsByTagName('textarea')[1]; element.scrollTop = element.scrollHeight}") + ) + + shared.gradio['Stop'].click(stop_everything_event, None, None, queue=False, + cancels=gen_events if shared.args.no_stream else None) + shared.gradio['prompt_menu'].change(load_prompt, shared.gradio['prompt_menu'], shared.gradio['textbox'], + show_progress=False) + shared.gradio['save_prompt'].click( + lambda x: x, shared.gradio['textbox'], shared.gradio['save_contents']).then( + lambda: 'prompts/', None, shared.gradio['save_root']).then( + lambda: utils.current_time() + '.txt', None, shared.gradio['save_filename']).then( + lambda: gr.update(visible=True), None, shared.gradio['file_saver']) + + shared.gradio['delete_prompt'].click( + lambda: 'prompts/', None, shared.gradio['delete_root']).then( + lambda x: x + '.txt', shared.gradio['prompt_menu'], shared.gradio['delete_filename']).then( + lambda: gr.update(visible=True), None, shared.gradio['file_deleter']) + + shared.gradio['count_tokens'].click(count_tokens, shared.gradio['textbox'], shared.gradio['status'], + show_progress=False) + + create_file_saving_event_handlers() + shared.gradio['interface'].load(lambda: None, None, None, _js=f"() => {{{js}}}") + if shared.settings['dark_theme']: + shared.gradio['interface'].load(lambda: None, None, None, + _js="() => document.getElementsByTagName('body')[0].classList.add('dark')") + + shared.gradio['interface'].load(partial(ui.apply_interface_values, {}, use_persistent=True), None, + [shared.gradio[k] for k in + ui.list_interface_input_elements(chat=shared.is_chat())], show_progress=False) + + # Extensions tabs + extensions_module.create_extensions_tabs() + + # Extensions block + extensions_module.create_extensions_block() + + # Launch the interface + shared.gradio['interface'].queue() + if shared.args.listen: + shared.gradio['interface'].launch(prevent_thread_lock=True, share=shared.args.share, + server_name=shared.args.listen_host or '0.0.0.0', + server_port=shared.args.listen_port, inbrowser=shared.args.auto_launch, + auth=auth) + else: + shared.gradio['interface'].launch(prevent_thread_lock=True, share=shared.args.share, + server_port=shared.args.listen_port, inbrowser=shared.args.auto_launch, + auth=auth) + + +if __name__ == "__main__": + # Loading custom settings + settings_file = None + if shared.args.settings is not None and Path(shared.args.settings).exists(): + settings_file = Path(shared.args.settings) + elif Path('settings.yaml').exists(): + settings_file = Path('settings.yaml') + elif Path('settings.json').exists(): + settings_file = Path('settings.json') + + if settings_file is not None: + logger.info(f"Loading settings from {settings_file}...") + file_contents = open(settings_file, 'r', encoding='utf-8').read() + new_settings = json.loads(file_contents) if settings_file.suffix == "json" else yaml.safe_load(file_contents) + for item in new_settings: + shared.settings[item] = new_settings[item] + + # Set default model settings based on settings file + shared.model_config['.*'] = { + 'wbits': 'None', + 'model_type': 'None', + 'groupsize': 'None', + 'pre_layer': 0, + 'mode': shared.settings['mode'], + 'skip_special_tokens': shared.settings['skip_special_tokens'], + 'custom_stopping_strings': shared.settings['custom_stopping_strings'], + 'truncation_length': shared.settings['truncation_length'], + } + + shared.model_config.move_to_end('.*', last=False) # Move to the beginning + + # Default extensions + extensions_module.available_extensions = utils.get_available_extensions() + if shared.is_chat(): + for extension in shared.settings['chat_default_extensions']: + shared.args.extensions = shared.args.extensions or [] + if extension not in shared.args.extensions: + shared.args.extensions.append(extension) + else: + for extension in shared.settings['default_extensions']: + shared.args.extensions = shared.args.extensions or [] + if extension not in shared.args.extensions: + shared.args.extensions.append(extension) + + available_models = utils.get_available_models() + + # Model defined through --model + if shared.args.model is not None: + shared.model_name = shared.args.model + + # Only one model is available + elif len(available_models) == 1: + shared.model_name = available_models[0] + + # Select the model from a command-line menu + elif shared.args.model_menu: + if len(available_models) == 0: + logger.error('No models are available! Please download at least one.') + sys.exit(0) + else: + print('The following models are available:\n') + for i, model in enumerate(available_models): + print(f'{i + 1}. {model}') + + print(f'\nWhich one do you want to load? 1-{len(available_models)}\n') + i = int(input()) - 1 + print() + + shared.model_name = available_models[i] + + # If any model has been selected, load it + if shared.model_name != 'None': + model_settings = get_model_settings_from_yamls(shared.model_name) + shared.settings.update(model_settings) # hijacking the interface defaults + update_model_parameters(model_settings, initial=True) # hijacking the command-line arguments + + # Load the model + shared.model, shared.tokenizer = load_model(shared.model_name) + if shared.args.lora: + add_lora_to_model(shared.args.lora) + + # Force a character to be loaded + if shared.is_chat(): + shared.persistent_interface_state.update({ + 'mode': shared.settings['mode'], + 'character_menu': shared.args.character or shared.settings['character'], + 'instruction_template': shared.settings['instruction_template'] + }) + + shared.persistent_interface_state.update({ + 'loader': shared.args.loader or 'Transformers', + }) + + shared.generation_lock = Lock() + # Launch the web UI + create_interface() + while True: + time.sleep(0.5) + if shared.need_restart: + shared.need_restart = False + time.sleep(0.5) + shared.gradio['interface'].close() + time.sleep(0.5) + create_interface() diff --git a/settings-template.yaml b/settings-template.yaml new file mode 100644 index 0000000000000000000000000000000000000000..e949f69728ca6c938d4e97d7fba9faa4214f2926 --- /dev/null +++ b/settings-template.yaml @@ -0,0 +1,40 @@ +dark_theme: false +autoload_model: true +max_new_tokens: 200 +max_new_tokens_min: 1 +max_new_tokens_max: 2000 +seed: -1 +character: None +name1: You +name2: Assistant +context: This is a conversation with your Assistant. It is a computer program designed + to help you with various tasks such as answering questions, providing recommendations, + and helping with decision making. You can ask it anything you want and it will do + its best to give you accurate and relevant information. +greeting: '' +turn_template: '' +custom_stopping_strings: '' +stop_at_newline: false +add_bos_token: true +ban_eos_token: false +skip_special_tokens: true +truncation_length: 2048 +truncation_length_min: 0 +truncation_length_max: 16384 +mode: chat +start_with: '' +chat_style: cai-chat +instruction_template: None +chat-instruct_command: 'Continue the chat dialogue below. Write a single reply for + the character "<|character|>". + + + <|prompt|>' +chat_generation_attempts: 1 +chat_generation_attempts_min: 1 +chat_generation_attempts_max: 10 +default_extensions: [] +chat_default_extensions: +- gallery +preset: simple-1 +prompt: QA diff --git a/training/datasets/put-trainer-datasets-here.txt b/training/datasets/put-trainer-datasets-here.txt new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/training/formats/alpaca-chatbot-format.json b/training/formats/alpaca-chatbot-format.json new file mode 100644 index 0000000000000000000000000000000000000000..4b38103f4c23de004666e0316855db62e57d2ad0 --- /dev/null +++ b/training/formats/alpaca-chatbot-format.json @@ -0,0 +1,4 @@ +{ + "instruction,output": "User: %instruction%\nAssistant: %output%", + "instruction,input,output": "User: %instruction%: %input%\nAssistant: %output%" +} diff --git a/training/formats/alpaca-format.json b/training/formats/alpaca-format.json new file mode 100644 index 0000000000000000000000000000000000000000..dd6df95640360297257b618715370093b715b21f --- /dev/null +++ b/training/formats/alpaca-format.json @@ -0,0 +1,4 @@ +{ + "instruction,output": "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n%instruction%\n\n### Response:\n%output%", + "instruction,input,output": "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n### Instruction:\n%instruction%\n\n### Input:\n%input%\n\n### Response:\n%output%" +}