add demo
Browse files- README.md +19 -0
- demo.py +53 -0
- demo/au.jpg +0 -0
- demo/tp.jpg +0 -0
- engine.py +1 -1
- requirements.txt +0 -1
README.md
CHANGED
@@ -11,6 +11,10 @@
|
|
11 |
|
12 |
This repo contains the MIL-FCN version of our WSCL implementation.
|
13 |
|
|
|
|
|
|
|
|
|
14 |
## 1. Setup
|
15 |
Clone this repo
|
16 |
|
@@ -46,6 +50,21 @@ python main.py --load configs/final.yaml --eval --resume checkpoint-path
|
|
46 |
|
47 |
We provide our pre-trained checkpoint [here](https://buffalo.box.com/s/2t3eqvwp7ua2ircpdx12sfq04sne4x50).
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
## Citation
|
50 |
If you feel this project is helpful, please consider citing our paper
|
51 |
```bibtex
|
|
|
11 |
|
12 |
This repo contains the MIL-FCN version of our WSCL implementation.
|
13 |
|
14 |
+
## 🚨News
|
15 |
+
|
16 |
+
**03/2024**: add demo script! Check [here](https://github.com/yhZhai/WSCL?tab=readme-ov-file#4-demo) for more details!
|
17 |
+
|
18 |
## 1. Setup
|
19 |
Clone this repo
|
20 |
|
|
|
50 |
|
51 |
We provide our pre-trained checkpoint [here](https://buffalo.box.com/s/2t3eqvwp7ua2ircpdx12sfq04sne4x50).
|
52 |
|
53 |
+
|
54 |
+
## 4. Demo
|
55 |
+
|
56 |
+
Running our manipulation model on your custom data!
|
57 |
+
Before running, please configure your desired input and output path in the `demo.py` file.
|
58 |
+
|
59 |
+
```shell
|
60 |
+
python demo.py --load configs/final.yaml --resume checkpoint-path
|
61 |
+
```
|
62 |
+
|
63 |
+
By default, it evaluates all `.jpg` files in the `demo` folder, and saves the
|
64 |
+
detection result in `tmp`.
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
## Citation
|
69 |
If you feel this project is helpful, please consider citing our paper
|
70 |
```bibtex
|
demo.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import albumentations as A
|
2 |
+
import cv2
|
3 |
+
import torch
|
4 |
+
import tqdm
|
5 |
+
from albumentations.pytorch.functional import img_to_tensor
|
6 |
+
from pathlib import Path
|
7 |
+
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
8 |
+
from torchvision.utils import draw_segmentation_masks, make_grid, save_image
|
9 |
+
|
10 |
+
import utils.misc as misc
|
11 |
+
from models import get_ensemble_model
|
12 |
+
from opt import get_opt
|
13 |
+
|
14 |
+
|
15 |
+
def demo(folder_path, output_path=Path("tmp")):
|
16 |
+
opt = get_opt()
|
17 |
+
model = get_ensemble_model(opt).to(opt.device)
|
18 |
+
misc.resume_from(model, opt.resume)
|
19 |
+
|
20 |
+
with torch.no_grad():
|
21 |
+
for image_path in tqdm.tqdm(folder_path.glob("*.jpg")):
|
22 |
+
image = cv2.imread(image_path.as_posix())
|
23 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
24 |
+
dsm_image = torch.from_numpy(image).permute(2, 0, 1)
|
25 |
+
image_size = image.shape[:2]
|
26 |
+
raw_image = img_to_tensor(image)
|
27 |
+
image = img_to_tensor(
|
28 |
+
image,
|
29 |
+
normalize={"mean": IMAGENET_DEFAULT_MEAN, "std": IMAGENET_DEFAULT_STD},
|
30 |
+
)
|
31 |
+
image = image.to(opt.device).unsqueeze(0)
|
32 |
+
outputs = model(image, seg_size=image_size)
|
33 |
+
out_map = outputs["ensemble"]["out_map"][0, ...].detach().cpu()
|
34 |
+
|
35 |
+
overlay = draw_segmentation_masks(
|
36 |
+
dsm_image, masks=out_map[0, ...] > opt.mask_threshold
|
37 |
+
)
|
38 |
+
grid_image = make_grid(
|
39 |
+
[
|
40 |
+
raw_image,
|
41 |
+
(out_map.repeat(3, 1, 1) > opt.mask_threshold).float() * 255,
|
42 |
+
overlay / 255.0,
|
43 |
+
],
|
44 |
+
padding=5,
|
45 |
+
)
|
46 |
+
save_image(grid_image, (output_path / image_path.name).as_posix())
|
47 |
+
|
48 |
+
|
49 |
+
if __name__ == "__main__":
|
50 |
+
folder_path = Path("demo")
|
51 |
+
output_path = Path("tmp")
|
52 |
+
output_path.mkdir(exist_ok=True, parents=True)
|
53 |
+
demo(folder_path)
|
demo/au.jpg
ADDED
demo/tp.jpg
ADDED
engine.py
CHANGED
@@ -10,7 +10,7 @@ import prettytable as pt
|
|
10 |
import torch
|
11 |
import torch.nn as nn
|
12 |
from fast_pytorch_kmeans import KMeans
|
13 |
-
from
|
14 |
from scipy.stats import hmean
|
15 |
from sklearn import metrics
|
16 |
from termcolor import cprint
|
|
|
10 |
import torch
|
11 |
import torch.nn as nn
|
12 |
from fast_pytorch_kmeans import KMeans
|
13 |
+
from pathlib import Path
|
14 |
from scipy.stats import hmean
|
15 |
from sklearn import metrics
|
16 |
from termcolor import cprint
|
requirements.txt
CHANGED
@@ -10,7 +10,6 @@ opencv_contrib_python==4.5.3.56
|
|
10 |
opencv_python==4.4.0.46
|
11 |
opencv_python_headless==4.5.3.56
|
12 |
pandas==1.3.5
|
13 |
-
pathlib2==2.3.5
|
14 |
Pillow==9.4.0
|
15 |
prettytable==2.2.1
|
16 |
pydensecrf==1.0rc2
|
|
|
10 |
opencv_python==4.4.0.46
|
11 |
opencv_python_headless==4.5.3.56
|
12 |
pandas==1.3.5
|
|
|
13 |
Pillow==9.4.0
|
14 |
prettytable==2.2.1
|
15 |
pydensecrf==1.0rc2
|