WSCL / models /__init__.py
yhzhai's picture
release code
482ab8a
import torch.nn as nn
from .bayar_conv import BayarConv2d
from .early_fusion_pre_filter import EarlyFusionPreFilter
from .ensemble_model import EnsembleModel
from .main_model import MainModel
from .models import ModelBuilder, SegmentationModule
from .srm_conv import SRMConv2d
def get_ensemble_model(opt):
models = {}
for modality in opt.modality:
models[modality] = get_single_modal_model(opt, modality)
ensemble_model = EnsembleModel(
models=models, mvc_single_weight=opt.mvc_single_weight
)
return ensemble_model
def get_single_modal_model(opt, modality):
encoder = ModelBuilder.build_encoder( # TODO check the implementation of FCN
arch=opt.encoder.lower(), fc_dim=opt.fc_dim, weights=opt.encoder_weight
)
decoder = ModelBuilder.build_decoder(
arch=opt.decoder.lower(),
fc_dim=opt.fc_dim,
weights=opt.decoder_weight,
num_class=opt.num_class,
dropout=opt.dropout,
fcn_up=opt.fcn_up,
)
if modality.lower() == "bayar":
pre_filter = BayarConv2d(
3, 3, 5, stride=1, padding=2, magnitude=opt.bayar_magnitude
)
elif modality.lower() == "srm":
pre_filter = SRMConv2d(
stride=1, padding=2, clip=opt.srm_clip
) # TODO check the implementation of SRM filter
elif modality.lower() == "rgb":
pre_filter = nn.Identity()
else: # early
pre_filter = EarlyFusionPreFilter(
bayar_magnitude=opt.bayar_magnitude, srm_clip=opt.srm_clip
)
model = MainModel(
encoder,
decoder,
opt.fc_dim,
opt.volume_block_idx,
opt.share_embed_head,
pre_filter,
opt.gem,
opt.gem_coef,
opt.gsm,
opt.map_portion,
opt.otsu_sel,
opt.otsu_portion,
)
return model