File size: 5,770 Bytes
c9cc441
 
 
 
 
 
 
 
721391f
 
 
c9cc441
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
"""Test script for anime-to-sketch translation
Example:
    python3 test.py --dataroot /your_path/dir --load_size 512
    python3 test.py --dataroot /your_path/img.jpg --load_size 512
"""

import os
import torch
from scripts.data import get_image_list, get_transform
from scripts.model import create_model
from scripts.data import tensor_to_img, save_image
import argparse
from tqdm.auto import tqdm
from kornia.enhance import equalize_clahe
from PIL import Image
import numpy as np


# numpy配列の画像を受け取り、線画を生成してnumpy配列で返す
def generate_sketch(image, clahe_clip=-1, load_size=512):
    """
    Generate sketch image from input image
    Args:
        image (np.ndarray): input image
        clahe_clip (float): clip threshold for CLAHE
        load_size (int): image size to load
    Returns:
        np.ndarray: output image
    """
    # create model
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model_opt = "default"
    model = create_model(model_opt).to(device)
    model.eval()
    
    aus_resize = None
    if load_size > 0:
        aus_resize = (image.shape[0], image.shape[1])
    transform = get_transform(load_size=load_size)
    image = torch.from_numpy(image).permute(2, 0, 1).float()
    # [0,255] to [-1,1]
    image = transform(image)
    if image.max() > 1:
        image = (image-image.min())/(image.max()-image.min())*2-1

    img, aus_resize = image.unsqueeze(0), aus_resize
    if clahe_clip > 0:
        img = (img + 1) / 2 # [-1,1] to [0,1]
        img = equalize_clahe(img, clip_limit=clahe_clip)
        img = (img - .5) / .5 # [0,1] to [-1,1]

    aus_tensor = model(img.to(device))
    
    # resize to original size
    if aus_resize is not None:
        aus_tensor = torch.nn.functional.interpolate(aus_tensor, aus_resize, mode='bilinear', align_corners=False)

    aus_img = tensor_to_img(aus_tensor)
    return aus_img


if __name__ == '__main__':
    os.chdir(os.path.dirname("Anime2Sketch/"))
    parser = argparse.ArgumentParser(description='Anime-to-sketch test options.')
    parser.add_argument('--dataroot','-i', default='test_samples/', type=str)
    parser.add_argument('--load_size','-s', default=512, type=int)
    parser.add_argument('--output_dir','-o', default='results/', type=str)
    parser.add_argument('--gpu_ids', '-g', default=[], help="gpu ids: e.g. 0 0,1,2 0,2.")
    parser.add_argument('--model', default="default", type=str, help="variant of model to use. you can choose from ['default','improved']")
    parser.add_argument('--clahe_clip', default=-1, type=float, help="clip threshold for CLAHE set to -1 to disable")
    opt = parser.parse_args()

    # # generate sketchで線画生成
    # for test_path in tqdm(get_image_list(opt.dataroot)):
    #     basename = os.path.basename(test_path)
    #     aus_path = os.path.join(opt.output_dir, basename)
    #     # numpy配列で画像を読み込む
    #     img = Image.open(test_path)
    #     img = np.array(img)
    #     aus_img = generate_sketch(img, opt.clahe_clip)
    #     # 画像を保存
    #     save_image(aus_img, aus_path, (512, 512))

    
    # create model
    gpu_list = ','.join(str(x) for x in opt.gpu_ids)
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model = create_model(opt.model).to(device)      # create a model given opt.model and other options
    model.eval()
    
    for test_path in tqdm(get_image_list(opt.dataroot)):
        basename = os.path.basename(test_path)
        aus_path = os.path.join(opt.output_dir, basename)

        img = Image.open(test_path).convert('RGB')
        img = np.array(img)

        load_size = 512
        aus_resize = None
        if load_size > 0:
            aus_resize = (img.shape[1], img.shape[0])
        transform = get_transform(load_size=load_size)
        img = torch.from_numpy(img).permute(2, 0, 1).float()
        # [0,255] to [-1,1]
        image = transform(img)
        if image.max() > 1:
            image = (image-image.min())/(image.max()-image.min())*2-1
            print(image.min(), image.max())

        img, aus_resize = image.unsqueeze(0), aus_resize
        if opt.clahe_clip > 0:
            img = (img + 1) / 2 # [-1,1] to [0,1]
            img = equalize_clahe(img, clip_limit=opt.clahe_clip)
            img = (img - .5) / .5 # [0,1] to [-1,1]

        aus_tensor = model(img.to(device))
        aus_img = tensor_to_img(aus_tensor)
        save_image(aus_img, aus_path, aus_resize)
"""
    # create model
    gpu_list = ','.join(str(x) for x in opt.gpu_ids)
    os.environ['CUDA_VISIBLE_DEVICES'] = gpu_list
    device = torch.device('cuda' if len(opt.gpu_ids)>0 else 'cpu')
    model = create_model(opt.model).to(device)      # create a model given opt.model and other options
    model.eval()
    # get input data
    if os.path.isdir(opt.dataroot):
        test_list = get_image_list(opt.dataroot)
    elif os.path.isfile(opt.dataroot):
        test_list = [opt.dataroot]
    else:
        raise Exception("{} is not a valid directory or image file.".format(opt.dataroot))
    # save outputs
    save_dir = opt.output_dir
    os.makedirs(save_dir, exist_ok=True)
    
    for test_path in tqdm(test_list):
        basename = os.path.basename(test_path)
        aus_path = os.path.join(save_dir, basename)
        img, aus_resize = read_img_path(test_path, opt.load_size)

        if opt.clahe_clip > 0:
            img = (img + 1) / 2 # [-1,1] to [0,1]
            img = equalize_clahe(img, clip_limit=opt.clahe_clip)
            img = (img - .5) / .5 # [0,1] to [-1,1]

        aus_tensor = model(img.to(device))
        print(aus_tensor.shape)
        aus_img = tensor_to_img(aus_tensor)
        save_image(aus_img, aus_path, aus_resize)
"""