import time import copy import asyncio import requests import transformers import torch from fastapi import FastAPI, Request from sse_starlette import EventSourceResponse from transformers import AutoTokenizer # Load the model app = FastAPI() model = "meta-llama/Llama-2-70b" @app.get("/llama") def llama(): tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline("text-generation" ,model=model ,torch_dtype=torch.float16 ,device_map="auto" , ) sequences = pipeline( 'I liked "Breaking Bad" and "Band of Brothers". Do you have any recommendations of other shows I might like?\n', do_sample=True, top_k=10, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, max_length=200, ) for seq in sequences: print(f"Result: {seq['generated_text']}") return sequences