Spaces:
Runtime error
Runtime error
File size: 29,630 Bytes
b2cbfed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 |
# Prediction interface for Cog ⚙️
# https://github.com/replicate/cog/blob/main/docs/python.md
import os
import sys
sys.path.append(os.path.join(os.path.dirname(__file__), ".."))
sys.path.append(os.path.join(os.path.dirname(__file__), "../gradio_demo"))
import cv2
import time
import torch
import mimetypes
import subprocess
import numpy as np
from typing import List
from cog import BasePredictor, Input, Path
import PIL
from PIL import Image
import diffusers
from diffusers import LCMScheduler
from diffusers.utils import load_image
from diffusers.models import ControlNetModel
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
from model_util import get_torch_device
from insightface.app import FaceAnalysis
from transformers import CLIPImageProcessor
from controlnet_util import openpose, get_depth_map, get_canny_image
from diffusers.pipelines.stable_diffusion.safety_checker import (
StableDiffusionSafetyChecker,
)
from pipeline_stable_diffusion_xl_instantid_full import (
StableDiffusionXLInstantIDPipeline,
draw_kps,
)
mimetypes.add_type("image/webp", ".webp")
# GPU global variables
DEVICE = get_torch_device()
DTYPE = torch.float16 if str(DEVICE).__contains__("cuda") else torch.float32
# for `ip-adapter`, `ControlNetModel`, and `stable-diffusion-xl-base-1.0`
CHECKPOINTS_CACHE = "./checkpoints"
CHECKPOINTS_URL = "https://weights.replicate.delivery/default/InstantID/checkpoints.tar"
# for `models/antelopev2`
MODELS_CACHE = "./models"
MODELS_URL = "https://weights.replicate.delivery/default/InstantID/models.tar"
# for the safety checker
SAFETY_CACHE = "./safety-cache"
FEATURE_EXTRACTOR = "./feature-extractor"
SAFETY_URL = "https://weights.replicate.delivery/default/playgroundai/safety-cache.tar"
SDXL_NAME_TO_PATHLIKE = {
# These are all huggingface models that we host via gcp + pget
"stable-diffusion-xl-base-1.0": {
"slug": "stabilityai/stable-diffusion-xl-base-1.0",
"url": "https://weights.replicate.delivery/default/InstantID/models--stabilityai--stable-diffusion-xl-base-1.0.tar",
"path": "checkpoints/models--stabilityai--stable-diffusion-xl-base-1.0",
},
"afrodite-xl-v2": {
"slug": "stablediffusionapi/afrodite-xl-v2",
"url": "https://weights.replicate.delivery/default/InstantID/models--stablediffusionapi--afrodite-xl-v2.tar",
"path": "checkpoints/models--stablediffusionapi--afrodite-xl-v2",
},
"albedobase-xl-20": {
"slug": "stablediffusionapi/albedobase-xl-20",
"url": "https://weights.replicate.delivery/default/InstantID/models--stablediffusionapi--albedobase-xl-20.tar",
"path": "checkpoints/models--stablediffusionapi--albedobase-xl-20",
},
"albedobase-xl-v13": {
"slug": "stablediffusionapi/albedobase-xl-v13",
"url": "https://weights.replicate.delivery/default/InstantID/models--stablediffusionapi--albedobase-xl-v13.tar",
"path": "checkpoints/models--stablediffusionapi--albedobase-xl-v13",
},
"animagine-xl-30": {
"slug": "stablediffusionapi/animagine-xl-30",
"url": "https://weights.replicate.delivery/default/InstantID/models--stablediffusionapi--animagine-xl-30.tar",
"path": "checkpoints/models--stablediffusionapi--animagine-xl-30",
},
"anime-art-diffusion-xl": {
"slug": "stablediffusionapi/anime-art-diffusion-xl",
"url": "https://weights.replicate.delivery/default/InstantID/models--stablediffusionapi--anime-art-diffusion-xl.tar",
"path": "checkpoints/models--stablediffusionapi--anime-art-diffusion-xl",
},
"anime-illust-diffusion-xl": {
"slug": "stablediffusionapi/anime-illust-diffusion-xl",
"url": "https://weights.replicate.delivery/default/InstantID/models--stablediffusionapi--anime-illust-diffusion-xl.tar",
"path": "checkpoints/models--stablediffusionapi--anime-illust-diffusion-xl",
},
"dreamshaper-xl": {
"slug": "stablediffusionapi/dreamshaper-xl",
"url": "https://weights.replicate.delivery/default/InstantID/models--stablediffusionapi--dreamshaper-xl.tar",
"path": "checkpoints/models--stablediffusionapi--dreamshaper-xl",
},
"dynavision-xl-v0610": {
"slug": "stablediffusionapi/dynavision-xl-v0610",
"url": "https://weights.replicate.delivery/default/InstantID/models--stablediffusionapi--dynavision-xl-v0610.tar",
"path": "checkpoints/models--stablediffusionapi--dynavision-xl-v0610",
},
"guofeng4-xl": {
"slug": "stablediffusionapi/guofeng4-xl",
"url": "https://weights.replicate.delivery/default/InstantID/models--stablediffusionapi--guofeng4-xl.tar",
"path": "checkpoints/models--stablediffusionapi--guofeng4-xl",
},
"juggernaut-xl-v8": {
"slug": "stablediffusionapi/juggernaut-xl-v8",
"url": "https://weights.replicate.delivery/default/InstantID/models--stablediffusionapi--juggernaut-xl-v8.tar",
"path": "checkpoints/models--stablediffusionapi--juggernaut-xl-v8",
},
"nightvision-xl-0791": {
"slug": "stablediffusionapi/nightvision-xl-0791",
"url": "https://weights.replicate.delivery/default/InstantID/models--stablediffusionapi--nightvision-xl-0791.tar",
"path": "checkpoints/models--stablediffusionapi--nightvision-xl-0791",
},
"omnigen-xl": {
"slug": "stablediffusionapi/omnigen-xl",
"url": "https://weights.replicate.delivery/default/InstantID/models--stablediffusionapi--omnigen-xl.tar",
"path": "checkpoints/models--stablediffusionapi--omnigen-xl",
},
"pony-diffusion-v6-xl": {
"slug": "stablediffusionapi/pony-diffusion-v6-xl",
"url": "https://weights.replicate.delivery/default/InstantID/models--stablediffusionapi--pony-diffusion-v6-xl.tar",
"path": "checkpoints/models--stablediffusionapi--pony-diffusion-v6-xl",
},
"protovision-xl-high-fidel": {
"slug": "stablediffusionapi/protovision-xl-high-fidel",
"url": "https://weights.replicate.delivery/default/InstantID/models--stablediffusionapi--protovision-xl-high-fidel.tar",
"path": "checkpoints/models--stablediffusionapi--protovision-xl-high-fidel",
},
"RealVisXL_V3.0_Turbo": {
"slug": "SG161222/RealVisXL_V3.0_Turbo",
"url": "https://weights.replicate.delivery/default/InstantID/models--SG161222--RealVisXL_V3.0_Turbo.tar",
"path": "checkpoints/models--SG161222--RealVisXL_V3.0_Turbo",
},
"RealVisXL_V4.0_Lightning": {
"slug": "SG161222/RealVisXL_V4.0_Lightning",
"url": "https://weights.replicate.delivery/default/InstantID/models--SG161222--RealVisXL_V4.0_Lightning.tar",
"path": "checkpoints/models--SG161222--RealVisXL_V4.0_Lightning",
},
}
def convert_from_cv2_to_image(img: np.ndarray) -> Image:
return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
def convert_from_image_to_cv2(img: Image) -> np.ndarray:
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
def resize_img(
input_image,
max_side=1280,
min_side=1024,
size=None,
pad_to_max_side=False,
mode=PIL.Image.BILINEAR,
base_pixel_number=64,
):
w, h = input_image.size
if size is not None:
w_resize_new, h_resize_new = size
else:
ratio = min_side / min(h, w)
w, h = round(ratio * w), round(ratio * h)
ratio = max_side / max(h, w)
input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode)
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
if pad_to_max_side:
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
offset_x = (max_side - w_resize_new) // 2
offset_y = (max_side - h_resize_new) // 2
res[offset_y : offset_y + h_resize_new, offset_x : offset_x + w_resize_new] = (
np.array(input_image)
)
input_image = Image.fromarray(res)
return input_image
def download_weights(url, dest):
start = time.time()
print("[!] Initiating download from URL: ", url)
print("[~] Destination path: ", dest)
command = ["pget", "-vf", url, dest]
if ".tar" in url:
command.append("-x")
try:
subprocess.check_call(command, close_fds=False)
except subprocess.CalledProcessError as e:
print(
f"[ERROR] Failed to download weights. Command '{' '.join(e.cmd)}' returned non-zero exit status {e.returncode}."
)
raise
print("[+] Download completed in: ", time.time() - start, "seconds")
class Predictor(BasePredictor):
def setup(self) -> None:
"""Load the model into memory to make running multiple predictions efficient"""
if not os.path.exists(CHECKPOINTS_CACHE):
download_weights(CHECKPOINTS_URL, CHECKPOINTS_CACHE)
if not os.path.exists(MODELS_CACHE):
download_weights(MODELS_URL, MODELS_CACHE)
self.face_detection_input_width, self.face_detection_input_height = 640, 640
self.app = FaceAnalysis(
name="antelopev2",
root="./",
providers=["CUDAExecutionProvider", "CPUExecutionProvider"],
)
self.app.prepare(ctx_id=0, det_size=(self.face_detection_input_width, self.face_detection_input_height))
# Path to InstantID models
self.face_adapter = f"./checkpoints/ip-adapter.bin"
controlnet_path = f"./checkpoints/ControlNetModel"
# Load pipeline face ControlNetModel
self.controlnet_identitynet = ControlNetModel.from_pretrained(
controlnet_path,
torch_dtype=DTYPE,
cache_dir=CHECKPOINTS_CACHE,
local_files_only=True,
)
self.setup_extra_controlnets()
self.load_weights("stable-diffusion-xl-base-1.0")
self.setup_safety_checker()
def setup_safety_checker(self):
print(f"[~] Seting up safety checker")
if not os.path.exists(SAFETY_CACHE):
download_weights(SAFETY_URL, SAFETY_CACHE)
self.safety_checker = StableDiffusionSafetyChecker.from_pretrained(
SAFETY_CACHE,
torch_dtype=DTYPE,
local_files_only=True,
)
self.safety_checker.to(DEVICE)
self.feature_extractor = CLIPImageProcessor.from_pretrained(FEATURE_EXTRACTOR)
def run_safety_checker(self, image):
safety_checker_input = self.feature_extractor(image, return_tensors="pt").to(
DEVICE
)
np_image = np.array(image)
image, has_nsfw_concept = self.safety_checker(
images=[np_image],
clip_input=safety_checker_input.pixel_values.to(DTYPE),
)
return image, has_nsfw_concept
def load_weights(self, sdxl_weights):
self.base_weights = sdxl_weights
weights_info = SDXL_NAME_TO_PATHLIKE[self.base_weights]
download_url = weights_info["url"]
path_to_weights_dir = weights_info["path"]
if not os.path.exists(path_to_weights_dir):
download_weights(download_url, path_to_weights_dir)
is_hugging_face_model = "slug" in weights_info.keys()
path_to_weights_file = os.path.join(
path_to_weights_dir,
weights_info.get("file", ""),
)
print(f"[~] Loading new SDXL weights: {path_to_weights_file}")
if is_hugging_face_model:
self.pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
weights_info["slug"],
controlnet=[self.controlnet_identitynet],
torch_dtype=DTYPE,
cache_dir=CHECKPOINTS_CACHE,
local_files_only=True,
safety_checker=None,
feature_extractor=None,
)
self.pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(
self.pipe.scheduler.config
)
else: # e.g. .safetensors, NOTE: This functionality is not being used right now
self.pipe.from_single_file(
path_to_weights_file,
controlnet=self.controlnet_identitynet,
torch_dtype=DTYPE,
cache_dir=CHECKPOINTS_CACHE,
)
self.pipe.load_ip_adapter_instantid(self.face_adapter)
self.setup_lcm_lora()
self.pipe.cuda()
def setup_lcm_lora(self):
print(f"[~] Seting up LCM (just in case)")
lcm_lora_key = "models--latent-consistency--lcm-lora-sdxl"
lcm_lora_path = f"checkpoints/{lcm_lora_key}"
if not os.path.exists(lcm_lora_path):
download_weights(
f"https://weights.replicate.delivery/default/InstantID/{lcm_lora_key}.tar",
lcm_lora_path,
)
self.pipe.load_lora_weights(
"latent-consistency/lcm-lora-sdxl",
cache_dir=CHECKPOINTS_CACHE,
local_files_only=True,
weight_name="pytorch_lora_weights.safetensors",
)
self.pipe.disable_lora()
def setup_extra_controlnets(self):
print(f"[~] Seting up pose, canny, depth ControlNets")
controlnet_pose_model = "thibaud/controlnet-openpose-sdxl-1.0"
controlnet_canny_model = "diffusers/controlnet-canny-sdxl-1.0"
controlnet_depth_model = "diffusers/controlnet-depth-sdxl-1.0-small"
for controlnet_key in [
"models--diffusers--controlnet-canny-sdxl-1.0",
"models--diffusers--controlnet-depth-sdxl-1.0-small",
"models--thibaud--controlnet-openpose-sdxl-1.0",
]:
controlnet_path = f"checkpoints/{controlnet_key}"
if not os.path.exists(controlnet_path):
download_weights(
f"https://weights.replicate.delivery/default/InstantID/{controlnet_key}.tar",
controlnet_path,
)
controlnet_pose = ControlNetModel.from_pretrained(
controlnet_pose_model,
torch_dtype=DTYPE,
cache_dir=CHECKPOINTS_CACHE,
local_files_only=True,
).to(DEVICE)
controlnet_canny = ControlNetModel.from_pretrained(
controlnet_canny_model,
torch_dtype=DTYPE,
cache_dir=CHECKPOINTS_CACHE,
local_files_only=True,
).to(DEVICE)
controlnet_depth = ControlNetModel.from_pretrained(
controlnet_depth_model,
torch_dtype=DTYPE,
cache_dir=CHECKPOINTS_CACHE,
local_files_only=True,
).to(DEVICE)
self.controlnet_map = {
"pose": controlnet_pose,
"canny": controlnet_canny,
"depth": controlnet_depth,
}
self.controlnet_map_fn = {
"pose": openpose,
"canny": get_canny_image,
"depth": get_depth_map,
}
def generate_image(
self,
face_image_path,
pose_image_path,
prompt,
negative_prompt,
num_steps,
identitynet_strength_ratio,
adapter_strength_ratio,
pose_strength,
canny_strength,
depth_strength,
controlnet_selection,
guidance_scale,
seed,
scheduler,
enable_LCM,
enhance_face_region,
num_images_per_prompt,
):
if enable_LCM:
self.pipe.enable_lora()
self.pipe.scheduler = LCMScheduler.from_config(self.pipe.scheduler.config)
else:
self.pipe.disable_lora()
scheduler_class_name = scheduler.split("-")[0]
add_kwargs = {}
if len(scheduler.split("-")) > 1:
add_kwargs["use_karras_sigmas"] = True
if len(scheduler.split("-")) > 2:
add_kwargs["algorithm_type"] = "sde-dpmsolver++"
scheduler = getattr(diffusers, scheduler_class_name)
self.pipe.scheduler = scheduler.from_config(
self.pipe.scheduler.config,
**add_kwargs,
)
if face_image_path is None:
raise Exception(
f"Cannot find any input face `image`! Please upload the face `image`"
)
face_image = load_image(face_image_path)
face_image = resize_img(face_image)
face_image_cv2 = convert_from_image_to_cv2(face_image)
height, width, _ = face_image_cv2.shape
# Extract face features
face_info = self.app.get(face_image_cv2)
if len(face_info) == 0:
raise Exception(
"Face detector could not find a face in the `image`. Please use a different `image` as input."
)
face_info = sorted(
face_info,
key=lambda x: (x["bbox"][2] - x["bbox"][0]) * x["bbox"][3] - x["bbox"][1],
)[
-1
] # only use the maximum face
face_emb = face_info["embedding"]
face_kps = draw_kps(convert_from_cv2_to_image(face_image_cv2), face_info["kps"])
img_controlnet = face_image
if pose_image_path is not None:
pose_image = load_image(pose_image_path)
pose_image = resize_img(pose_image, max_side=1024)
img_controlnet = pose_image
pose_image_cv2 = convert_from_image_to_cv2(pose_image)
face_info = self.app.get(pose_image_cv2)
if len(face_info) == 0:
raise Exception(
"Face detector could not find a face in the `pose_image`. Please use a different `pose_image` as input."
)
face_info = face_info[-1]
face_kps = draw_kps(pose_image, face_info["kps"])
width, height = face_kps.size
if enhance_face_region:
control_mask = np.zeros([height, width, 3])
x1, y1, x2, y2 = face_info["bbox"]
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
control_mask[y1:y2, x1:x2] = 255
control_mask = Image.fromarray(control_mask.astype(np.uint8))
else:
control_mask = None
if len(controlnet_selection) > 0:
controlnet_scales = {
"pose": pose_strength,
"canny": canny_strength,
"depth": depth_strength,
}
self.pipe.controlnet = MultiControlNetModel(
[self.controlnet_identitynet]
+ [self.controlnet_map[s] for s in controlnet_selection]
)
control_scales = [float(identitynet_strength_ratio)] + [
controlnet_scales[s] for s in controlnet_selection
]
control_images = [face_kps] + [
self.controlnet_map_fn[s](img_controlnet).resize((width, height))
for s in controlnet_selection
]
else:
self.pipe.controlnet = self.controlnet_identitynet
control_scales = float(identitynet_strength_ratio)
control_images = face_kps
generator = torch.Generator(device=DEVICE).manual_seed(seed)
print("Start inference...")
print(f"[Debug] Prompt: {prompt}, \n[Debug] Neg Prompt: {negative_prompt}")
self.pipe.set_ip_adapter_scale(adapter_strength_ratio)
images = self.pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image_embeds=face_emb,
image=control_images,
control_mask=control_mask,
controlnet_conditioning_scale=control_scales,
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
height=height,
width=width,
generator=generator,
num_images_per_prompt=num_images_per_prompt,
).images
return images
def predict(
self,
image: Path = Input(
description="Input face image",
),
pose_image: Path = Input(
description="(Optional) reference pose image",
default=None,
),
prompt: str = Input(
description="Input prompt",
default="a person",
),
negative_prompt: str = Input(
description="Input Negative Prompt",
default="",
),
sdxl_weights: str = Input(
description="Pick which base weights you want to use",
default="stable-diffusion-xl-base-1.0",
choices=[
"stable-diffusion-xl-base-1.0",
"juggernaut-xl-v8",
"afrodite-xl-v2",
"albedobase-xl-20",
"albedobase-xl-v13",
"animagine-xl-30",
"anime-art-diffusion-xl",
"anime-illust-diffusion-xl",
"dreamshaper-xl",
"dynavision-xl-v0610",
"guofeng4-xl",
"nightvision-xl-0791",
"omnigen-xl",
"pony-diffusion-v6-xl",
"protovision-xl-high-fidel",
"RealVisXL_V3.0_Turbo",
"RealVisXL_V4.0_Lightning",
],
),
face_detection_input_width: int = Input(
description="Width of the input image for face detection",
default=640,
ge=640,
le=4096,
),
face_detection_input_height: int = Input(
description="Height of the input image for face detection",
default=640,
ge=640,
le=4096,
),
scheduler: str = Input(
description="Scheduler",
choices=[
"DEISMultistepScheduler",
"HeunDiscreteScheduler",
"EulerDiscreteScheduler",
"DPMSolverMultistepScheduler",
"DPMSolverMultistepScheduler-Karras",
"DPMSolverMultistepScheduler-Karras-SDE",
],
default="EulerDiscreteScheduler",
),
num_inference_steps: int = Input(
description="Number of denoising steps",
default=30,
ge=1,
le=500,
),
guidance_scale: float = Input(
description="Scale for classifier-free guidance",
default=7.5,
ge=1,
le=50,
),
ip_adapter_scale: float = Input(
description="Scale for image adapter strength (for detail)", # adapter_strength_ratio
default=0.8,
ge=0,
le=1.5,
),
controlnet_conditioning_scale: float = Input(
description="Scale for IdentityNet strength (for fidelity)", # identitynet_strength_ratio
default=0.8,
ge=0,
le=1.5,
),
enable_pose_controlnet: bool = Input(
description="Enable Openpose ControlNet, overrides strength if set to false",
default=True,
),
pose_strength: float = Input(
description="Openpose ControlNet strength, effective only if `enable_pose_controlnet` is true",
default=0.4,
ge=0,
le=1,
),
enable_canny_controlnet: bool = Input(
description="Enable Canny ControlNet, overrides strength if set to false",
default=False,
),
canny_strength: float = Input(
description="Canny ControlNet strength, effective only if `enable_canny_controlnet` is true",
default=0.3,
ge=0,
le=1,
),
enable_depth_controlnet: bool = Input(
description="Enable Depth ControlNet, overrides strength if set to false",
default=False,
),
depth_strength: float = Input(
description="Depth ControlNet strength, effective only if `enable_depth_controlnet` is true",
default=0.5,
ge=0,
le=1,
),
enable_lcm: bool = Input(
description="Enable Fast Inference with LCM (Latent Consistency Models) - speeds up inference steps, trade-off is the quality of the generated image. Performs better with close-up portrait face images",
default=False,
),
lcm_num_inference_steps: int = Input(
description="Only used when `enable_lcm` is set to True, Number of denoising steps when using LCM",
default=5,
ge=1,
le=10,
),
lcm_guidance_scale: float = Input(
description="Only used when `enable_lcm` is set to True, Scale for classifier-free guidance when using LCM",
default=1.5,
ge=1,
le=20,
),
enhance_nonface_region: bool = Input(
description="Enhance non-face region", default=True
),
output_format: str = Input(
description="Format of the output images",
choices=["webp", "jpg", "png"],
default="webp",
),
output_quality: int = Input(
description="Quality of the output images, from 0 to 100. 100 is best quality, 0 is lowest quality.",
default=80,
ge=0,
le=100,
),
seed: int = Input(
description="Random seed. Leave blank to randomize the seed",
default=None,
),
num_outputs: int = Input(
description="Number of images to output",
default=1,
ge=1,
le=8,
),
disable_safety_checker: bool = Input(
description="Disable safety checker for generated images",
default=False,
),
) -> List[Path]:
"""Run a single prediction on the model"""
# If no seed is provided, generate a random seed
if seed is None:
seed = int.from_bytes(os.urandom(2), "big")
print(f"Using seed: {seed}")
# Load the weights if they are different from the base weights
if sdxl_weights != self.base_weights:
self.load_weights(sdxl_weights)
# Resize the output if the provided dimensions are different from the current ones
if self.face_detection_input_width != face_detection_input_width or self.face_detection_input_height != face_detection_input_height:
print(f"[!] Resizing output to {face_detection_input_width}x{face_detection_input_height}")
self.face_detection_input_width = face_detection_input_width
self.face_detection_input_height = face_detection_input_height
self.app.prepare(ctx_id=0, det_size=(self.face_detection_input_width, self.face_detection_input_height))
# Set up ControlNet selection and their respective strength values (if any)
controlnet_selection = []
if pose_strength > 0 and enable_pose_controlnet:
controlnet_selection.append("pose")
if canny_strength > 0 and enable_canny_controlnet:
controlnet_selection.append("canny")
if depth_strength > 0 and enable_depth_controlnet:
controlnet_selection.append("depth")
# Switch to LCM inference steps and guidance scale if LCM is enabled
if enable_lcm:
num_inference_steps = lcm_num_inference_steps
guidance_scale = lcm_guidance_scale
# Generate
images = self.generate_image(
face_image_path=str(image),
pose_image_path=str(pose_image) if pose_image else None,
prompt=prompt,
negative_prompt=negative_prompt,
num_steps=num_inference_steps,
identitynet_strength_ratio=controlnet_conditioning_scale,
adapter_strength_ratio=ip_adapter_scale,
pose_strength=pose_strength,
canny_strength=canny_strength,
depth_strength=depth_strength,
controlnet_selection=controlnet_selection,
scheduler=scheduler,
guidance_scale=guidance_scale,
seed=seed,
enable_LCM=enable_lcm,
enhance_face_region=enhance_nonface_region,
num_images_per_prompt=num_outputs,
)
# Save the generated images and check for NSFW content
output_paths = []
for i, output_image in enumerate(images):
if not disable_safety_checker:
_, has_nsfw_content_list = self.run_safety_checker(output_image)
has_nsfw_content = any(has_nsfw_content_list)
print(f"NSFW content detected: {has_nsfw_content}")
if has_nsfw_content:
raise Exception(
"NSFW content detected. Try running it again, or try a different prompt."
)
extension = output_format.lower()
extension = "jpeg" if extension == "jpg" else extension
output_path = f"/tmp/out_{i}.{extension}"
print(f"[~] Saving to {output_path}...")
print(f"[~] Output format: {extension.upper()}")
if output_format != "png":
print(f"[~] Output quality: {output_quality}")
save_params = {"format": extension.upper()}
if output_format != "png":
save_params["quality"] = output_quality
save_params["optimize"] = True
output_image.save(output_path, **save_params)
output_paths.append(Path(output_path))
return output_paths
|