Spaces:
Runtime error
Runtime error
import os | |
import cv2 | |
import torch | |
import argparse | |
import numpy as np | |
from tqdm import tqdm | |
from torch.nn import functional as F | |
import warnings | |
import _thread | |
import skvideo.io | |
from queue import Queue, Empty | |
from model.pytorch_msssim import ssim_matlab | |
warnings.filterwarnings("ignore") | |
def transferAudio(sourceVideo, targetVideo): | |
import shutil | |
import moviepy.editor | |
tempAudioFileName = "./temp/audio.mkv" | |
# split audio from original video file and store in "temp" directory | |
if True: | |
# clear old "temp" directory if it exits | |
if os.path.isdir("temp"): | |
# remove temp directory | |
shutil.rmtree("temp") | |
# create new "temp" directory | |
os.makedirs("temp") | |
# extract audio from video | |
os.system('ffmpeg -y -i "{}" -c:a copy -vn {}'.format(sourceVideo, tempAudioFileName)) | |
targetNoAudio = os.path.splitext(targetVideo)[0] + "_noaudio" + os.path.splitext(targetVideo)[1] | |
os.rename(targetVideo, targetNoAudio) | |
# combine audio file and new video file | |
os.system('ffmpeg -y -i "{}" -i {} -c copy "{}"'.format(targetNoAudio, tempAudioFileName, targetVideo)) | |
if os.path.getsize(targetVideo) == 0: # if ffmpeg failed to merge the video and audio together try converting the audio to aac | |
tempAudioFileName = "./temp/audio.m4a" | |
os.system('ffmpeg -y -i "{}" -c:a aac -b:a 160k -vn {}'.format(sourceVideo, tempAudioFileName)) | |
os.system('ffmpeg -y -i "{}" -i {} -c copy "{}"'.format(targetNoAudio, tempAudioFileName, targetVideo)) | |
if (os.path.getsize(targetVideo) == 0): # if aac is not supported by selected format | |
os.rename(targetNoAudio, targetVideo) | |
print("Audio transfer failed. Interpolated video will have no audio") | |
else: | |
print("Lossless audio transfer failed. Audio was transcoded to AAC (M4A) instead.") | |
# remove audio-less video | |
os.remove(targetNoAudio) | |
else: | |
os.remove(targetNoAudio) | |
# remove temp directory | |
shutil.rmtree("temp") | |
parser = argparse.ArgumentParser(description='Interpolation for a pair of images') | |
parser.add_argument('--video', dest='video', type=str, default=None) | |
parser.add_argument('--output', dest='output', type=str, default=None) | |
parser.add_argument('--img', dest='img', type=str, default=None) | |
parser.add_argument('--montage', dest='montage', action='store_true', help='montage origin video') | |
parser.add_argument('--model', dest='modelDir', type=str, default='train_log', help='directory with trained model files') | |
parser.add_argument('--fp16', dest='fp16', action='store_true', help='fp16 mode for faster and more lightweight inference on cards with Tensor Cores') | |
parser.add_argument('--UHD', dest='UHD', action='store_true', help='support 4k video') | |
parser.add_argument('--scale', dest='scale', type=float, default=1.0, help='Try scale=0.5 for 4k video') | |
parser.add_argument('--skip', dest='skip', action='store_true', help='whether to remove static frames before processing') | |
parser.add_argument('--fps', dest='fps', type=int, default=None) | |
parser.add_argument('--png', dest='png', action='store_true', help='whether to vid_out png format vid_outs') | |
parser.add_argument('--ext', dest='ext', type=str, default='mp4', help='vid_out video extension') | |
parser.add_argument('--exp', dest='exp', type=int, default=1) | |
args = parser.parse_args() | |
assert (not args.video is None or not args.img is None) | |
if args.skip: | |
print("skip flag is abandoned, please refer to issue #207.") | |
if args.UHD and args.scale==1.0: | |
args.scale = 0.5 | |
assert args.scale in [0.25, 0.5, 1.0, 2.0, 4.0] | |
if not args.img is None: | |
args.png = True | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
torch.set_grad_enabled(False) | |
if torch.cuda.is_available(): | |
torch.backends.cudnn.enabled = True | |
torch.backends.cudnn.benchmark = True | |
if(args.fp16): | |
torch.set_default_tensor_type(torch.cuda.HalfTensor) | |
try: | |
try: | |
try: | |
from model.RIFE_HDv2 import Model | |
model = Model() | |
model.load_model(args.modelDir, -1) | |
print("Loaded v2.x HD model.") | |
except: | |
from train_log.RIFE_HDv3 import Model | |
model = Model() | |
model.load_model(args.modelDir, -1) | |
print("Loaded v3.x HD model.") | |
except: | |
from model.RIFE_HD import Model | |
model = Model() | |
model.load_model(args.modelDir, -1) | |
print("Loaded v1.x HD model") | |
except: | |
from model.RIFE import Model | |
model = Model() | |
model.load_model(args.modelDir, -1) | |
print("Loaded ArXiv-RIFE model") | |
model.eval() | |
model.device() | |
if not args.video is None: | |
videoCapture = cv2.VideoCapture(args.video) | |
fps = videoCapture.get(cv2.CAP_PROP_FPS) | |
tot_frame = videoCapture.get(cv2.CAP_PROP_FRAME_COUNT) | |
videoCapture.release() | |
if args.fps is None: | |
fpsNotAssigned = True | |
args.fps = fps * (2 ** args.exp) | |
else: | |
fpsNotAssigned = False | |
videogen = skvideo.io.vreader(args.video) | |
lastframe = next(videogen) | |
fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v') | |
video_path_wo_ext, ext = os.path.splitext(args.video) | |
print('{}.{}, {} frames in total, {}FPS to {}FPS'.format(video_path_wo_ext, args.ext, tot_frame, fps, args.fps)) | |
if args.png == False and fpsNotAssigned == True: | |
print("The audio will be merged after interpolation process") | |
else: | |
print("Will not merge audio because using png or fps flag!") | |
else: | |
videogen = [] | |
for f in os.listdir(args.img): | |
if 'png' in f: | |
videogen.append(f) | |
tot_frame = len(videogen) | |
videogen.sort(key= lambda x:int(x[:-4])) | |
lastframe = cv2.imread(os.path.join(args.img, videogen[0]), cv2.IMREAD_UNCHANGED)[:, :, ::-1].copy() | |
videogen = videogen[1:] | |
h, w, _ = lastframe.shape | |
vid_out_name = None | |
vid_out = None | |
if args.png: | |
if not os.path.exists('vid_out'): | |
os.mkdir('vid_out') | |
else: | |
if args.output is not None: | |
vid_out_name = args.output | |
else: | |
vid_out_name = '{}_{}X_{}fps.{}'.format(video_path_wo_ext, (2 ** args.exp), int(np.round(args.fps)), args.ext) | |
vid_out = cv2.VideoWriter(vid_out_name, fourcc, args.fps, (w, h)) | |
def clear_write_buffer(user_args, write_buffer): | |
cnt = 0 | |
while True: | |
item = write_buffer.get() | |
if item is None: | |
break | |
if user_args.png: | |
cv2.imwrite('vid_out/{:0>7d}.png'.format(cnt), item[:, :, ::-1]) | |
cnt += 1 | |
else: | |
vid_out.write(item[:, :, ::-1]) | |
def build_read_buffer(user_args, read_buffer, videogen): | |
try: | |
for frame in videogen: | |
if not user_args.img is None: | |
frame = cv2.imread(os.path.join(user_args.img, frame), cv2.IMREAD_UNCHANGED)[:, :, ::-1].copy() | |
if user_args.montage: | |
frame = frame[:, left: left + w] | |
read_buffer.put(frame) | |
except: | |
pass | |
read_buffer.put(None) | |
def make_inference(I0, I1, n): | |
global model | |
middle = model.inference(I0, I1, args.scale) | |
if n == 1: | |
return [middle] | |
first_half = make_inference(I0, middle, n=n//2) | |
second_half = make_inference(middle, I1, n=n//2) | |
if n%2: | |
return [*first_half, middle, *second_half] | |
else: | |
return [*first_half, *second_half] | |
def pad_image(img): | |
if(args.fp16): | |
return F.pad(img, padding).half() | |
else: | |
return F.pad(img, padding) | |
if args.montage: | |
left = w // 4 | |
w = w // 2 | |
tmp = max(32, int(32 / args.scale)) | |
ph = ((h - 1) // tmp + 1) * tmp | |
pw = ((w - 1) // tmp + 1) * tmp | |
padding = (0, pw - w, 0, ph - h) | |
pbar = tqdm(total=tot_frame) | |
if args.montage: | |
lastframe = lastframe[:, left: left + w] | |
write_buffer = Queue(maxsize=500) | |
read_buffer = Queue(maxsize=500) | |
_thread.start_new_thread(build_read_buffer, (args, read_buffer, videogen)) | |
_thread.start_new_thread(clear_write_buffer, (args, write_buffer)) | |
I1 = torch.from_numpy(np.transpose(lastframe, (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255. | |
I1 = pad_image(I1) | |
temp = None # save lastframe when processing static frame | |
while True: | |
if temp is not None: | |
frame = temp | |
temp = None | |
else: | |
frame = read_buffer.get() | |
if frame is None: | |
break | |
I0 = I1 | |
I1 = torch.from_numpy(np.transpose(frame, (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255. | |
I1 = pad_image(I1) | |
I0_small = F.interpolate(I0, (32, 32), mode='bilinear', align_corners=False) | |
I1_small = F.interpolate(I1, (32, 32), mode='bilinear', align_corners=False) | |
ssim = ssim_matlab(I0_small[:, :3], I1_small[:, :3]) | |
break_flag = False | |
if ssim > 0.996: | |
frame = read_buffer.get() # read a new frame | |
if frame is None: | |
break_flag = True | |
frame = lastframe | |
else: | |
temp = frame | |
I1 = torch.from_numpy(np.transpose(frame, (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255. | |
I1 = pad_image(I1) | |
I1 = model.inference(I0, I1, args.scale) | |
I1_small = F.interpolate(I1, (32, 32), mode='bilinear', align_corners=False) | |
ssim = ssim_matlab(I0_small[:, :3], I1_small[:, :3]) | |
frame = (I1[0] * 255).byte().cpu().numpy().transpose(1, 2, 0)[:h, :w] | |
if ssim < 0.2: | |
output = [] | |
for i in range((2 ** args.exp) - 1): | |
output.append(I0) | |
''' | |
output = [] | |
step = 1 / (2 ** args.exp) | |
alpha = 0 | |
for i in range((2 ** args.exp) - 1): | |
alpha += step | |
beta = 1-alpha | |
output.append(torch.from_numpy(np.transpose((cv2.addWeighted(frame[:, :, ::-1], alpha, lastframe[:, :, ::-1], beta, 0)[:, :, ::-1].copy()), (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255.) | |
''' | |
else: | |
output = make_inference(I0, I1, 2**args.exp-1) if args.exp else [] | |
if args.montage: | |
write_buffer.put(np.concatenate((lastframe, lastframe), 1)) | |
for mid in output: | |
mid = (((mid[0] * 255.).byte().cpu().numpy().transpose(1, 2, 0))) | |
write_buffer.put(np.concatenate((lastframe, mid[:h, :w]), 1)) | |
else: | |
write_buffer.put(lastframe) | |
for mid in output: | |
mid = (((mid[0] * 255.).byte().cpu().numpy().transpose(1, 2, 0))) | |
write_buffer.put(mid[:h, :w]) | |
pbar.update(1) | |
lastframe = frame | |
if break_flag: | |
break | |
if args.montage: | |
write_buffer.put(np.concatenate((lastframe, lastframe), 1)) | |
else: | |
write_buffer.put(lastframe) | |
import time | |
while(not write_buffer.empty()): | |
time.sleep(0.1) | |
pbar.close() | |
if not vid_out is None: | |
vid_out.release() | |
# move audio to new video file if appropriate | |
if args.png == False and fpsNotAssigned == True and not args.video is None: | |
try: | |
transferAudio(args.video, vid_out_name) | |
except: | |
print("Audio transfer failed. Interpolated video will have no audio") | |
targetNoAudio = os.path.splitext(vid_out_name)[0] + "_noaudio" + os.path.splitext(vid_out_name)[1] | |
os.rename(targetNoAudio, vid_out_name) | |