File size: 1,751 Bytes
e3dce0b
 
 
 
 
 
 
 
ebe6532
e3dce0b
 
 
 
 
 
 
 
 
5354fda
5c4c078
599d40b
ebe6532
e3dce0b
ebe6532
f1c1530
5354fda
e3dce0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import os
import gradio as gr
import torch
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer

# Load model and tokenizer if a GPU is available
if torch.cuda.is_available():
    model_id = "allenai/OLMo-7B-hf"
    model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", trust_remote_code=True)
    tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
else:
    raise EnvironmentError("CUDA device not available. Please run on a GPU-enabled environment.")

# Basic function to generate response based on passage and question
@spaces.GPU
def generate_response(passage: str, question: str) -> str:
    # Prepare the input text by combining the passage and question
    message = [f"Passage: {passage}\nQuestion: {question}\nAnswer:"]
    inputs = tokenizer(message, return_tensors='pt', return_token_type_ids=False).to('cuda')

    response = model.generate(**inputs, max_new_tokens=100)
    
    response = tokenizer.batch_decode(response, skip_special_tokens=True)[0]

    response = response[len(message[0]):].strip().split('\n')[0]
    
    return response


# Gradio Interface
with gr.Blocks() as demo:
    gr.Markdown("# Passage and Question Response Generator")
    
    passage_input = gr.Textbox(label="Passage", placeholder="Enter the passage here", lines=5)
    question_input = gr.Textbox(label="Question", placeholder="Enter the question here", lines=2)
    
    output_box = gr.Textbox(label="Response", placeholder="Model's response will appear here")
    
    submit_button = gr.Button("Generate Response")
    submit_button.click(fn=generate_response, inputs=[passage_input, question_input], outputs=output_box)

# Run the app
if __name__ == "__main__":
    demo.launch()