import torch import numpy as np import torch.nn as nn import torch.nn.functional as F import torchvision.models as models device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class EPE(nn.Module): def __init__(self): super(EPE, self).__init__() def forward(self, flow, gt, loss_mask): loss_map = (flow - gt.detach()) ** 2 loss_map = (loss_map.sum(1, True) + 1e-6) ** 0.5 return (loss_map * loss_mask) class Ternary(nn.Module): def __init__(self): super(Ternary, self).__init__() patch_size = 7 out_channels = patch_size * patch_size self.w = np.eye(out_channels).reshape( (patch_size, patch_size, 1, out_channels)) self.w = np.transpose(self.w, (3, 2, 0, 1)) self.w = torch.tensor(self.w).float().to(device) def transform(self, img): patches = F.conv2d(img, self.w, padding=3, bias=None) transf = patches - img transf_norm = transf / torch.sqrt(0.81 + transf**2) return transf_norm def rgb2gray(self, rgb): r, g, b = rgb[:, 0:1, :, :], rgb[:, 1:2, :, :], rgb[:, 2:3, :, :] gray = 0.2989 * r + 0.5870 * g + 0.1140 * b return gray def hamming(self, t1, t2): dist = (t1 - t2) ** 2 dist_norm = torch.mean(dist / (0.1 + dist), 1, True) return dist_norm def valid_mask(self, t, padding): n, _, h, w = t.size() inner = torch.ones(n, 1, h - 2 * padding, w - 2 * padding).type_as(t) mask = F.pad(inner, [padding] * 4) return mask def forward(self, img0, img1): img0 = self.transform(self.rgb2gray(img0)) img1 = self.transform(self.rgb2gray(img1)) return self.hamming(img0, img1) * self.valid_mask(img0, 1) class SOBEL(nn.Module): def __init__(self): super(SOBEL, self).__init__() self.kernelX = torch.tensor([ [1, 0, -1], [2, 0, -2], [1, 0, -1], ]).float() self.kernelY = self.kernelX.clone().T self.kernelX = self.kernelX.unsqueeze(0).unsqueeze(0).to(device) self.kernelY = self.kernelY.unsqueeze(0).unsqueeze(0).to(device) def forward(self, pred, gt): N, C, H, W = pred.shape[0], pred.shape[1], pred.shape[2], pred.shape[3] img_stack = torch.cat( [pred.reshape(N*C, 1, H, W), gt.reshape(N*C, 1, H, W)], 0) sobel_stack_x = F.conv2d(img_stack, self.kernelX, padding=1) sobel_stack_y = F.conv2d(img_stack, self.kernelY, padding=1) pred_X, gt_X = sobel_stack_x[:N*C], sobel_stack_x[N*C:] pred_Y, gt_Y = sobel_stack_y[:N*C], sobel_stack_y[N*C:] L1X, L1Y = torch.abs(pred_X-gt_X), torch.abs(pred_Y-gt_Y) loss = (L1X+L1Y) return loss class MeanShift(nn.Conv2d): def __init__(self, data_mean, data_std, data_range=1, norm=True): c = len(data_mean) super(MeanShift, self).__init__(c, c, kernel_size=1) std = torch.Tensor(data_std) self.weight.data = torch.eye(c).view(c, c, 1, 1) if norm: self.weight.data.div_(std.view(c, 1, 1, 1)) self.bias.data = -1 * data_range * torch.Tensor(data_mean) self.bias.data.div_(std) else: self.weight.data.mul_(std.view(c, 1, 1, 1)) self.bias.data = data_range * torch.Tensor(data_mean) self.requires_grad = False class VGGPerceptualLoss(torch.nn.Module): def __init__(self, rank=0): super(VGGPerceptualLoss, self).__init__() blocks = [] pretrained = True self.vgg_pretrained_features = models.vgg19(pretrained=pretrained).features self.normalize = MeanShift([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], norm=True).cuda() for param in self.parameters(): param.requires_grad = False def forward(self, X, Y, indices=None): X = self.normalize(X) Y = self.normalize(Y) indices = [2, 7, 12, 21, 30] weights = [1.0/2.6, 1.0/4.8, 1.0/3.7, 1.0/5.6, 10/1.5] k = 0 loss = 0 for i in range(indices[-1]): X = self.vgg_pretrained_features[i](X) Y = self.vgg_pretrained_features[i](Y) if (i+1) in indices: loss += weights[k] * (X - Y.detach()).abs().mean() * 0.1 k += 1 return loss if __name__ == '__main__': img0 = torch.zeros(3, 3, 256, 256).float().to(device) img1 = torch.tensor(np.random.normal( 0, 1, (3, 3, 256, 256))).float().to(device) ternary_loss = Ternary() print(ternary_loss(img0, img1).shape)