Spaces:
Runtime error
Runtime error
import os | |
import cv2 | |
import torch | |
import argparse | |
from torch.nn import functional as F | |
import warnings | |
warnings.filterwarnings("ignore") | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
torch.set_grad_enabled(False) | |
if torch.cuda.is_available(): | |
torch.backends.cudnn.enabled = True | |
torch.backends.cudnn.benchmark = True | |
parser = argparse.ArgumentParser(description='Interpolation for a pair of images') | |
parser.add_argument('--img', dest='img', nargs=2, required=True) | |
parser.add_argument('--exp', default=4, type=int) | |
parser.add_argument('--ratio', default=0, type=float, help='inference ratio between two images with 0 - 1 range') | |
parser.add_argument('--rthreshold', default=0.02, type=float, help='returns image when actual ratio falls in given range threshold') | |
parser.add_argument('--rmaxcycles', default=8, type=int, help='limit max number of bisectional cycles') | |
parser.add_argument('--model', dest='modelDir', type=str, default='train_log', help='directory with trained model files') | |
args = parser.parse_args() | |
try: | |
try: | |
try: | |
from model.RIFE_HDv2 import Model | |
model = Model() | |
model.load_model(args.modelDir, -1) | |
print("Loaded v2.x HD model.") | |
except: | |
from train_log.RIFE_HDv3 import Model | |
model = Model() | |
model.load_model(args.modelDir, -1) | |
print("Loaded v3.x HD model.") | |
except: | |
from model.RIFE_HD import Model | |
model = Model() | |
model.load_model(args.modelDir, -1) | |
print("Loaded v1.x HD model") | |
except: | |
from model.RIFE import Model | |
model = Model() | |
model.load_model(args.modelDir, -1) | |
print("Loaded ArXiv-RIFE model") | |
model.eval() | |
model.device() | |
if args.img[0].endswith('.exr') and args.img[1].endswith('.exr'): | |
img0 = cv2.imread(args.img[0], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH) | |
img1 = cv2.imread(args.img[1], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH) | |
img0 = (torch.tensor(img0.transpose(2, 0, 1)).to(device)).unsqueeze(0) | |
img1 = (torch.tensor(img1.transpose(2, 0, 1)).to(device)).unsqueeze(0) | |
else: | |
img0 = cv2.imread(args.img[0], cv2.IMREAD_UNCHANGED) | |
img1 = cv2.imread(args.img[1], cv2.IMREAD_UNCHANGED) | |
img0 = (torch.tensor(img0.transpose(2, 0, 1)).to(device) / 255.).unsqueeze(0) | |
img1 = (torch.tensor(img1.transpose(2, 0, 1)).to(device) / 255.).unsqueeze(0) | |
n, c, h, w = img0.shape | |
ph = ((h - 1) // 32 + 1) * 32 | |
pw = ((w - 1) // 32 + 1) * 32 | |
padding = (0, pw - w, 0, ph - h) | |
img0 = F.pad(img0, padding) | |
img1 = F.pad(img1, padding) | |
if args.ratio: | |
img_list = [img0] | |
img0_ratio = 0.0 | |
img1_ratio = 1.0 | |
if args.ratio <= img0_ratio + args.rthreshold / 2: | |
middle = img0 | |
elif args.ratio >= img1_ratio - args.rthreshold / 2: | |
middle = img1 | |
else: | |
tmp_img0 = img0 | |
tmp_img1 = img1 | |
for inference_cycle in range(args.rmaxcycles): | |
middle = model.inference(tmp_img0, tmp_img1) | |
middle_ratio = ( img0_ratio + img1_ratio ) / 2 | |
if args.ratio - (args.rthreshold / 2) <= middle_ratio <= args.ratio + (args.rthreshold / 2): | |
break | |
if args.ratio > middle_ratio: | |
tmp_img0 = middle | |
img0_ratio = middle_ratio | |
else: | |
tmp_img1 = middle | |
img1_ratio = middle_ratio | |
img_list.append(middle) | |
img_list.append(img1) | |
else: | |
img_list = [img0, img1] | |
for i in range(args.exp): | |
tmp = [] | |
for j in range(len(img_list) - 1): | |
mid = model.inference(img_list[j], img_list[j + 1]) | |
tmp.append(img_list[j]) | |
tmp.append(mid) | |
tmp.append(img1) | |
img_list = tmp | |
if not os.path.exists('output'): | |
os.mkdir('output') | |
for i in range(len(img_list)): | |
if args.img[0].endswith('.exr') and args.img[1].endswith('.exr'): | |
cv2.imwrite('output/img{}.exr'.format(i), (img_list[i][0]).cpu().numpy().transpose(1, 2, 0)[:h, :w], [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_HALF]) | |
else: | |
cv2.imwrite('output/img{}.png'.format(i), (img_list[i][0] * 255).byte().cpu().numpy().transpose(1, 2, 0)[:h, :w]) | |