yasminesarraj commited on
Commit
b97ac1a
1 Parent(s): 1c2b333

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -17
app.py CHANGED
@@ -1,21 +1,14 @@
1
  # app.py
2
- import streamlit as st
3
  from transformers import pipeline
4
- from textblob import TextBlob
5
 
6
- pipe = pipeline('sentiment-analysis')
7
- st.title("Hugging Face Sentiment Analysis Spaces Example")
8
- st.subheader("What framework would you like to use for Sentiment Analysis")
9
- #Picking what NLP task you want to do
10
- option = st.selectbox('Framework',('Transformers', 'TextBlob')) #option is stored in this variable
11
- #Textbox for text user is entering
12
- st.subheader("Enter the text you'd like to analyze.")
13
- text = st.text_input('Enter text') #text is stored in this variable
14
 
15
- if option == 'Transformers':
16
- out = pipe(text)
17
- else:
18
- out = TextBlob(text)
19
- out = out.sentiment
20
- st.write("Sentiment of Text: ")
21
- st.write(out)
 
1
  # app.py
2
+ import gradio as gr
3
  from transformers import pipeline
4
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
5
 
6
+ #Defining the classify function which takes text as input and returns the label of the sentiment
7
+ def classify(text):
8
+ # Initializing the pipeline for sentiment analysis
9
+ cls = pipeline('text-classification', model='RJuro/dk_emotion_bert_in_class')
10
+ # Predicting the sentiment label for the input text
11
+ return cls(text)[0]['label']
 
 
12
 
13
+ #Creating the Gradio interface with input textbox and output text
14
+ gr.Interface(fn=classify, inputs=["textbox"], outputs="text").launch()