ychenhq's picture
Upload folder using huggingface_hub
c62dd62 verified
raw
history blame
3.48 kB
import torch
import torch.nn as nn
import numpy as np
from torch.optim import AdamW
import torch.optim as optim
import itertools
from model.warplayer import warp
from torch.nn.parallel import DistributedDataParallel as DDP
from model.IFNet import *
from model.IFNet_m import *
import torch.nn.functional as F
from model.loss import *
from model.laplacian import *
from model.refine import *
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class Model:
def __init__(self, local_rank=-1, arbitrary=False):
if arbitrary == True:
self.flownet = IFNet_m()
else:
self.flownet = IFNet()
self.device()
self.optimG = AdamW(self.flownet.parameters(), lr=1e-6, weight_decay=1e-3) # use large weight decay may avoid NaN loss
self.epe = EPE()
self.lap = LapLoss()
self.sobel = SOBEL()
if local_rank != -1:
self.flownet = DDP(self.flownet, device_ids=[local_rank], output_device=local_rank)
def train(self):
self.flownet.train()
def eval(self):
self.flownet.eval()
def device(self):
self.flownet.to(device)
def load_model(self, path, rank=0):
def convert(param):
return {
k.replace("module.", ""): v
for k, v in param.items()
if "module." in k
}
if rank <= 0:
self.flownet.load_state_dict(convert(torch.load('{}/flownet.pkl'.format(path))))
def save_model(self, path, rank=0):
if rank == 0:
torch.save(self.flownet.state_dict(),'{}/flownet.pkl'.format(path))
def inference(self, img0, img1, scale=1, scale_list=[4, 2, 1], TTA=False, timestep=0.5):
for i in range(3):
scale_list[i] = scale_list[i] * 1.0 / scale
imgs = torch.cat((img0, img1), 1)
flow, mask, merged, flow_teacher, merged_teacher, loss_distill = self.flownet(imgs, scale_list, timestep=timestep)
if TTA == False:
return merged[2]
else:
flow2, mask2, merged2, flow_teacher2, merged_teacher2, loss_distill2 = self.flownet(imgs.flip(2).flip(3), scale_list, timestep=timestep)
return (merged[2] + merged2[2].flip(2).flip(3)) / 2
def update(self, imgs, gt, learning_rate=0, mul=1, training=True, flow_gt=None):
for param_group in self.optimG.param_groups:
param_group['lr'] = learning_rate
img0 = imgs[:, :3]
img1 = imgs[:, 3:]
if training:
self.train()
else:
self.eval()
flow, mask, merged, flow_teacher, merged_teacher, loss_distill = self.flownet(torch.cat((imgs, gt), 1), scale=[4, 2, 1])
loss_l1 = (self.lap(merged[2], gt)).mean()
loss_tea = (self.lap(merged_teacher, gt)).mean()
if training:
self.optimG.zero_grad()
loss_G = loss_l1 + loss_tea + loss_distill * 0.01 # when training RIFEm, the weight of loss_distill should be 0.005 or 0.002
loss_G.backward()
self.optimG.step()
else:
flow_teacher = flow[2]
return merged[2], {
'merged_tea': merged_teacher,
'mask': mask,
'mask_tea': mask,
'flow': flow[2][:, :2],
'flow_tea': flow_teacher,
'loss_l1': loss_l1,
'loss_tea': loss_tea,
'loss_distill': loss_distill,
}