Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import numpy as np | |
from torch.optim import AdamW | |
import torch.optim as optim | |
import itertools | |
from model.warplayer import warp | |
from torch.nn.parallel import DistributedDataParallel as DDP | |
from model.IFNet import * | |
from model.IFNet_m import * | |
import torch.nn.functional as F | |
from model.loss import * | |
from model.laplacian import * | |
from model.refine import * | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
class Model: | |
def __init__(self, local_rank=-1, arbitrary=False): | |
if arbitrary == True: | |
self.flownet = IFNet_m() | |
else: | |
self.flownet = IFNet() | |
self.device() | |
self.optimG = AdamW(self.flownet.parameters(), lr=1e-6, weight_decay=1e-3) # use large weight decay may avoid NaN loss | |
self.epe = EPE() | |
self.lap = LapLoss() | |
self.sobel = SOBEL() | |
if local_rank != -1: | |
self.flownet = DDP(self.flownet, device_ids=[local_rank], output_device=local_rank) | |
def train(self): | |
self.flownet.train() | |
def eval(self): | |
self.flownet.eval() | |
def device(self): | |
self.flownet.to(device) | |
def load_model(self, path, rank=0): | |
def convert(param): | |
return { | |
k.replace("module.", ""): v | |
for k, v in param.items() | |
if "module." in k | |
} | |
if rank <= 0: | |
self.flownet.load_state_dict(convert(torch.load('{}/flownet.pkl'.format(path)))) | |
def save_model(self, path, rank=0): | |
if rank == 0: | |
torch.save(self.flownet.state_dict(),'{}/flownet.pkl'.format(path)) | |
def inference(self, img0, img1, scale=1, scale_list=[4, 2, 1], TTA=False, timestep=0.5): | |
for i in range(3): | |
scale_list[i] = scale_list[i] * 1.0 / scale | |
imgs = torch.cat((img0, img1), 1) | |
flow, mask, merged, flow_teacher, merged_teacher, loss_distill = self.flownet(imgs, scale_list, timestep=timestep) | |
if TTA == False: | |
return merged[2] | |
else: | |
flow2, mask2, merged2, flow_teacher2, merged_teacher2, loss_distill2 = self.flownet(imgs.flip(2).flip(3), scale_list, timestep=timestep) | |
return (merged[2] + merged2[2].flip(2).flip(3)) / 2 | |
def update(self, imgs, gt, learning_rate=0, mul=1, training=True, flow_gt=None): | |
for param_group in self.optimG.param_groups: | |
param_group['lr'] = learning_rate | |
img0 = imgs[:, :3] | |
img1 = imgs[:, 3:] | |
if training: | |
self.train() | |
else: | |
self.eval() | |
flow, mask, merged, flow_teacher, merged_teacher, loss_distill = self.flownet(torch.cat((imgs, gt), 1), scale=[4, 2, 1]) | |
loss_l1 = (self.lap(merged[2], gt)).mean() | |
loss_tea = (self.lap(merged_teacher, gt)).mean() | |
if training: | |
self.optimG.zero_grad() | |
loss_G = loss_l1 + loss_tea + loss_distill * 0.01 # when training RIFEm, the weight of loss_distill should be 0.005 or 0.002 | |
loss_G.backward() | |
self.optimG.step() | |
else: | |
flow_teacher = flow[2] | |
return merged[2], { | |
'merged_tea': merged_teacher, | |
'mask': mask, | |
'mask_tea': mask, | |
'flow': flow[2][:, :2], | |
'flow_tea': flow_teacher, | |
'loss_l1': loss_l1, | |
'loss_tea': loss_tea, | |
'loss_distill': loss_distill, | |
} | |