Spaces:
Running
on
T4
Running
on
T4
File size: 17,727 Bytes
1ce5e18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Integration with Deepspeed
"""
import importlib.metadata as importlib_metadata
import importlib.util
import weakref
from functools import partialmethod
from ..dependency_versions_check import dep_version_check
from ..utils import is_accelerate_available, is_torch_available, logging
if is_torch_available():
import torch
from ..optimization import get_scheduler
logger = logging.get_logger(__name__)
def is_deepspeed_available():
package_exists = importlib.util.find_spec("deepspeed") is not None
# Check we're not importing a "deepspeed" directory somewhere but the actual library by trying to grab the version
# AND checking it has an author field in the metadata that is HuggingFace.
if package_exists:
try:
_ = importlib_metadata.metadata("deepspeed")
return True
except importlib_metadata.PackageNotFoundError:
return False
if is_accelerate_available() and is_deepspeed_available():
from accelerate.utils.deepspeed import HfDeepSpeedConfig as DeepSpeedConfig
else:
# Inherits from a dummy `object` if accelerate is not available, so that python succeeds to import this file.
# Deepspeed glue code will never inherit this dummy object as it checks if accelerate is available.
from builtins import object as DeepSpeedConfig
class HfDeepSpeedConfig(DeepSpeedConfig):
"""
This object contains a DeepSpeed configuration dictionary and can be quickly queried for things like zero stage.
A `weakref` of this object is stored in the module's globals to be able to access the config from areas where
things like the Trainer object is not available (e.g. `from_pretrained` and `_get_resized_embeddings`). Therefore
it's important that this object remains alive while the program is still running.
[`Trainer`] uses the `HfTrainerDeepSpeedConfig` subclass instead. That subclass has logic to sync the configuration
with values of [`TrainingArguments`] by replacing special placeholder values: `"auto"`. Without this special logic
the DeepSpeed configuration is not modified in any way.
Args:
config_file_or_dict (`Union[str, Dict]`): path to DeepSpeed config file or dict.
"""
def __init__(self, config_file_or_dict):
# set global weakref object
set_hf_deepspeed_config(self)
dep_version_check("accelerate")
dep_version_check("deepspeed")
super().__init__(config_file_or_dict)
class HfTrainerDeepSpeedConfig(HfDeepSpeedConfig):
"""
The `HfTrainerDeepSpeedConfig` object is meant to be created during `TrainingArguments` object creation and has the
same lifespan as the latter.
"""
def __init__(self, config_file_or_dict):
super().__init__(config_file_or_dict)
self._dtype = None
self.mismatches = []
def dtype(self):
if self._dtype is None:
raise ValueError("trainer_config_process() wasn't called yet to tell dtype")
return self._dtype
def is_auto(self, ds_key_long):
val = self.get_value(ds_key_long)
if val is None:
return False
else:
return val == "auto"
def fill_match(self, ds_key_long, hf_val, hf_key=None, must_match=True):
"""
A utility method that massages the config file and can optionally verify that the values match.
1. Replace "auto" values with `TrainingArguments` value.
2. If it wasn't "auto" and `must_match` is true, then check that DS config matches Trainer
config values and if mismatched add the entry to `self.mismatched` - will assert during
`trainer_config_finalize` for one or more mismatches.
"""
config, ds_key = self.find_config_node(ds_key_long)
if config is None:
return
if config.get(ds_key) == "auto":
config[ds_key] = hf_val
return
if not must_match:
return
ds_val = config.get(ds_key)
if ds_val is not None and ds_val != hf_val:
self.mismatches.append(f"- ds {ds_key_long}={ds_val} vs hf {hf_key}={hf_val}")
fill_only = partialmethod(fill_match, must_match=False)
def trainer_config_process(self, args):
"""
Adjust the config with `TrainingArguments` values. This stage is run during `TrainingArguments` object
creation.
"""
# DeepSpeed does:
# train_batch_size = world_size * train_micro_batch_size_per_gpu * gradient_accumulation_steps
train_batch_size = args.world_size * args.per_device_train_batch_size * args.gradient_accumulation_steps
self.fill_match(
"train_micro_batch_size_per_gpu", args.per_device_train_batch_size, "per_device_train_batch_size"
)
self.fill_match("gradient_accumulation_steps", args.gradient_accumulation_steps, "gradient_accumulation_steps")
self.fill_match("train_batch_size", train_batch_size, "train_batch_size (calculated)")
self.fill_match("gradient_clipping", args.max_grad_norm, "max_grad_norm")
self.fill_match("optimizer.params.lr", args.learning_rate, "learning_rate")
self.fill_match("optimizer.params.betas", [args.adam_beta1, args.adam_beta2], "adam_beta1+adam_beta2")
self.fill_match("optimizer.params.eps", args.adam_epsilon, "adam_epsilon")
self.fill_match("optimizer.params.weight_decay", args.weight_decay, "weight_decay")
self.fill_only("scheduler.params.warmup_min_lr", 0) # not a trainer arg
self.fill_match("scheduler.params.warmup_max_lr", args.learning_rate, "learning_rate")
# total_num_steps - will get set in trainer_config_finalize
# fp16
if args.fp16 or args.fp16_full_eval:
fp16_backend = "apex" if args.fp16_backend == "apex" else "amp"
else:
fp16_backend = None
if args.save_on_each_node:
# deepspeed uses shared storage by default. Let's override this setting if save_on_each_node == True
self.config["checkpoint"] = self.config.get("checkpoint", {})
self.config["checkpoint"]["use_node_local_storage"] = args.save_on_each_node
# amp: similar to the pytorch native amp - it has a bunch of optional params but we won't set
# any here unless the user did the work
self.fill_match(
"fp16.enabled",
((args.fp16 or args.fp16_full_eval) and fp16_backend == "amp"),
"fp16|fp16_full_eval+fp16_backend(amp)",
)
# apex: delegates amp work to apex (which needs to be available), but it cannot be used with any
# ZeRO features
self.fill_match("amp.enabled", fp16_backend == "apex", "fp16+fp16_backend(apex)")
self.fill_match("amp.opt_level", args.fp16_opt_level, "fp16_opt_level")
self.fill_match("bf16.enabled", (args.bf16 or args.bf16_full_eval), "bf16|bf16_full_eval")
# deepspeed's default mode is fp16 unless there is a config that says differently
if self.is_true("bf16.enabled"):
self._dtype = torch.bfloat16
elif self.is_false("fp16.enabled"):
self._dtype = torch.float32
else:
self._dtype = torch.float16
def trainer_config_finalize(self, args, model, num_training_steps):
"""
This stage is run after we have the model and know num_training_steps.
Now we can complete the configuration process.
"""
# zero
# deal with config keys that use `auto` value and rely on model's hidden_size
hidden_size_based_keys = [
"zero_optimization.reduce_bucket_size",
"zero_optimization.stage3_prefetch_bucket_size",
"zero_optimization.stage3_param_persistence_threshold",
]
hidden_size_auto_keys = [x for x in hidden_size_based_keys if self.is_auto(x)]
if len(hidden_size_auto_keys) > 0:
if hasattr(model.config, "hidden_size"):
hidden_size = model.config.hidden_size
elif hasattr(model.config, "hidden_sizes"):
# if there are many hidden sizes pick the largest one
hidden_size = max(model.config.hidden_sizes)
else:
raise ValueError(
"The model's config file has neither `hidden_size` nor `hidden_sizes` entry, "
"therefore it's not possible to automatically fill out the following `auto` entries "
f"in the DeepSpeed config file: {hidden_size_auto_keys}. You can fix that by replacing "
"`auto` values for these keys with an integer value of your choice."
)
self.fill_only("zero_optimization.reduce_bucket_size", hidden_size * hidden_size)
if self.is_zero3():
# automatically assign the optimal config values based on model config
self.fill_only("zero_optimization.stage3_prefetch_bucket_size", 0.9 * hidden_size * hidden_size)
self.fill_only("zero_optimization.stage3_param_persistence_threshold", 10 * hidden_size)
# scheduler
self.fill_match("scheduler.params.total_num_steps", num_training_steps, "num_training_steps (calculated)")
self.fill_match("scheduler.params.warmup_num_steps", args.get_warmup_steps(num_training_steps), "warmup_steps")
if len(self.mismatches) > 0:
mismatches = "\n".join(self.mismatches)
raise ValueError(
"Please correct the following DeepSpeed config values that mismatch TrainingArguments"
f" values:\n{mismatches}\nThe easiest method is to set these DeepSpeed config values to 'auto'."
)
# keep the config object global to be able to access it anywhere during TrainingArguments life-cycle
_hf_deepspeed_config_weak_ref = None
def set_hf_deepspeed_config(hf_deepspeed_config_obj):
# this is a special weakref global object to allow us to get to Deepspeed config from APIs
# that don't have an easy way to get to the Deepspeed config outside of the Trainer domain.
global _hf_deepspeed_config_weak_ref
# will go away automatically when HfDeepSpeedConfig is destroyed (when TrainingArguments is destroyed)
_hf_deepspeed_config_weak_ref = weakref.ref(hf_deepspeed_config_obj)
def unset_hf_deepspeed_config():
# useful for unit tests to ensure the global state doesn't leak - call from `tearDown` method
global _hf_deepspeed_config_weak_ref
_hf_deepspeed_config_weak_ref = None
def is_deepspeed_zero3_enabled():
if _hf_deepspeed_config_weak_ref is not None and _hf_deepspeed_config_weak_ref() is not None:
return _hf_deepspeed_config_weak_ref().is_zero3()
else:
return False
def deepspeed_config():
if _hf_deepspeed_config_weak_ref is not None and _hf_deepspeed_config_weak_ref() is not None:
return _hf_deepspeed_config_weak_ref().config
else:
return None
def deepspeed_optim_sched(trainer, hf_deepspeed_config, args, num_training_steps, model_parameters):
"""
A convenience wrapper that deals with optimizer and lr scheduler configuration.
"""
from accelerate.utils import DummyOptim, DummyScheduler
config = hf_deepspeed_config.config
# Optimizer + Scheduler
# Currently supported combos:
# 1. DS scheduler + DS optimizer: Yes
# 2. HF scheduler + HF optimizer: Yes
# 3. DS scheduler + HF optimizer: Yes
# 4. HF scheduler + DS optimizer: No
#
# Unless Offload is enabled in which case it's:
# 1. DS scheduler + DS optimizer: Yes
# 2. HF scheduler + HF optimizer: Mostly*
# 3. DS scheduler + HF optimizer: Mostly*
# 4. HF scheduler + DS optimizer: Yes
#
# Mostly*: All non-native DeepSpeed optimizers that have both CPU and GPU implementation should work (except LAMB)
optimizer = None
if "optimizer" in config:
if args.adafactor:
raise ValueError(
"--adafactor was passed, but also found `optimizer` configured in the DeepSpeed config. "
"Only one optimizer can be configured."
)
optimizer = DummyOptim(params=model_parameters)
else:
if hf_deepspeed_config.is_offload():
logger.info(
"Detected ZeRO Offload and non-DeepSpeed optimizers: This combination should work as long as the"
" custom optimizer has both CPU and GPU implementation (except LAMB)"
)
# ds supports Adam, OneBitAdam, and Lamb optimizers and can import other optimizers from torch.
# But trainer uses AdamW by default.
optimizer = trainer.create_optimizer()
# To use other optimizers requires voiding warranty with: `zero_allow_untested_optimizer`
config["zero_allow_untested_optimizer"] = True
lr_scheduler = None
if "scheduler" in config:
lr_scheduler = DummyScheduler(optimizer)
else:
if isinstance(optimizer, DummyOptim):
def _lr_scheduler_callable(optimizer):
return get_scheduler(
trainer.args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=trainer.args.get_warmup_steps(num_training_steps),
num_training_steps=num_training_steps,
)
lr_scheduler = DummyScheduler(optimizer, lr_scheduler_callable=_lr_scheduler_callable)
else:
lr_scheduler = trainer.create_scheduler(num_training_steps=num_training_steps, optimizer=optimizer)
return optimizer, lr_scheduler
def deepspeed_init(trainer, num_training_steps, inference=False):
"""
Init DeepSpeed, after updating the DeepSpeed configuration with any relevant Trainer's args.
If `resume_from_checkpoint` was passed then an attempt to resume from a previously saved checkpoint will be made.
Args:
trainer: Trainer object
num_training_steps: per single gpu
resume_from_checkpoint: path to a checkpoint if to resume from after normal DeepSpeedEngine load
inference: launch in inference mode (no optimizer and no lr scheduler)
Returns: optimizer, lr_scheduler
We may use `deepspeed_init` more than once during the life of Trainer, when we do - it's a temp hack based on:
https://github.com/microsoft/DeepSpeed/issues/1394#issuecomment-937405374 until Deepspeed fixes a bug where it
can't resume from a checkpoint after it did some stepping https://github.com/microsoft/DeepSpeed/issues/1612
"""
from deepspeed.utils import logger as ds_logger
model = trainer.model
args = trainer.args
hf_deepspeed_config = trainer.accelerator.state.deepspeed_plugin.hf_ds_config
# resume config update - some bits like `model` and `num_training_steps` only become available during train
hf_deepspeed_config.trainer_config_finalize(args, model, num_training_steps)
# set the Deepspeed log level consistent with the Trainer
ds_logger.setLevel(args.get_process_log_level())
if inference:
# only Z3 makes sense for the inference
if not hf_deepspeed_config.is_zero3():
raise ValueError("ZeRO inference only makes sense with ZeRO Stage 3 - please adjust your config")
# in case the training config is re-used for inference
hf_deepspeed_config.del_config_sub_tree("optimizer")
hf_deepspeed_config.del_config_sub_tree("lr_scheduler")
optimizer, lr_scheduler = None, None
model_parameters = None
else:
trainer.optimizer = None # important for when deepspeed_init is used as re-init
model_parameters = list(filter(lambda p: p.requires_grad, model.parameters()))
optimizer, lr_scheduler = deepspeed_optim_sched(
trainer, hf_deepspeed_config, args, num_training_steps, model_parameters
)
# keep for quick debug:
# from pprint import pprint; pprint(config)
return optimizer, lr_scheduler
def deepspeed_load_checkpoint(deepspeed_engine, checkpoint_path):
# it's possible that the user is trying to resume from model_path, which doesn't necessarily
# contain a deepspeed checkpoint. e.g. examples just check if the dir exists and assume it's
# a resume from a checkpoint and not just a local pretrained weight. So we check here if the
# path contains what looks like a deepspeed checkpoint
import glob
deepspeed_checkpoint_dirs = sorted(glob.glob(f"{checkpoint_path}/global_step*"))
if len(deepspeed_checkpoint_dirs) > 0:
logger.info(f"Attempting to resume from {checkpoint_path}")
# this magically updates self.optimizer and self.lr_scheduler
load_path, _ = deepspeed_engine.load_checkpoint(
checkpoint_path, load_optimizer_states=True, load_lr_scheduler_states=True
)
if load_path is None:
raise ValueError(f"[deepspeed] failed to resume from checkpoint {checkpoint_path}")
else:
raise ValueError(f"Can't find a valid checkpoint at {checkpoint_path}")
|