yeecin
commited on
Commit
•
86fce4a
1
Parent(s):
a4a4fed
Upload app.py
Browse files
app.py
CHANGED
@@ -46,7 +46,7 @@ import gradio as gr
|
|
46 |
import torch
|
47 |
import os
|
48 |
from transformers import BlipForConditionalGeneration, BlipProcessor, GenerationConfig
|
49 |
-
|
50 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
51 |
|
52 |
_MODEL_PATH = 'IDEA-CCNL/Taiyi-BLIP-750M-Chinese'
|
@@ -76,7 +76,7 @@ def inference(raw_image, model_n, strategy):
|
|
76 |
# Nucleus sampling,即 top-p sampling,只保留累积概率大于 p 的词,然后重新归一化,得到一个新的概率分布,再从中采样,这样可以保证采样的结果更多样
|
77 |
config = GenerationConfig(
|
78 |
do_sample=True,
|
79 |
-
top_p=0.
|
80 |
max_length=50,
|
81 |
min_length=5,
|
82 |
)
|
|
|
46 |
import torch
|
47 |
import os
|
48 |
from transformers import BlipForConditionalGeneration, BlipProcessor, GenerationConfig
|
49 |
+
print(torch.__version__)
|
50 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
51 |
|
52 |
_MODEL_PATH = 'IDEA-CCNL/Taiyi-BLIP-750M-Chinese'
|
|
|
76 |
# Nucleus sampling,即 top-p sampling,只保留累积概率大于 p 的词,然后重新归一化,得到一个新的概率分布,再从中采样,这样可以保证采样的结果更多样
|
77 |
config = GenerationConfig(
|
78 |
do_sample=True,
|
79 |
+
top_p=0.8,
|
80 |
max_length=50,
|
81 |
min_length=5,
|
82 |
)
|