Upload 3 files
Browse files- Home.py +83 -0
- Prediction.py +14 -0
- requirements.txt +5 -0
Home.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pickle
|
3 |
+
from Prediction import Prediction
|
4 |
+
from transformers import TFAutoModel
|
5 |
+
|
6 |
+
|
7 |
+
|
8 |
+
# resnet_model = pickle.load(open('models/ResNet01.pkl','rb'))
|
9 |
+
cnn_model = pickle.load(open('models/CNNModel2.pkl','rb'))
|
10 |
+
inc_model = pickle.load(open('models/Inception01.pkl','rb'))
|
11 |
+
resnet_model = TFAutoModel.from_pretrained("yashpat85/ResNet01")
|
12 |
+
|
13 |
+
|
14 |
+
def show_error_popup(message):
|
15 |
+
st.error(message, icon="🚨")
|
16 |
+
|
17 |
+
st.set_page_config(layout="wide")
|
18 |
+
|
19 |
+
st.title('Kidney Disease Classification using CNN')
|
20 |
+
st.markdown('By 22DCS079 & 22DCS085')
|
21 |
+
|
22 |
+
st.header('Add Ct Scan Image')
|
23 |
+
|
24 |
+
uploaded_file = st.file_uploader("Choose a ct scan image", type=["jpg", "png", "jpeg"])
|
25 |
+
|
26 |
+
st.header("Available Models")
|
27 |
+
option = st.selectbox(
|
28 |
+
"Available Models",
|
29 |
+
("ResNet", "CNN","InceptionNet"),
|
30 |
+
)
|
31 |
+
|
32 |
+
pm = Prediction()
|
33 |
+
|
34 |
+
col1, col2= st.columns(2)
|
35 |
+
|
36 |
+
if uploaded_file is not None:
|
37 |
+
with col1:
|
38 |
+
image_data = uploaded_file.read()
|
39 |
+
st.image(image_data, caption="Uploaded Image")
|
40 |
+
with col2:
|
41 |
+
if option=="CNN":
|
42 |
+
p = pm.predict_image(cnn_model, image_data)
|
43 |
+
elif option=="ResNet":
|
44 |
+
p = pm.predict_image(resnet_model, image_data)
|
45 |
+
elif option=="InceptionNet":
|
46 |
+
p = pm.predict_image(inc_model, image_data)
|
47 |
+
else:
|
48 |
+
p = "Other Models are still under training due to overfitting"
|
49 |
+
|
50 |
+
print(p)
|
51 |
+
|
52 |
+
if p=='Normal':
|
53 |
+
st.markdown("""
|
54 |
+
<style>
|
55 |
+
.big-font {
|
56 |
+
display: flex;
|
57 |
+
align-items:center;
|
58 |
+
justify-content: center;
|
59 |
+
font-size:50px !important;
|
60 |
+
color:green;
|
61 |
+
height: 50vh;
|
62 |
+
}
|
63 |
+
</style>
|
64 |
+
""", unsafe_allow_html=True)
|
65 |
+
|
66 |
+
st.markdown(f'<div class="big-font">{p}</div>', unsafe_allow_html=True)
|
67 |
+
else:
|
68 |
+
st.markdown("""
|
69 |
+
<style>
|
70 |
+
.big-font {
|
71 |
+
display: flex;
|
72 |
+
align-items:center;
|
73 |
+
justify-content: center;
|
74 |
+
font-size:50px !important;
|
75 |
+
color:red;
|
76 |
+
height: 50vh;
|
77 |
+
}
|
78 |
+
</style>
|
79 |
+
""", unsafe_allow_html=True)
|
80 |
+
|
81 |
+
st.markdown(f'<div class="big-font">{p}</div>', unsafe_allow_html=True)
|
82 |
+
else:
|
83 |
+
show_error_popup("Please Upload Image...")
|
Prediction.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import tensorflow as tf
|
3 |
+
|
4 |
+
|
5 |
+
class Prediction:
|
6 |
+
def predict_image(self, model, img):
|
7 |
+
img = tf.image.decode_jpeg(img, channels=3)
|
8 |
+
resize = tf.image.resize(img, (224,224))
|
9 |
+
yhat = model.predict(np.expand_dims(resize/255, 0))
|
10 |
+
max_index = np.argmax(yhat)
|
11 |
+
print(yhat)
|
12 |
+
op_d = {0:'Cyst',1:'Normal',2:'Stone',3:'Tumor'}
|
13 |
+
return op_d[max_index]
|
14 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy==1.26.4
|
2 |
+
pandas==2.2.2
|
3 |
+
tensorflow==2.17.0
|
4 |
+
matplotlib==3.9.2
|
5 |
+
streamlit==1.37.1
|