yellowcandle's picture
added video upload
f8b77d4 unverified
raw
history blame
3.26 kB
import spaces
import gradio as gr
# Use a pipeline as a high-level helper
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline, AutoModelForCausalLM, AutoTokenizer
@spaces.GPU(duration=120)
def transcribe_audio(audio, model_id):
if audio is None:
return "Please upload an audio file."
if model_id is None:
return "Please select a model."
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=25,
batch_size=16,
torch_dtype=torch_dtype,
device=device,
)
result = pipe(audio)
return result["text"]
@spaces.GPU(duration=180)
def proofread(text):
if text is None:
return "Please provide the transcribed text for proofreading."
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
prompt = "用繁體中文整理這段文字,分段及改正錯別字,最後加上整段文字的重點。"
model = AutoModelForCausalLM.from_pretrained("hfl/llama-3-chinese-8b-instruct-v3")
tokenizer = AutoTokenizer.from_pretrained("hfl/llama-3-chinese-8b-instruct-v3")
model.to(device)
# Perform proofreading using the model
input_text = prompt + text
input_ids = tokenizer.encode(input_text, return_tensors="pt").to(device)
output = model.generate(input_ids, max_length=len(input_ids[0])+50, num_return_sequences=1, temperature=0.7)
proofread_text = tokenizer.decode(output[0], skip_special_tokens=True)
return proofread_text
with gr.Blocks() as demo:
gr.Markdown("""
# Audio Transcription and Proofreading
1. Upload an audio file (Wait for the file to be fully loaded first)
2. Select a model for transcription
3. Proofread the transcribed text
""")
with gr.Row():
with gr.Column():
audio = gr.Audio(sources="upload", type="filepath")
video = gr.Video(sources="upload", type="url")
model_dropdown = gr.Dropdown(choices=["openai/whisper-large-v3", "alvanlii/whisper-small-cantonese"], value="openai/whisper-large-v3")
transcribe_button = gr.Button("Transcribe")
transcribed_text = gr.Textbox(label="Transcribed Text")
proofread_button = gr.Button("Proofread")
proofread_output = gr.Textbox(label="Proofread Text")
transcribe_button.click(transcribe_audio, inputs=[audio, model_dropdown], outputs=transcribed_text)
proofread_button.click(proofread, inputs=[transcribed_text], outputs=proofread_output)
transcribed_text.change(proofread, inputs=[transcribed_text], outputs=proofread_output)
demo.launch()