Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,592 Bytes
b8330cb c7877ea b8330cb c7877ea b8330cb c7877ea b8330cb f15357c b8330cb cabf737 b8330cb cabf737 b8330cb c7877ea b8330cb c7877ea b8330cb c7877ea b8330cb c7877ea f15357c b8330cb c7877ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
import os
import sys
sys.path.append("./")
import torch
from torchvision import transforms
from src.transformer import Transformer2DModel
from src.pipeline import Pipeline
from src.scheduler import Scheduler
from transformers import (
CLIPTextModelWithProjection,
CLIPTokenizer,
)
from diffusers import VQModel
import gradio as gr
import spaces
device = 'cuda' if torch.cuda.is_available() else 'cpu'
dtype = torch.bfloat16
model_path = "Collov-Labs/Monetico"
model = Transformer2DModel.from_pretrained(model_path, subfolder="transformer", torch_dtype=dtype)
vq_model = VQModel.from_pretrained(model_path, subfolder="vqvae", torch_dtype=dtype)
text_encoder = CLIPTextModelWithProjection.from_pretrained(
"laion/CLIP-ViT-H-14-laion2B-s32B-b79K", torch_dtype=dtype
)
tokenizer = CLIPTokenizer.from_pretrained(model_path, subfolder="tokenizer", torch_dtype=dtype)
scheduler = Scheduler.from_pretrained(model_path, subfolder="scheduler", torch_dtype=dtype)
pipe = Pipeline(vq_model, tokenizer=tokenizer, text_encoder=text_encoder, transformer=model, scheduler=scheduler)
pipe.to(device)
MAX_SEED = 2**32 - 1
@spaces.GPU
def generate_image(occasion, theme, colors, randomize_seed=True, seed=0):
prompt = f"{occasion} theme: {theme}, colors: {colors} design inspiration"
if randomize_seed or seed == 0:
seed = torch.randint(0, MAX_SEED, (1,)).item()
torch.manual_seed(seed)
image = pipe(
prompt=prompt,
height=512,
width=512,
guidance_scale=9.0,
num_inference_steps=50
).images[0]
return image
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
examples = [
["Corporate Anniversary", "Legacy & Growth", "navy and silver"],
["Product Launch", "Innovation Spark", "blue and white"],
["Team Appreciation", "Together We Thrive", "green and gold"],
["Award Ceremony", "Excellence Awards", "black and gold"],
["Milestone Celebration", "10 Years Strong", "emerald green and silver"],
["Holiday Party", "Winter Festivity", "silver and blue"],
["Sales Achievement", "Peak Performers", "crimson and gray"],
["Client Appreciation", "Thank You Event", "ivory and gold"],
["Office Opening", "New Beginnings", "teal and white"],
["Retirement Celebration", "Years of Dedication", "bronze and navy"],
["Quarterly Town Hall", "United Vision", "purple and silver"],
["Annual Conference", "Forward Together", "black and royal blue"],
["Workshop Event", "Skill Building", "orange and gray"],
["Networking Gala", "Professional Connections", "champagne and gold"],
["Leadership Retreat", "Inspire & Lead", "forest green and white"],
]
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# Cake & Gift Design Inspiration")
with gr.Row():
occasion = gr.Text(label="Occasion", placeholder="Enter occasion, e.g., Wedding, Birthday")
theme = gr.Text(label="Theme", placeholder="Enter theme, e.g., Vintage, Space Adventure")
colors = gr.Text(label="Colors", placeholder="Enter colors, e.g., white and gold")
run_button = gr.Button("Generate Design", variant="primary")
result = gr.Image(label="Generated Design", show_label=False)
gr.Examples(examples=examples, inputs=[occasion, theme, colors])
gr.on(
triggers=[run_button.click],
fn=generate_image,
inputs=[occasion, theme, colors],
outputs=[result], # Expect only the image output
)
demo.launch()
|