# InstantID Cog Model [![Replicate](https://replicate.com/zsxkib/instant-id/badge)](https://replicate.com/zsxkib/instant-id) ## Overview This repository contains the implementation of [InstantID](https://github.com/InstantID/InstantID) as a [Cog](https://github.com/replicate/cog) model. Using [Cog](https://github.com/replicate/cog) allows any users with a GPU to run the model locally easily, without the hassle of downloading weights, installing libraries, or managing CUDA versions. Everything just works. ## Development To push your own fork of InstantID to [Replicate](https://replicate.com), follow the [Model Pushing Guide](https://replicate.com/docs/guides/push-a-model). ## Basic Usage To make predictions using the model, execute the following command from the root of this project: ```bash cog predict \ -i image=@examples/sam_resize.png \ -i prompt="analog film photo of a man. faded film, desaturated, 35mm photo, grainy, vignette, vintage, Kodachrome, Lomography, stained, highly detailed, found footage, masterpiece, best quality" \ -i negative_prompt="nsfw" \ -i width=680 \ -i height=680 \ -i ip_adapter_scale=0.8 \ -i controlnet_conditioning_scale=0.8 \ -i num_inference_steps=30 \ -i guidance_scale=5 ```

Input

Sample Input Image

Output

Sample Output Image
## Input Parameters The following table provides details about each input parameter for the `predict` function: | Parameter | Description | Default Value | Range | | ------------------------------- | ---------------------------------- | -------------------------------------------------------------------------------------------------------------- | ----------- | | `image` | Input image | A path to the input image file | Path string | | `prompt` | Input prompt | "analog film photo of a man. faded film, desaturated, 35mm photo, grainy, vignette, vintage, Kodachrome, ... " | String | | `negative_prompt` | Input Negative Prompt | (empty string) | String | | `width` | Width of output image | 640 | 512 - 2048 | | `height` | Height of output image | 640 | 512 - 2048 | | `ip_adapter_scale` | Scale for IP adapter | 0.8 | 0.0 - 1.0 | | `controlnet_conditioning_scale` | Scale for ControlNet conditioning | 0.8 | 0.0 - 1.0 | | `num_inference_steps` | Number of denoising steps | 30 | 1 - 500 | | `guidance_scale` | Scale for classifier-free guidance | 5 | 1 - 50 | This table provides a quick reference to understand and modify the inputs for generating predictions using the model.