import os from PIL import Image import torchvision.transforms as transforms try: from transforms import InterpolationMode bic = InterpolationMode.BICUBIC except ImportError: bic = Image.BICUBIC import numpy as np import torch IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP'] def is_image_file(filename): """if a given filename is a valid image Parameters: filename (str) -- image filename """ return any(filename.endswith(extension) for extension in IMG_EXTENSIONS) def get_image_list(path): """read the paths of valid images from the given directory path Parameters: path (str) -- input directory path """ assert os.path.isdir(path), '{:s} is not a valid directory'.format(path) images = [] for dirpath, _, fnames in sorted(os.walk(path)): for fname in sorted(fnames): if is_image_file(fname): img_path = os.path.join(dirpath, fname) images.append(img_path) assert images, '{:s} has no valid image file'.format(path) return images def get_transform(load_size=0, grayscale=False, method=bic, convert=True): transform_list = [] if grayscale: transform_list.append(transforms.Grayscale(1)) if load_size > 0: osize = [load_size, load_size] transform_list.append(transforms.Resize(osize, method)) if convert: # transform_list += [transforms.ToTensor()] if grayscale: transform_list += [transforms.Normalize((0.5,), (0.5,))] else: transform_list += [transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] return transforms.Compose(transform_list) def read_img_path(path, load_size): """read tensors from a given image path Parameters: path (str) -- input image path load_size(int) -- the input size. If <= 0, don't resize """ img = Image.open(path).convert('RGB') aus_resize = None if load_size > 0: aus_resize = img.size transform = get_transform(load_size=load_size) image = transform(img) return image.unsqueeze(0), aus_resize def tensor_to_img(input_image, imtype=np.uint8): """"Converts a Tensor array into a numpy image array. Parameters: input_image (tensor) -- the input image tensor array imtype (type) -- the desired type of the converted numpy array """ if not isinstance(input_image, np.ndarray): if isinstance(input_image, torch.Tensor): # get the data from a variable image_tensor = input_image.data else: return input_image image_numpy = image_tensor[0].cpu().float().numpy() # convert it into a numpy array if image_numpy.shape[0] == 1: # grayscale to RGB image_numpy = np.tile(image_numpy, (3, 1, 1)) image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 # post-processing: tranpose and scaling else: # if it is a numpy array, do nothing image_numpy = input_image return image_numpy.astype(imtype) def save_image(image_numpy, image_path, output_resize=None): """Save a numpy image to the disk Parameters: image_numpy (numpy array) -- input numpy array image_path (str) -- the path of the image output_resize(None or tuple) -- the output size. If None, don't resize """ image_pil = Image.fromarray(image_numpy) if output_resize: image_pil = image_pil.resize(output_resize, bic) image_pil.save(image_path)