Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from transformers import BlipForConditionalGeneration, BlipProcessor | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") | |
model_image_captioning = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large").to(device) | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
def inference(raw_image, question, decoding_strategy): | |
inputs = processor(images=raw_image, text=question, return_tensors="pt") | |
if decoding_strategy == "Beam search": | |
inputs["max_length"] = 20 | |
inputs["num_beams"] = 5 | |
elif decoding_strategy == "Nucleus sampling": | |
inputs["max_length"] = 20 | |
inputs["num_beams"] = 1 | |
inputs["do_sample"] = True | |
inputs["top_k"] = 50 | |
inputs["top_p"] = 0.95 | |
out = model_image_captioning.generate(**inputs) | |
return processor.batch_decode(out, skip_special_tokens=True)[0] | |
inputs = [ | |
gr.inputs.Image(type='pil'), | |
gr.inputs.Textbox(lines=2, label="Context (optional)"), | |
gr.inputs.Radio(choices=['Beam search','Nucleus sampling'], type="value", default="Nucleus sampling", label="Caption Decoding Strategy") | |
] | |
outputs = gr.outputs.Textbox(label="Output") | |
title = "BLIP" | |
description = "Gradio demo for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation (Salesforce Research). To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." | |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2201.12086' target='_blank'>BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation</a> | <a href='https://github.com/salesforce/BLIP' target='_blank'>Github Repo</a></p>" | |
gr.Interface(inference, inputs, outputs, title=title, description=description, article=article).launch(enable_queue=True) |