Spaces:
Runtime error
Runtime error
Initial test
Browse files
app.py
CHANGED
@@ -1,7 +1,325 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
def greet(name):
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
import gradio as gr
|
4 |
+
import math
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
|
7 |
+
import requests
|
8 |
+
import fileinput
|
9 |
+
import firebase_admin
|
10 |
+
from firebase_admin import credentials
|
11 |
+
from firebase_admin import firestore
|
12 |
+
import gradio as gr
|
13 |
+
import json
|
14 |
+
import math
|
15 |
+
import requests
|
16 |
+
|
17 |
+
|
18 |
+
basedir = "/content/drive/MyDrive/FYP/Code/VideoCrafter"
|
19 |
+
# if you change the variables here, remember to change the "name" in .sh file
|
20 |
+
vidOut = "results/10videos"
|
21 |
+
uvqOut = "results/modified_prompts_eval"
|
22 |
+
evalOut = "evaluation_results"
|
23 |
+
num_of_vid = 3
|
24 |
+
vid_length = 2
|
25 |
+
uvq_threshold = 3.8
|
26 |
+
fps = 24
|
27 |
+
|
28 |
+
|
29 |
+
# Generate the scores in csv files
|
30 |
+
def genScore():
|
31 |
+
for i in range(1, num_of_vid+1):
|
32 |
+
fileindex = f"{i:04d}"
|
33 |
+
os.system(
|
34 |
+
f'python3 ./uvq/uvq_main.py --input_files="{fileindex},2,{basedir}/{vidOut}/{fileindex}.mp4" --output_dir {uvqOut} --model_dir ./uvq/models'
|
35 |
+
)
|
36 |
+
|
37 |
+
|
38 |
+
def getScore(filename):
|
39 |
+
# MOS_score defines the output of the uvq score
|
40 |
+
lines = str(filename).split('\n')
|
41 |
+
last_line = lines[-1]
|
42 |
+
MOS_score = last_line.split(',')[-1]
|
43 |
+
MOS_score = MOS_score[:-2]
|
44 |
+
|
45 |
+
return MOS_score
|
46 |
+
|
47 |
+
# MOS_score defines the Mean Opinion Score of prediction, if the video's MOS exceeds the threshold then we directly use this video
|
48 |
+
|
49 |
+
|
50 |
+
def chooseBestVideo():
|
51 |
+
MOS_score_high = 0
|
52 |
+
preferred_output = ""
|
53 |
+
chosen_idx = 0
|
54 |
+
|
55 |
+
for i in range(1, num_of_vid+1):
|
56 |
+
'''We loop thru this current processed video'''
|
57 |
+
filedir = f"{i:04d}"
|
58 |
+
filename = f"{i:04d}_uvq.csv"
|
59 |
+
with open(os.path.join(basedir, uvqOut, filedir, filename), 'r') as file:
|
60 |
+
MOS = file.read().strip()
|
61 |
+
|
62 |
+
MOS_score = getScore(MOS)
|
63 |
+
print("Video Index:", f"{i:04d}", "Score:", MOS_score)
|
64 |
+
|
65 |
+
# if the MOS_score is higher than the previous video, we choose this video as our preferred video output
|
66 |
+
if float(MOS_score) > float(MOS_score_high) or float(MOS_score) > uvq_threshold:
|
67 |
+
MOS_score_high = MOS_score
|
68 |
+
preferred_output = filename
|
69 |
+
chosen_idx = i
|
70 |
+
|
71 |
+
if float(MOS_score) > uvq_threshold:
|
72 |
+
break
|
73 |
+
return chosen_idx
|
74 |
+
# print(MOS_score_high)
|
75 |
+
# print(preferred_output)
|
76 |
+
|
77 |
+
|
78 |
+
def extract_scores_from_json(json_path):
|
79 |
+
with open(json_path) as file:
|
80 |
+
data = json.load(file)
|
81 |
+
|
82 |
+
for key, value in data.items():
|
83 |
+
if isinstance(value, list) and len(value) > 1 and isinstance(value[0], float):
|
84 |
+
motion_score = value[0]
|
85 |
+
|
86 |
+
return motion_score
|
87 |
+
|
88 |
+
|
89 |
+
def VBench_eval(vid_filename):
|
90 |
+
# vid_filename: video filename without .mp4
|
91 |
+
os.system(
|
92 |
+
f'python VBench/evaluate.py --dimension "motion_smoothness" --videos_path {os.path.join(basedir, vidOut, vid_filename)}.mp4 --custom_input --output_filename {vid_filename}'
|
93 |
+
)
|
94 |
+
eval_file_path = os.path.join(
|
95 |
+
basedir, evalOut, f"{vid_filename}_eval_results.json")
|
96 |
+
motion_score = extract_scores_from_json(eval_file_path)
|
97 |
+
|
98 |
+
return motion_score
|
99 |
+
|
100 |
+
|
101 |
+
def interpolation(chosen_idx, fps):
|
102 |
+
vid_filename = f"{chosen_idx:04d}.mp4"
|
103 |
+
os.chdir("/content/drive/MyDrive/FYP/Code/VideoCrafter/ECCV2022-RIFE")
|
104 |
+
os.system(
|
105 |
+
f'python3 inference_video.py --exp=2 --video={os.path.join(basedir, vidOut, vid_filename)} --fps {fps}'
|
106 |
+
)
|
107 |
+
os.chdir("/content/drive/MyDrive/FYP/Code/VideoCrafter")
|
108 |
+
out_name = f"{chosen_idx:04d}_4X_{fps}fps.mp4"
|
109 |
+
return out_name
|
110 |
+
|
111 |
+
# call the GPT API here
|
112 |
+
|
113 |
+
|
114 |
+
def call_gpt_api(prompt, isSentence=False):
|
115 |
+
api_key = "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"
|
116 |
+
|
117 |
+
response = requests.post(
|
118 |
+
'https://api.openai.com/v1/chat/completions',
|
119 |
+
headers={
|
120 |
+
'Content-Type': 'application/json',
|
121 |
+
'Authorization': f'Bearer {api_key}'
|
122 |
+
},
|
123 |
+
json={
|
124 |
+
'messages': [{'role': 'system', 'content': 'You are a helpful assistant.'}, {'role': 'user', 'content': prompt}],
|
125 |
+
'model': 'gpt-3.5-turbo',
|
126 |
+
# 'prompt': prompt,
|
127 |
+
'temperature': 0.4,
|
128 |
+
'max_tokens': 200
|
129 |
+
})
|
130 |
+
response_json = response.json()
|
131 |
+
choices = response_json['choices']
|
132 |
+
contents = [choice['message']['content'] for choice in choices]
|
133 |
+
contents = [
|
134 |
+
sentence for sublist in contents for sentence in sublist.split('\n')]
|
135 |
+
# Remove the leading number and dot from each sentence
|
136 |
+
sentences = [content.lstrip('1234567890.- ') for content in contents]
|
137 |
+
if len(sentences) > 2 and isSentence:
|
138 |
+
sentences = sentences[1:]
|
139 |
+
return sentences
|
140 |
+
|
141 |
+
|
142 |
+
# Initialize Firebase Admin SDK
|
143 |
+
cred = credentials.Certificate(
|
144 |
+
f"{basedir}/final-year-project-443dd-df6f48af0796.json")
|
145 |
+
firebase_admin.initialize_app(cred)
|
146 |
+
# Initialize Firestore client
|
147 |
+
db = firestore.client()
|
148 |
+
|
149 |
+
|
150 |
+
def retrieve_user_feedback():
|
151 |
+
# Retrieve user feedback from Firestore
|
152 |
+
feedback_collection = db.collection("user_feedbacks")
|
153 |
+
feedback_docs = feedback_collection.get()
|
154 |
+
|
155 |
+
feedback_text = []
|
156 |
+
experience = []
|
157 |
+
for doc in feedback_docs:
|
158 |
+
data = doc.to_dict()
|
159 |
+
feedback_text.append(data.get('feedback_text', None))
|
160 |
+
experience.append(data.get('experience', None))
|
161 |
+
|
162 |
+
return feedback_text, experience
|
163 |
+
|
164 |
+
|
165 |
+
feedback_text, experience = retrieve_user_feedback()
|
166 |
+
# print("Feedback Text:", feedback_text)
|
167 |
+
# print("Experience:", experience)
|
168 |
+
|
169 |
+
|
170 |
+
def store_user_feedback(feedback_text, experience):
|
171 |
+
# Get a reference to the Firestore collection
|
172 |
+
feedback_collection = db.collection("user_feedbacks")
|
173 |
+
|
174 |
+
# Create a new document with feedback_text and experience fields
|
175 |
+
feedback_collection.add({
|
176 |
+
'feedback_text': feedback_text,
|
177 |
+
'experience': experience
|
178 |
+
})
|
179 |
+
return
|
180 |
+
|
181 |
+
|
182 |
+
t2v_examples = [
|
183 |
+
['A tiger walks in the forest, photorealistic, 4k, high definition'],
|
184 |
+
['an elephant is walking under the sea, 4K, high definition'],
|
185 |
+
['an astronaut riding a horse in outer space'],
|
186 |
+
['a monkey is playing a piano'],
|
187 |
+
['A fire is burning on a candle'],
|
188 |
+
['a horse is drinking in the river'],
|
189 |
+
['Robot dancing in times square'],
|
190 |
+
]
|
191 |
+
|
192 |
+
|
193 |
+
def generate_output(input_text, output_video_1, fps, examples):
|
194 |
+
def generate_output_fn(input_text, output_video_1, fps, examples):
|
195 |
+
if input_text == "":
|
196 |
+
return input_text, output_video_1, examples
|
197 |
+
output = call_gpt_api(
|
198 |
+
prompt=f"Generate 2 similar prompts and add some reasonable words to the given prompt and not change the meaning, each within 30 words: {input_text}", isSentence=True)
|
199 |
+
output.append(input_text)
|
200 |
+
with open(f"{basedir}/prompts/test_prompts.txt", 'w') as file:
|
201 |
+
for i, sentence in enumerate(output):
|
202 |
+
if i < len(output) - 1:
|
203 |
+
file.write(sentence + '\n')
|
204 |
+
else:
|
205 |
+
file.write(sentence)
|
206 |
+
os.system(
|
207 |
+
f'sh {os.path.join(basedir, "scripts", "run_text2video.sh")}')
|
208 |
+
# Connect the video output and return the video corresponding link
|
209 |
+
genScore()
|
210 |
+
chosen_idx = chooseBestVideo()
|
211 |
+
chosen_vid_path = interpolation(chosen_idx, fps)
|
212 |
+
chosen_vid_path = f"{basedir}/{vidOut}/{chosen_vid_path}"
|
213 |
+
# chosen_vid_path = "/content/drive/MyDrive/FYP/Code/VideoCrafter/results/cat/0002_4X_16fps.mp4"
|
214 |
+
output_video_1 = gr.Video(
|
215 |
+
value=chosen_vid_path, show_download_button=True)
|
216 |
+
|
217 |
+
examples_list = call_gpt_api(
|
218 |
+
prompt=f"Generate 5 similar prompts that makes a storyline coming after the given input, each within 10 words: {input_text}")
|
219 |
+
examples = []
|
220 |
+
for prompt in examples_list:
|
221 |
+
examples.append([prompt])
|
222 |
+
input_text = ""
|
223 |
+
|
224 |
+
return input_text, output_video_1, examples
|
225 |
+
|
226 |
+
return generate_output_fn(input_text, output_video_1, fps, examples)
|
227 |
+
|
228 |
+
|
229 |
+
def t2v_demo(result_dir='./tmp/'):
|
230 |
+
with gr.Blocks() as videocrafter_iface:
|
231 |
+
gr.Markdown("<div align='center'> <h2> VideoCraftXtend: AI-Enhanced Text-to-Video Generation with Extended Length and Enhanced Motion Smoothness </span> </h2> </div>")
|
232 |
+
|
233 |
+
# Initialize values for video length and fps
|
234 |
+
video_len_value = 5.0
|
235 |
+
|
236 |
+
def update_fps(video_len, fps):
|
237 |
+
fps_value = 80 / video_len
|
238 |
+
return f"<div justify-content: 'center'; text-align='center'> <h6> FPS (frames per second) : {int(fps_value)} </span> </h6> </div>"
|
239 |
+
|
240 |
+
def load_example(example_id):
|
241 |
+
return example_id[0]
|
242 |
+
|
243 |
+
def update_feedback(value, text):
|
244 |
+
labels = ['Positive', 'Neutral', 'Negative']
|
245 |
+
colors = ['#66c2a5', '#fc8d62', '#8da0cb']
|
246 |
+
if value != '':
|
247 |
+
store_user_feedback(value, text)
|
248 |
+
user_satisfaction.append(value)
|
249 |
+
value = ''
|
250 |
+
if text != '':
|
251 |
+
user_feedback.append(text)
|
252 |
+
text = ''
|
253 |
+
user_feedback, user_satisfaction = retrieve_user_feedback()
|
254 |
+
sizes = [user_satisfaction.count('Positive'), user_satisfaction.count(
|
255 |
+
'Neutral'), user_satisfaction.count('Negative')]
|
256 |
+
plt.pie(sizes, labels=labels, autopct='%1.1f%%',
|
257 |
+
startangle=140, colors=colors)
|
258 |
+
plt.axis('equal')
|
259 |
+
return plt
|
260 |
+
|
261 |
+
with gr.Tab(label="Text2Video"):
|
262 |
+
with gr.Column():
|
263 |
+
with gr.Row():
|
264 |
+
with gr.Column():
|
265 |
+
input_text = gr.Text(
|
266 |
+
placeholder=t2v_examples[2], label='Please input your prompt here.')
|
267 |
+
with gr.Row():
|
268 |
+
examples = gr.Dataset(samples=t2v_examples, components=[
|
269 |
+
input_text], label='Sample prompts that can be used to form a storyline.')
|
270 |
+
with gr.Column():
|
271 |
+
gr.Markdown(
|
272 |
+
"<div align='center'> <h4> Modify video length and the corresponding fps will be shown on the right. </span> </h4> </div>")
|
273 |
+
with gr.Row():
|
274 |
+
video_len = gr.Slider(minimum=4.0, maximum=10.0, step=1, label='Video Length',
|
275 |
+
value=video_len_value, elem_id="video_len", interactive=True)
|
276 |
+
fps = gr.Markdown(
|
277 |
+
elem_id="fps", value=f"<div> <h6> FPS (frames per second) : 16</span> </h6> </div>")
|
278 |
+
send_btn = gr.Button("Send")
|
279 |
+
with gr.Column():
|
280 |
+
with gr.Tab(label='Result'):
|
281 |
+
with gr.Row():
|
282 |
+
output_video_1 = gr.Video(
|
283 |
+
value="/content/drive/MyDrive/FYP/Code/VideoCrafter/results/10videos/0009.mp4", show_download_button=True)
|
284 |
+
|
285 |
+
video_len.change(update_fps, inputs=[video_len, fps], outputs=fps)
|
286 |
+
# fps.change(update_video_len_slider, inputs = fps, outputs = video_len)
|
287 |
+
|
288 |
+
examples.click(load_example, inputs=[
|
289 |
+
examples], outputs=[input_text])
|
290 |
+
send_btn.click(
|
291 |
+
fn=generate_output,
|
292 |
+
inputs=[input_text, output_video_1, fps, examples],
|
293 |
+
outputs=[input_text, output_video_1, examples],
|
294 |
+
)
|
295 |
+
|
296 |
+
with gr.Tab(label="Feedback"):
|
297 |
+
with gr.Column():
|
298 |
+
with gr.Column():
|
299 |
+
with gr.Row():
|
300 |
+
feedback_value = gr.Radio(
|
301 |
+
['Positive', 'Neutral', 'Negative'], label="How is your experience?")
|
302 |
+
feedback_text = gr.Textbox(
|
303 |
+
placeholder="Enter feedback here", label="Feedback Text")
|
304 |
+
with gr.Row():
|
305 |
+
cancel_btn = gr.Button("Clear")
|
306 |
+
submit_btn = gr.Button("Submit")
|
307 |
+
with gr.Row():
|
308 |
+
pie_chart = gr.Plot(value=update_feedback(
|
309 |
+
'', ''), label="Feedback Pie Chart")
|
310 |
+
with gr.Column():
|
311 |
+
gr.Markdown(
|
312 |
+
"<div align='center'> <h4> Feedbacks from users: </span> </h4> </div>")
|
313 |
+
feedback_text_display = [gr.Markdown(
|
314 |
+
feedback, label="User Feedback") for feedback in retrieve_user_feedback()[0]]
|
315 |
+
submit_btn.click(fn=update_feedback, inputs=[
|
316 |
+
feedback_value, feedback_text], outputs=[pie_chart])
|
317 |
+
|
318 |
+
return videocrafter_iface
|
319 |
|
|
|
|
|
320 |
|
321 |
+
if __name__ == "__main__":
|
322 |
+
result_dir = os.path.join('./', 'results')
|
323 |
+
t2v_iface = t2v_demo(result_dir)
|
324 |
+
t2v_iface.queue(max_size=10)
|
325 |
+
t2v_iface.launch(debug=True)
|