import os import sys sys.path.append('.') import cv2 import math import torch import argparse import numpy as np from torch.nn import functional as F from model.pytorch_msssim import ssim_matlab from model.RIFE import Model from skimage.color import rgb2yuv, yuv2rgb from yuv_frame_io import YUV_Read,YUV_Write device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = Model(arbitrary=True) model.load_model('RIFE_m_train_log') model.eval() model.device() name_list = [ ('HD_dataset/HD720p_GT/parkrun_1280x720_50.yuv', 720, 1280), ('HD_dataset/HD720p_GT/shields_1280x720_60.yuv', 720, 1280), ('HD_dataset/HD720p_GT/stockholm_1280x720_60.yuv', 720, 1280), ('HD_dataset/HD1080p_GT/BlueSky.yuv', 1080, 1920), ('HD_dataset/HD1080p_GT/Kimono1_1920x1080_24.yuv', 1080, 1920), ('HD_dataset/HD1080p_GT/ParkScene_1920x1080_24.yuv', 1080, 1920), ('HD_dataset/HD1080p_GT/sunflower_1080p25.yuv', 1080, 1920), ('HD_dataset/HD544p_GT/Sintel_Alley2_1280x544.yuv', 544, 1280), ('HD_dataset/HD544p_GT/Sintel_Market5_1280x544.yuv', 544, 1280), ('HD_dataset/HD544p_GT/Sintel_Temple1_1280x544.yuv', 544, 1280), ('HD_dataset/HD544p_GT/Sintel_Temple2_1280x544.yuv', 544, 1280), ] def inference(I0, I1, pad, multi=2, arbitrary=True): img = [I0, I1] if not arbitrary: for i in range(multi): res = [I0] for j in range(len(img) - 1): res.append(model.inference(img[j], img[j + 1])) res.append(img[j + 1]) img = res else: img = [I0] p = 2**multi for i in range(p-1): img.append(model.inference(I0, I1, timestep=(i+1)*(1./p))) img.append(I1) for i in range(len(img)): img[i] = img[i][0][:, pad: -pad] return img[1: -1] tot = [] for data in name_list: psnr_list = [] name = data[0] h = data[1] w = data[2] if 'yuv' in name: Reader = YUV_Read(name, h, w, toRGB=True) else: Reader = cv2.VideoCapture(name) _, lastframe = Reader.read() # fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v') # video = cv2.VideoWriter(name + '.mp4', fourcc, 30, (w, h)) for index in range(0, 100, 4): gt = [] if 'yuv' in name: IMAGE1, success1 = Reader.read(index) IMAGE2, success2 = Reader.read(index + 4) if not success2: break for i in range(1, 4): tmp, _ = Reader.read(index + i) gt.append(tmp) else: print('Not Implement') I0 = torch.from_numpy(np.transpose(IMAGE1, (2,0,1)).astype("float32") / 255.).cuda().unsqueeze(0) I1 = torch.from_numpy(np.transpose(IMAGE2, (2,0,1)).astype("float32") / 255.).cuda().unsqueeze(0) if h == 720: pad = 24 elif h == 1080: pad = 4 else: pad = 16 pader = torch.nn.ReplicationPad2d([0, 0, pad, pad]) I0 = pader(I0) I1 = pader(I1) with torch.no_grad(): pred = inference(I0, I1, pad) for i in range(4 - 1): out = (np.round(pred[i].detach().cpu().numpy().transpose(1, 2, 0) * 255)).astype('uint8') if 'yuv' in name: diff_rgb = 128.0 + rgb2yuv(gt[i] / 255.)[:, :, 0] * 255 - rgb2yuv(out / 255.)[:, :, 0] * 255 mse = np.mean((diff_rgb - 128.0) ** 2) PIXEL_MAX = 255.0 psnr = 20 * math.log10(PIXEL_MAX / math.sqrt(mse)) else: print('Not Implement') psnr_list.append(psnr) print(np.mean(psnr_list)) tot.append(np.mean(psnr_list)) print('PSNR: {}(544*1280), {}(720p), {}(1080p)'.format(np.mean(tot[7:11]), np.mean(tot[:3]), np.mean(tot[3:7])))