Spaces:
Runtime error
Runtime error
import sys | |
sys.path.append('./') | |
from typing import Tuple | |
import os | |
import cv2 | |
import math | |
import torch | |
import random | |
import numpy as np | |
import argparse | |
import pandas as pd | |
import PIL | |
from PIL import Image | |
import diffusers | |
from diffusers.utils import load_image | |
from diffusers.models import ControlNetModel | |
from diffusers import LCMScheduler | |
from huggingface_hub import hf_hub_download | |
import insightface | |
from insightface.app import FaceAnalysis | |
from style_template import styles | |
from pipeline_stable_diffusion_xl_instantid_full import StableDiffusionXLInstantIDPipeline | |
from model_util import load_models_xl, get_torch_device, torch_gc | |
# global variable | |
MAX_SEED = np.iinfo(np.int32).max | |
device = get_torch_device() | |
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32 | |
STYLE_NAMES = list(styles.keys()) | |
DEFAULT_STYLE_NAME = "Watercolor" | |
# Load face encoder | |
app = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) | |
app.prepare(ctx_id=0, det_size=(320, 320)) | |
# Path to InstantID models | |
face_adapter = f'./checkpoints/ip-adapter.bin' | |
controlnet_path = f'./checkpoints/ControlNetModel' | |
# Load pipeline | |
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=dtype) | |
logo = Image.open("./gradio_demo/logo.png") | |
from cv2 import imencode | |
import base64 | |
# def encode_pil_to_base64_new(pil_image): | |
# print("AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA") | |
# image_arr = np.asarray(pil_image)[:,:,::-1] | |
# _, byte_data = imencode('.png', image_arr) | |
# base64_data = base64.b64encode(byte_data) | |
# base64_string_opencv = base64_data.decode("utf-8") | |
# return "data:image/png;base64," + base64_string_opencv | |
import gradio as gr | |
# gr.processing_utils.encode_pil_to_base64 = encode_pil_to_base64_new | |
def main(pretrained_model_name_or_path="wangqixun/YamerMIX_v8", enable_lcm_arg=False): | |
if pretrained_model_name_or_path.endswith( | |
".ckpt" | |
) or pretrained_model_name_or_path.endswith(".safetensors"): | |
scheduler_kwargs = hf_hub_download( | |
repo_id="wangqixun/YamerMIX_v8", | |
subfolder="scheduler", | |
filename="scheduler_config.json", | |
) | |
(tokenizers, text_encoders, unet, _, vae) = load_models_xl( | |
pretrained_model_name_or_path=pretrained_model_name_or_path, | |
scheduler_name=None, | |
weight_dtype=dtype, | |
) | |
scheduler = diffusers.EulerDiscreteScheduler.from_config(scheduler_kwargs) | |
pipe = StableDiffusionXLInstantIDPipeline( | |
vae=vae, | |
text_encoder=text_encoders[0], | |
text_encoder_2=text_encoders[1], | |
tokenizer=tokenizers[0], | |
tokenizer_2=tokenizers[1], | |
unet=unet, | |
scheduler=scheduler, | |
controlnet=controlnet, | |
).to(device) | |
else: | |
pipe = StableDiffusionXLInstantIDPipeline.from_pretrained( | |
pretrained_model_name_or_path, | |
controlnet=controlnet, | |
torch_dtype=dtype, | |
safety_checker=None, | |
feature_extractor=None, | |
).to(device) | |
pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(pipe.scheduler.config) | |
pipe.load_ip_adapter_instantid(face_adapter) | |
# load and disable LCM | |
pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl") | |
pipe.disable_lora() | |
def remove_tips(): | |
return gr.update(visible=False) | |
# prompts = [ | |
# ["superman","Vibrant Color"], ["japanese anime character with white/neon hair","Watercolor"], | |
# # ["Suited professional","(No style)"], | |
# ["Scooba diver","Line art"], ["eskimo","Snow"] | |
# ] | |
def convert_from_cv2_to_image(img: np.ndarray) -> Image: | |
return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) | |
def convert_from_image_to_cv2(img: Image) -> np.ndarray: | |
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) | |
def run_for_prompts1(face_file,style,progress=gr.Progress(track_tqdm=True)): | |
# if email != "": | |
p,n = styles.get(style, styles.get(STYLE_NAMES[1])) | |
return generate_image(face_file, p[0], n) | |
# else: | |
# raise gr.Error("Email ID is compulsory") | |
def run_for_prompts2(face_file,style,progress=gr.Progress(track_tqdm=True)): | |
# if email != "": | |
p,n = styles.get(style, styles.get(STYLE_NAMES[1])) | |
return generate_image(face_file, p[1], n) | |
def run_for_prompts3(face_file,style,progress=gr.Progress(track_tqdm=True)): | |
# if email != "": | |
p,n = styles.get(style, styles.get(STYLE_NAMES[1])) | |
return generate_image(face_file, p[2], n) | |
def run_for_prompts4(face_file,style,progress=gr.Progress(track_tqdm=True)): | |
# if email != "": | |
p,n = styles.get(style, styles.get(STYLE_NAMES[1])) | |
return generate_image(face_file, p[3], n) | |
# def validate_and_process(face_file, style, email): | |
# # Your processing logic here | |
# gallery1, gallery2, gallery3, gallery4 = run_for_prompts1(face_file, style), run_for_prompts2(face_file, style), run_for_prompts3(face_file, style), run_for_prompts4(face_file, style) | |
# return gallery1, gallery2, gallery3, gallery4 | |
def draw_kps(image_pil, kps, color_list=[(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255)]): | |
stickwidth = 4 | |
limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]]) | |
kps = np.array(kps) | |
w, h = image_pil.size | |
out_img = np.zeros([h, w, 3]) | |
for i in range(len(limbSeq)): | |
index = limbSeq[i] | |
color = color_list[index[0]] | |
x = kps[index][:, 0] | |
y = kps[index][:, 1] | |
length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5 | |
angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1])) | |
polygon = cv2.ellipse2Poly((int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1) | |
out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color) | |
out_img = (out_img * 0.6).astype(np.uint8) | |
for idx_kp, kp in enumerate(kps): | |
color = color_list[idx_kp] | |
x, y = kp | |
out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1) | |
out_img_pil = Image.fromarray(out_img.astype(np.uint8)) | |
return out_img_pil | |
def resize_img(input_image, max_side=640, min_side=640, size=None, | |
pad_to_max_side=True, mode=PIL.Image.BILINEAR, base_pixel_number=64): | |
w, h = input_image.size | |
print(w) | |
print(h) | |
if size is not None: | |
w_resize_new, h_resize_new = size | |
else: | |
ratio = min_side / min(h, w) | |
w, h = round(ratio*w), round(ratio*h) | |
ratio = max_side / max(h, w) | |
input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode) | |
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number | |
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number | |
input_image = input_image.resize([w_resize_new, h_resize_new], mode) | |
if pad_to_max_side: | |
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255 | |
offset_x = (max_side - w_resize_new) // 2 | |
offset_y = (max_side - h_resize_new) // 2 | |
res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image) | |
input_image = Image.fromarray(res) | |
return input_image | |
def store_images(email, gallery1, gallery2, gallery3, gallery4): | |
galleries = [] | |
for i, img in enumerate([gallery1, gallery2, gallery3, gallery4], start=1): | |
if isinstance(img, np.ndarray): | |
img = Image.fromarray(img) | |
print(f"Gallery {i} type after conversion: {type(img)}") | |
galleries.append(img) | |
# Create the images directory if it doesn't exist | |
if not os.path.exists('images'): | |
os.makedirs('images') | |
# Define image file paths | |
image_paths = [] | |
for i, img in enumerate(galleries, start=1): | |
img_path = f'images/{email}_gallery{i}.png' | |
img.save(img_path) | |
image_paths.append(img_path) | |
# Define the CSV file path | |
csv_file_path = 'image_data.csv' | |
# Create a DataFrame for the email and image paths | |
df = pd.DataFrame({ | |
'email': [email], | |
'img1_path': [image_paths[0]], | |
'img2_path': [image_paths[1]], | |
'img3_path': [image_paths[2]], | |
'img4_path': [image_paths[3]], | |
}) | |
# Write to CSV (append if the file exists, create a new one if it doesn't) | |
if not os.path.isfile(csv_file_path): | |
df.to_csv(csv_file_path, index=False) | |
else: | |
df.to_csv(csv_file_path, mode='a', header=False, index=False) | |
def generate_image(face_image,prompt,negative_prompt): | |
pose_image_path = None | |
# prompt = "superman" | |
enable_LCM = False | |
identitynet_strength_ratio = 0.95 | |
adapter_strength_ratio = 0.60 | |
num_steps = 15 | |
guidance_scale = 8.5 | |
seed = random.randint(0, MAX_SEED) | |
# negative_prompt = "" | |
# negative_prompt += neg | |
enhance_face_region = True | |
if enable_LCM: | |
pipe.enable_lora() | |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) | |
else: | |
pipe.disable_lora() | |
pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(pipe.scheduler.config) | |
if face_image is None: | |
raise gr.Error(f"Cannot find any input face image! Please upload the face image") | |
# if prompt is None: | |
# prompt = "a person" | |
# apply the style template | |
# prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt) | |
# face_image = load_image(face_image_path) | |
face_image = resize_img(face_image) | |
face_image_cv2 = convert_from_image_to_cv2(face_image) | |
height, width, _ = face_image_cv2.shape | |
# Extract face features | |
face_info = app.get(face_image_cv2) | |
if len(face_info) == 0: | |
raise gr.Error(f"Cannot find any face in the image! Please upload another person image") | |
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] # only use the maximum face | |
face_emb = face_info['embedding'] | |
face_kps = draw_kps(convert_from_cv2_to_image(face_image_cv2), face_info['kps']) | |
if pose_image_path is not None: | |
pose_image = load_image(pose_image_path) | |
pose_image = resize_img(pose_image) | |
pose_image_cv2 = convert_from_image_to_cv2(pose_image) | |
face_info = app.get(pose_image_cv2) | |
if len(face_info) == 0: | |
raise gr.Error(f"Cannot find any face in the reference image! Please upload another person image") | |
face_info = face_info[-1] | |
face_kps = draw_kps(pose_image, face_info['kps']) | |
width, height = face_kps.size | |
if enhance_face_region: | |
control_mask = np.zeros([height, width, 3]) | |
x1, y1, x2, y2 = face_info["bbox"] | |
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) | |
control_mask[y1:y2, x1:x2] = 255 | |
control_mask = Image.fromarray(control_mask.astype(np.uint8)) | |
else: | |
control_mask = None | |
generator = torch.Generator(device=device).manual_seed(seed) | |
print("Start inference...") | |
print(f"[Debug] Prompt: {prompt}, \n[Debug] Neg Prompt: {negative_prompt}") | |
pipe.set_ip_adapter_scale(adapter_strength_ratio) | |
images = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
image_embeds=face_emb, | |
image=face_kps, | |
control_mask=control_mask, | |
controlnet_conditioning_scale=float(identitynet_strength_ratio), | |
num_inference_steps=num_steps, | |
guidance_scale=guidance_scale, | |
height=height, | |
width=width, | |
generator=generator, | |
# num_images_per_prompt = 4 | |
).images | |
print(images[0]) | |
return images[0] | |
### Description | |
title = r""" | |
<h1 align="center">Choose your AVATAR</h1> | |
""" | |
description = r""" | |
<h2> Powered by IDfy </h2>""" | |
article = r"""""" | |
tips = r"""""" | |
css = ''' | |
.gradio-container {width: 95% !important; background-color: #E6F3FF;} | |
.image-gallery {height: 100vh !important; overflow: auto;} | |
.gradio-row .gradio-element { margin: 0 !important; } | |
''' | |
with gr.Blocks(css=css) as demo: | |
title = "<h1 align='center'>Choose your AVATAR</h1>" | |
description = "<h2> Powered by IDfy </h2>" | |
# Description | |
gr.Markdown(title) | |
with gr.Row(): | |
gr.Image("./gradio_demo/logo.png",scale=0,min_width=50,show_label=False,show_download_button=False) | |
gr.Markdown(description) | |
with gr.Row(): | |
with gr.Column(): | |
style = gr.Dropdown(label="Choose your STYLE", choices=STYLE_NAMES) | |
face_file = gr.Image(label="Upload a photo of your face", type="pil") | |
submit = gr.Button("Submit", variant="primary") | |
with gr.Column(): | |
with gr.Row(): | |
gallery1 = gr.Image(label="Generated Images") | |
gallery2 = gr.Image(label="Generated Images") | |
with gr.Row(): | |
gallery3 = gr.Image(label="Generated Images") | |
gallery4 = gr.Image(label="Generated Images") | |
email = gr.Textbox(label="Email", | |
info="Enter your email address", | |
value="") | |
submit1 = gr.Button("STORE", variant="primary") | |
usage_tips = gr.Markdown(label="Usage tips of InstantID", value="", visible=False) | |
# Image upload and processing chain | |
face_file.upload(remove_tips, outputs=usage_tips).then(run_for_prompts1, inputs=[face_file, style], outputs=[gallery1]).then(run_for_prompts2, inputs=[face_file, style], outputs=[gallery2]).then(run_for_prompts3, inputs=[face_file, style], outputs=[gallery3]).then(run_for_prompts4, inputs=[face_file, style], outputs=[gallery4]) | |
submit.click(remove_tips, outputs=usage_tips).then(run_for_prompts1, inputs=[face_file, style], outputs=[gallery1]).then(run_for_prompts2, inputs=[face_file, style], outputs=[gallery2]).then(run_for_prompts3, inputs=[face_file, style], outputs=[gallery3]).then(run_for_prompts4, inputs=[face_file, style], outputs=[gallery4]) | |
# Store data on button click | |
submit1.click( | |
fn=store_images, | |
inputs=[email,gallery1,gallery2,gallery3,gallery4], | |
outputs=None) | |
gr.Markdown("") | |
demo.launch(share=True) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--pretrained_model_name_or_path", type=str, default="wangqixun/YamerMIX_v8") | |
args = parser.parse_args() | |
main(args.pretrained_model_name_or_path, False) |