Spaces:
Sleeping
Sleeping
import spaces | |
import gradio as gr | |
import os | |
import orjson | |
import torch | |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline, AutoModelForCausalLM, AutoTokenizer | |
def transcribe_audio(audio, model_id): | |
if audio is None: | |
return "Please upload an audio file." | |
if model_id is None: | |
return "Please select a model." | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
model = AutoModelForSpeechSeq2Seq.from_pretrained( | |
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True | |
) | |
model.to(device) | |
processor = AutoProcessor.from_pretrained(model_id) | |
pipe = pipeline( | |
"automatic-speech-recognition", | |
model=model, | |
tokenizer=processor.tokenizer, | |
feature_extractor=processor.feature_extractor, | |
max_new_tokens=128, | |
chunk_length_s=25, | |
batch_size=16, | |
torch_dtype=torch_dtype, | |
device=device, | |
) | |
result = pipe(audio) | |
return result["text"] | |
def proofread(text): | |
if text is None: | |
return "Please provide the transcribed text for proofreading." | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
messages = [ | |
{"role": "system", "content": "用繁體中文整理這段文字,在最後加上整段文字的重點。"}, | |
{"role": "user", "content": text}, | |
] | |
pipe = pipeline("text-generation", model="hfl/llama-3-chinese-8b-instruct-v3") | |
llm_output = pipe(messages) | |
# Extract the generated text | |
generated_text = llm_output[0]['generated_text'] | |
# Extract the assistant's content | |
assistant_content = next(item['content'] for item in generated_text if item['role'] == 'assistant') | |
proofread_text = assistant_content | |
return proofread_text | |
with gr.Blocks() as demo: | |
gr.Markdown(""" | |
# Audio Transcription and Proofreading | |
1. Upload an audio file (Wait for the file to be fully loaded first) | |
2. Select a model for transcription | |
3. Proofread the transcribed text | |
""") | |
with gr.Row(): | |
audio = gr.Audio(sources="upload", type="filepath") | |
model_dropdown = gr.Dropdown(choices=["openai/whisper-large-v3", "alvanlii/whisper-small-cantonese"], value="openai/whisper-large-v3") | |
transcribe_button = gr.Button("Transcribe") | |
transcribed_text = gr.Textbox(label="Transcribed Text") | |
proofread_button = gr.Button("Proofread") | |
proofread_output = gr.Textbox(label="Proofread Text") | |
transcribe_button.click(transcribe_audio, inputs=[audio, model_dropdown], outputs=transcribed_text) | |
proofread_button.click(proofread, inputs=[transcribed_text], outputs=proofread_output) | |
transcribed_text.change(proofread, inputs=[transcribed_text], outputs=proofread_output) | |
demo.launch() | |