Spaces:
Runtime error
Runtime error
File size: 12,219 Bytes
0bab51a d0b2450 0bab51a c620451 0bab51a a4ac3bd 0bab51a be00882 0bab51a be00882 0bab51a be00882 0bab51a c620451 0bab51a be00882 0bab51a be00882 0bab51a be00882 0bab51a c620451 0bab51a 0b158ed 0bab51a be00882 0bab51a be00882 0bab51a be00882 0bab51a be00882 0bab51a d0b2450 0bab51a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
import os
import sys
import gradio as gr
import math
import matplotlib.pyplot as plt
import requests
import fileinput
import firebase_admin
from firebase_admin import credentials
from firebase_admin import firestore
import gradio as gr
import json
import math
import requests
from dotenv import load_dotenv, dotenv_values
# loading variables from .env file
load_dotenv()
vidOut = "results/results"
uvqOut = "results/modified_prompts_eval"
evalOut = "evaluation_results"
num_of_vid = 3
vid_length = 2
uvq_threshold = 3.8
fps = 24
# Generate the scores in csv files
def genScore():
for i in range(1, num_of_vid+1):
fileindex = f"{i:04d}"
os.system(
f'python3 ./uvq/uvq_main.py --input_files="{fileindex},2, {vidOut}/{fileindex}.mp4" --output_dir {uvqOut} --model_dir ./uvq/models'
)
def getScore(filename):
# MOS_score defines the output of the uvq score
lines = str(filename).split('\n')
last_line = lines[-1]
MOS_score = last_line.split(',')[-1]
MOS_score = MOS_score[:-2]
return MOS_score
# MOS_score defines the Mean Opinion Score of prediction, if the video's MOS exceeds the threshold then we directly use this video
def chooseBestVideo():
MOS_score_high = 0
preferred_output = ""
chosen_idx = 0
for i in range(1, num_of_vid+1):
'''We loop thru this current processed video'''
filedir = f"{i:04d}"
filename = f"{i:04d}_uvq.csv"
with open(os.path.join(uvqOut, filedir, filename), 'r') as file:
MOS = file.read().strip()
MOS_score = getScore(MOS)
print("Video Index:", f"{i:04d}", "Score:", MOS_score)
# if the MOS_score is higher than the previous video, we choose this video as our preferred video output
if float(MOS_score) > float(MOS_score_high) or float(MOS_score) > uvq_threshold:
MOS_score_high = MOS_score
preferred_output = filename
chosen_idx = i
if float(MOS_score) > uvq_threshold:
break
return chosen_idx
# print(MOS_score_high)
# print(preferred_output)
def extract_scores_from_json(json_path):
with open(json_path) as file:
data = json.load(file)
for key, value in data.items():
if isinstance(value, list) and len(value) > 1 and isinstance(value[0], float):
motion_score = value[0]
return motion_score
def VBench_eval(vid_filename):
# vid_filename: video filename without .mp4
os.system(
f'python VBench/evaluate.py --dimension "motion_smoothness" --videos_path {os.path.join(vidOut, vid_filename)}.mp4 --custom_input --output_filename {vid_filename}'
)
eval_file_path = os.path.join(
evalOut, f"{vid_filename}_eval_results.json")
motion_score = extract_scores_from_json(eval_file_path)
return motion_score
def interpolation(chosen_idx, fps):
vid_filename = f"{chosen_idx:04d}.mp4"
os.chdir("ECCV2022-RIFE")
os.system(
f'python3 inference_video.py --exp=2 --video={os.path.join(vidOut, vid_filename)} --fps {fps}'
)
os.chdir("../")
out_name = f"{chosen_idx:04d}_4X_{fps}fps.mp4"
return out_name
# call the GPT API here
def call_gpt_api(prompt, isSentence=False):
api_key = os.getenv("MY_GPT_KEY")
response = requests.post(
'https://api.openai.com/v1/chat/completions',
headers={
'Content-Type': 'application/json',
'Authorization': f'Bearer {api_key}'
},
json={
'messages': [{'role': 'system', 'content': 'You are a helpful assistant.'}, {'role': 'user', 'content': prompt}],
'model': 'gpt-3.5-turbo',
# 'prompt': prompt,
'temperature': 0.4,
'max_tokens': 200
})
response_json = response.json()
choices = response_json['choices']
contents = [choice['message']['content'] for choice in choices]
contents = [
sentence for sublist in contents for sentence in sublist.split('\n')]
# Remove the leading number and dot from each sentence
sentences = [content.lstrip('1234567890.- ') for content in contents]
if len(sentences) > 2 and isSentence:
sentences = sentences[1:]
return sentences
# Initialize Firebase Admin SDK
cred = credentials.Certificate(
"final-year-project-443dd-df6f48af0796.json")
firebase_admin.initialize_app(cred)
# Initialize Firestore client
db = firestore.client()
def retrieve_user_feedback():
# Retrieve user feedback from Firestore
feedback_collection = db.collection("user_feedbacks")
feedback_docs = feedback_collection.get()
feedback_text = []
experience = []
for doc in feedback_docs:
data = doc.to_dict()
feedback_text.append(data.get('feedback_text', None))
experience.append(data.get('experience', None))
return feedback_text, experience
feedback_text, experience = retrieve_user_feedback()
# print("Feedback Text:", feedback_text)
# print("Experience:", experience)
def store_user_feedback(feedback_text, experience):
# Get a reference to the Firestore collection
feedback_collection = db.collection("user_feedbacks")
# Create a new document with feedback_text and experience fields
feedback_collection.add({
'feedback_text': feedback_text,
'experience': experience
})
return
t2v_examples = [
['A tiger walks in the forest, photorealistic, 4k, high definition'],
['an elephant is walking under the sea, 4K, high definition'],
['an astronaut riding a horse in outer space'],
['a monkey is playing a piano'],
['A fire is burning on a candle'],
['a horse is drinking in the river'],
['Robot dancing in times square'],
]
def generate_output(input_text, output_video_1, fps, examples):
def generate_output_fn(input_text, output_video_1, fps, examples):
if input_text == "":
return input_text, output_video_1, examples
output = call_gpt_api(
prompt=f"Generate 2 similar prompts and add some reasonable words to the given prompt and not change the meaning, each within 30 words: {input_text}", isSentence=True)
output.append(input_text)
with open("prompts/test_prompts.txt", 'w') as file:
for i, sentence in enumerate(output):
if i < len(output) - 1:
file.write(sentence + '\n')
else:
file.write(sentence)
os.system(
f'sh {os.path.join("scripts", "run_text2video.sh")}')
# Connect the video output and return the video corresponding link
genScore()
chosen_idx = chooseBestVideo()
chosen_vid_path = interpolation(chosen_idx, fps)
chosen_vid_path = f"{vidOut}/{chosen_vid_path}"
output_video_1 = gr.Video(
value=chosen_vid_path, show_download_button=True)
examples_list = call_gpt_api(
prompt=f"Generate 5 similar prompts that makes a storyline coming after the given input, each within 10 words: {input_text}")
examples = []
for prompt in examples_list:
examples.append([prompt])
input_text = ""
return input_text, output_video_1, examples
return generate_output_fn(input_text, output_video_1, fps, examples)
def t2v_demo(result_dir='./tmp/'):
with gr.Blocks() as videocrafter_iface:
gr.Markdown("<div align='center'> <h2> VideoCraftXtend: AI-Enhanced Text-to-Video Generation with Extended Length and Enhanced Motion Smoothness </span> </h2> </div>")
# Initialize values for video length and fps
video_len_value = 5.0
def update_fps(video_len, fps):
fps_value = 80 / video_len
return f"<div justify-content: 'center'; text-align='center'> <h6> FPS (frames per second) : {int(fps_value)} </span> </h6> </div>"
def load_example(example_id):
return example_id[0]
def update_feedback(value, text):
labels = ['Positive', 'Neutral', 'Negative']
colors = ['#66c2a5', '#fc8d62', '#8da0cb']
if value != '':
store_user_feedback(value, text)
user_satisfaction.append(value)
value = ''
if text != '':
user_feedback.append(text)
text = ''
user_feedback, user_satisfaction = retrieve_user_feedback()
sizes = [user_satisfaction.count('Positive'), user_satisfaction.count(
'Neutral'), user_satisfaction.count('Negative')]
plt.pie(sizes, labels=labels, autopct='%1.1f%%',
startangle=140, colors=colors)
plt.axis('equal')
return plt
with gr.Tab(label="Text2Video"):
with gr.Column():
with gr.Row():
with gr.Column():
input_text = gr.Text(
placeholder=t2v_examples[2], label='Please input your prompt here.')
with gr.Row():
examples = gr.Dataset(samples=t2v_examples, components=[
input_text], label='Sample prompts that can be used to form a storyline.')
with gr.Column():
gr.Markdown(
"<div align='center'> <h4> Modify video length and the corresponding fps will be shown on the right. </span> </h4> </div>")
with gr.Row():
video_len = gr.Slider(minimum=4.0, maximum=10.0, step=1, label='Video Length',
value=video_len_value, elem_id="video_len", interactive=True)
fps = gr.Markdown(
elem_id="fps", value=f"<div> <h6> FPS (frames per second) : 16</span> </h6> </div>")
send_btn = gr.Button("Send")
with gr.Column():
with gr.Tab(label='Result'):
with gr.Row():
output_video_1 = gr.Video(
value="sample/0009.mp4", show_download_button=True)
video_len.change(update_fps, inputs=[video_len, fps], outputs=fps)
# fps.change(update_video_len_slider, inputs = fps, outputs = video_len)
examples.click(load_example, inputs=[
examples], outputs=[input_text])
send_btn.click(
fn=generate_output,
inputs=[input_text, output_video_1, fps, examples],
outputs=[input_text, output_video_1, examples],
)
with gr.Tab(label="Feedback"):
with gr.Column():
with gr.Column():
with gr.Row():
feedback_value = gr.Radio(
['Positive', 'Neutral', 'Negative'], label="How is your experience?")
feedback_text = gr.Textbox(
placeholder="Enter feedback here", label="Feedback Text")
with gr.Row():
cancel_btn = gr.Button("Clear")
submit_btn = gr.Button("Submit")
with gr.Row():
pie_chart = gr.Plot(value=update_feedback(
'', ''), label="Feedback Pie Chart")
with gr.Column():
gr.Markdown(
"<div align='center'> <h4> Feedbacks from users: </span> </h4> </div>")
feedback_text_display = [gr.Markdown(
feedback, label="User Feedback") for feedback in retrieve_user_feedback()[0]]
submit_btn.click(fn=update_feedback, inputs=[
feedback_value, feedback_text], outputs=[pie_chart])
return videocrafter_iface
if __name__ == "__main__":
result_dir = os.path.join('./', 'results')
t2v_iface = t2v_demo(result_dir)
t2v_iface.queue(max_size=10)
t2v_iface.launch(debug=True)
|