Spaces:
Running
on
T4
Running
on
T4
File size: 47,827 Bytes
1ce5e18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 |
# coding=utf-8
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import builtins
import collections
import functools
import inspect
import math
import operator
import os
import random
import warnings
from typing import Any, Callable, Dict, List, Optional, Type, Union
import torch
from torch import nn
from torch.fx import Graph, GraphModule, Proxy, Tracer
from torch.fx._compatibility import compatibility
from torch.fx.proxy import ParameterProxy
from .. import PretrainedConfig, PreTrainedModel, logging
from ..models.auto import get_values
from ..models.auto.modeling_auto import (
MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
MODEL_FOR_BACKBONE_MAPPING_NAMES,
MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
MODEL_FOR_CTC_MAPPING_NAMES,
MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES,
MODEL_FOR_MASKED_LM_MAPPING_NAMES,
MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES,
MODEL_FOR_PRETRAINING_MAPPING_NAMES,
MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES,
MODEL_MAPPING_NAMES,
)
from ..utils import (
ENV_VARS_TRUE_VALUES,
TORCH_FX_REQUIRED_VERSION,
get_torch_version,
is_peft_available,
is_torch_fx_available,
)
if is_peft_available():
from peft import PeftModel
logger = logging.get_logger(__name__)
_IS_IN_DEBUG_MODE = os.environ.get("FX_DEBUG_MODE", "").upper() in ENV_VARS_TRUE_VALUES
def _generate_supported_model_class_names(
model_name: Type[PretrainedConfig],
supported_tasks: Optional[Union[str, List[str]]] = None,
) -> List[str]:
task_mapping = {
"default": MODEL_MAPPING_NAMES,
"pretraining": MODEL_FOR_PRETRAINING_MAPPING_NAMES,
"next-sentence-prediction": MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES,
"masked-lm": MODEL_FOR_MASKED_LM_MAPPING_NAMES,
"causal-lm": MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
"seq2seq-lm": MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
"speech-seq2seq": MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES,
"multiple-choice": MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
"document-question-answering": MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
"question-answering": MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
"sequence-classification": MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
"token-classification": MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
"masked-image-modeling": MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES,
"image-classification": MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
"zero-shot-image-classification": MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES,
"ctc": MODEL_FOR_CTC_MAPPING_NAMES,
"audio-classification": MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
"semantic-segmentation": MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
"backbone": MODEL_FOR_BACKBONE_MAPPING_NAMES,
}
if supported_tasks is None:
supported_tasks = task_mapping.keys()
if isinstance(supported_tasks, str):
supported_tasks = [supported_tasks]
model_class_names = []
for task in supported_tasks:
class_name = task_mapping[task].get(model_name, None)
if class_name:
model_class_names.append(class_name)
return model_class_names
_REGULAR_SUPPORTED_MODEL_NAMES_AND_TASKS = [
"altclip",
"albert",
"bart",
"bert",
"blenderbot",
"blenderbot-small",
"bloom",
"clip",
"convnext",
"deberta",
"deberta-v2",
"distilbert",
"donut-swin",
"electra",
"gpt2",
"gpt_neo",
"gptj",
"hubert",
"layoutlm",
"lxmert",
"m2m_100",
"marian",
"mbart",
"megatron-bert",
"mobilebert",
"mt5",
"nezha",
"opt",
"pegasus",
"plbart",
"resnet",
"roberta",
"segformer",
"speech_to_text",
"speech_to_text_2",
"swin",
"t5",
"trocr",
"vit",
"xglm",
"wav2vec2",
# "xlnet",
]
_REGULAR_SUPPORTED_MODELS = []
for item in _REGULAR_SUPPORTED_MODEL_NAMES_AND_TASKS:
if isinstance(item, dict):
_REGULAR_SUPPORTED_MODELS.extend(_generate_supported_model_class_names(**item))
else:
_REGULAR_SUPPORTED_MODELS.extend(_generate_supported_model_class_names(item))
_SPECIAL_SUPPORTED_MODELS = [
"CLIPTextModel",
"CLIPTextModelWithProjection",
"CLIPVisionModel",
"CLIPVisionModelWithProjection",
"AltCLIPTextModel",
"AltCLIPVisionModel",
"GitVisionModel",
"GPT2DoubleHeadsModel",
"Speech2Text2Decoder",
"TrOCRDecoder",
"PeftModelForCausalLM",
"PeftModelForSeq2SeqLM"
# TODO: add support for them as it should be quite easy to do so (small blocking issues).
# XLNetForQuestionAnswering,
]
_SUPPORTED_MODELS = tuple(sorted(set(_REGULAR_SUPPORTED_MODELS + _SPECIAL_SUPPORTED_MODELS)))
def torch_nn_embedding(self, input):
return torch.empty(*input.shape, self.weight.shape[-1], device="meta", dtype=self.weight.dtype)
def torch_nn_functional_embedding(
input, weight, padding_idx=None, max_norm=None, norm_type=2.0, scale_grad_by_freq=False, sparse=False
):
return torch.empty(*input.shape, weight.shape[-1], device="meta", dtype=weight.dtype)
def torch_nn_layernorm(self, input):
return input
def torch_nn_groupnorm(self, input):
return input
def torch_nn_linear(self, input):
return torch.empty(input.shape[:-1] + (self.out_features,), device="meta")
def torch_relu(x):
return x
def torch_nn_relu(self, x):
return x
def torch_nn_functional_relu(x, inplace=False):
if not inplace:
raise ValueError("Don't support in-place functional.relu for MetaTensor analysis")
return x
def torch_where(condition, x, y):
# torch.where returns the broadcasted tensor of condition, x, and y,
# so hack it by using addition
return condition.to(device="meta") + x.to(device="meta") + y.to(device="meta")
def torch_abs(input, *, out=None):
if out is not None:
raise ValueError("Don't support in-place abs for MetaTensor analysis")
return input
def torch_arange(*args, **kwargs):
n = len(args)
step = 1
if n == 1:
start = 0
end = args[0]
elif n == 2:
start, end = args
else:
start, end, step = args
if isinstance(start, float):
start = int(start)
if isinstance(end, float):
start = int(end)
if isinstance(step, float):
step = int(step)
step = kwargs.get("step", step)
dtype = kwargs.get("dtype")
return torch.empty((end - start) // step, dtype=dtype, device="meta")
def torch_full(*args, **kwargs):
args = list(args)
if isinstance(args[1], torch.Tensor) and args[1].device == torch.device("meta"):
args[1] = 1 # Any value.
kwargs_without_device = dict(kwargs)
kwargs_without_device.pop("device", None)
return torch.full(*args, **kwargs_without_device)
def torch_cat(tensors, dim=None, axis=None, *, out=None):
if dim is None and axis is None:
dim = 0
if dim is None and axis is not None:
dim = axis
if dim < 0:
dim = tensors[0].dim() + dim
shapes = [t.shape for t in tensors]
shape = list(shapes[0])
concatenated_dim = sum(shape[dim] for shape in shapes)
final_shape = shape[:dim] + [concatenated_dim] + shape[dim + 1 :]
return torch.empty(final_shape, device="meta")
def torch_stack(tensors, dim=None, axis=None, *, out=None):
if dim is None and axis is None:
dim = 0
if dim is None and axis is not None:
dim = axis
if dim < 0:
dim = tensors[0].dim() + 1 + dim
shape = list(tensors[0].shape)
shape.insert(dim, len(tensors))
return torch.empty(shape, device="meta")
def torch_add(input, other, *, alpha=1, out=None):
if not isinstance(input, torch.Tensor):
return torch.empty_like(other, device="meta")
if not isinstance(other, torch.Tensor):
return torch.empty_like(input, device="meta")
max_length = max(input.dim(), other.dim())
input_shape = list(input.shape) + [1] * (max_length - input.dim())
other_shape = list(other.shape) + [1] * (max_length - other.dim())
shape = []
for i in range(max_length):
shape.append(max(input_shape[i], other_shape[i]))
return torch.empty(shape, device="meta")
def torch_mul(input, other, *, out=None):
return torch_add(input, other, out=out)
def torch_tensor_mul(self, other):
return torch_mul(self, other)
def torch_matmul(input, other, *, out=None):
d1 = input.dim()
d2 = other.dim()
shape = None
if d1 == 1 and d2 == 1:
shape = None
elif d1 == 2 and d2 == 2:
shape = (input.size(0), other.size(1))
elif d1 == 1 and d2 == 2:
shape = (other.size(1),)
elif d1 == 2 and d1 == 1:
shape = (input.size(0),)
else:
max_length = max(input.dim(), other.dim())
shape1 = list(input.shape)
shape2 = list(other.shape)
if d1 == 1:
shape1 = [1] + shape1
if d2 == 1:
shape2.append(1)
shape1 = [-1] * (max_length - d1) + list(input.shape)
shape2 = [-1] * (max_length - d2) + list(other.shape)
shape = []
for i in range(max_length):
shape.append(max(shape1[i], shape2[i]))
shape[-2] = shape1[-2]
shape[-1] = shape2[-1]
if d1 == 1:
shape.pop(-2)
if d2 == 1:
shape.pop(-1)
if shape is None:
return torch.tensor(0.0, device="meta")
return torch.empty(*shape, device="meta")
def torch_bmm(input, mat2, *, out=None):
if out is not None:
raise ValueError("Don't support in-place bmm for MetaTensor analysis")
batch_size, n, m = input.shape
_, _, p = mat2.shape
return torch.empty(batch_size, n, p, device="meta")
def torch_baddbmm(input, batch1, batch2, *, beta=1, alpha=1, out=None):
if out is not None:
raise ValueError("Don't support in-place baddbmm for MetaTensor analysis")
return torch_bmm(batch1, batch2)
def torch_tensor_baddbmm(self, batch1, batch2, *, beta=1, alpha=1, out=None):
return torch_baddbmm(self, batch1, batch2, beta=beta, alpha=alpha, out=out)
def torch_einsum(equation, *operands):
# TODO: infer shape without performing the computation, this might be quite hard.
concrete_operands = (torch.empty_like(operand, device="cpu") for operand in operands)
return torch.einsum(equation, *concrete_operands).to("meta")
def torch_tensor_repeat(self, *sizes):
shape = list(self.shape)
for i, x in enumerate(sizes):
shape[i] *= x
return torch.empty(shape, device="meta")
def torch_repeat_interleave(*args, dim=None, output_size=None):
num_args = len(args)
if num_args == 1:
shape = [output_size if output_size is not None else args[0].sum()]
else:
shape = list(args[0].shape)
if dim is None:
if num_args > 2:
dim = args[2]
else:
shape = [sum(shape)]
dim = 0
repeats = args[1]
if isinstance(repeats, int) or torch.numel(repeats) == 1:
shape[dim] *= int(repeats)
else:
shape[dim] = output_size if output_size is not None else repeats.sum()
return torch.empty(*shape, device="meta")
def torch_index_select(input, dim, index, *, out=None):
shape = list(input.shape)
shape[dim] = len(index)
return torch.empty(*shape, device="meta")
def torch_tensor_index_select(self, dim, index):
return torch_index_select(self, dim, index)
def torch_gather(input, dim, index, *, sparse_grad=False, out=None):
shape = list(input.shape)
shape[dim] = index.shape[dim]
return torch.empty(*shape, device="meta")
def torch_tensor_gather(self, dim, index):
return torch_gather(self, dim, index)
def torch_roll(input, shifts, dims=None):
return input
def torch_flip(input, dims):
return input
def torch_tensor_flip(self, dims):
return self
def torch_nn_conv1d(self, input):
l_in = input.shape[-1]
shape = None
padding = self.padding
if padding == "valid":
padding = (0, 0)
if padding == "same":
shape = list(input.shape)
if shape is None:
shape = list(input.shape)
l_out = math.floor(
(l_in + 2 * padding[0] - self.dilation[0] * (self.kernel_size[0] - 1) - 1) / self.stride[0] + 1
)
shape[-1] = l_out
shape[-2] = self.out_channels
return torch.empty(shape, device="meta")
def torch_nn_conv2d(self, input):
h_in, w_in = input.shape[-2:]
shape = None
padding = self.padding
if padding == "valid":
padding = (0, 0)
if padding == "same":
shape = list(input.shape)
if shape is None:
shape = list(input.shape)
h_out = math.floor(
(h_in + 2 * padding[0] - self.dilation[0] * (self.kernel_size[0] - 1) - 1) / self.stride[0] + 1
)
w_out = math.floor(
(w_in + 2 * padding[1] - self.dilation[1] * (self.kernel_size[1] - 1) - 1) / self.stride[1] + 1
)
shape[-2:] = [h_out, w_out]
shape[-3] = self.out_channels
return torch.empty(shape, device="meta")
def torch_squeeze(input, dim=None):
shape = list(input.shape)
if dim is not None:
if dim < 0:
dim = input.dim() + dim
if shape[dim] == 1:
shape.pop(dim)
else:
new_shape = []
for dim_value in shape:
if dim_value == 1:
continue
new_shape.append(dim_value)
shape = new_shape
return torch.empty(shape, device="meta")
def torch_tensor_squeeze(self, dim=None):
return torch_squeeze(self, dim)
def torch_unsqueeze(input, dim):
shape = list(input.shape)
if dim < 0:
dim = input.dim() + 1 + dim
shape.insert(dim, 1)
return torch.empty(shape, device="meta")
def torch_tensor_unsqueeze(self, dim):
return torch_unsqueeze(self, dim)
def torch_unique_consecutive(input, **kwargs):
output = torch.unique_consecutive(torch.zeros_like(input, device="cpu"), **kwargs)
if isinstance(output, torch.Tensor):
return output.to("meta")
else:
return tuple(map(output, lambda x: x.to("meta")))
def torch_nn_functional_one_hot(tensor, num_classes=-1):
if num_classes < 0:
raise ValueError("Don't support automatic num_classes inference for MetaTensor analysis")
shape = list(tensor.shape) + [num_classes]
return torch.empty(shape, device="meta")
def torch_nn_mseloss(self, input, target):
if self.reduction == "none":
shape = target.shape
else:
shape = (1,)
return torch.empty(shape, device="meta")
def torch_nn_crossentropyloss(self, input, target):
if self.reduction == "none":
shape = target.shape
else:
shape = (1,)
return torch.empty(shape, device="meta")
def torch_nn_bcewithlogitsloss(self, input, target):
if self.reduction == "none":
shape = target.shape
else:
shape = (1,)
return torch.empty(shape, device="meta")
def operator_getitem(a, b):
def to_concrete(t):
if isinstance(t, torch.Tensor):
concrete = torch.ones_like(t, device="cpu")
if concrete.dtype in [torch.float16, torch.float32, torch.float64, torch.int32]:
concrete = concrete.to(torch.int64)
return concrete
return t
if isinstance(a, torch.Tensor):
# TODO: infer shape without performing the computation.
if isinstance(b, tuple):
b = tuple(map(to_concrete, b))
else:
b = to_concrete(b)
return operator.getitem(torch.empty_like(a, device="cpu"), b).to("meta")
return operator.getitem(a, b)
_MANUAL_META_OVERRIDES: Dict[Callable, Callable] = {
torch.nn.Embedding: torch_nn_embedding,
torch.nn.functional.embedding: torch_nn_functional_embedding,
torch.nn.LayerNorm: torch_nn_layernorm,
torch.nn.GroupNorm: torch_nn_groupnorm,
torch.nn.Linear: torch_nn_linear,
torch.relu: torch_relu,
torch.nn.functional.relu: torch_nn_functional_relu,
torch.nn.ReLU: torch_nn_relu,
torch.where: torch_where,
torch.abs: torch_abs,
torch.arange: torch_arange,
torch.full: torch_full,
torch.cat: torch_cat,
torch.stack: torch_stack,
torch.add: torch_add,
torch.mul: torch_mul,
torch.Tensor.mul: torch_tensor_mul,
torch.matmul: torch_matmul,
torch.bmm: torch_bmm,
torch.baddbmm: torch_baddbmm,
torch.Tensor.baddbmm: torch_tensor_baddbmm,
torch.einsum: torch_einsum,
torch.Tensor.repeat: torch_tensor_repeat,
torch.repeat_interleave: torch_repeat_interleave,
torch.roll: torch_roll,
torch.flip: torch_flip,
torch.Tensor.flip: torch_tensor_flip,
torch.index_select: torch_index_select,
torch.Tensor.index_select: torch_tensor_index_select,
torch.gather: torch_gather,
torch.Tensor.gather: torch_tensor_gather,
torch.nn.Conv1d: torch_nn_conv1d,
torch.nn.Conv2d: torch_nn_conv2d,
torch.squeeze: torch_squeeze,
torch.Tensor.squeeze: torch_tensor_squeeze,
torch.unsqueeze: torch_unsqueeze,
torch.Tensor.unsqueeze: torch_tensor_unsqueeze,
torch.unique_consecutive: torch_unique_consecutive,
torch.nn.functional.one_hot: torch_nn_functional_one_hot,
torch.nn.MSELoss: torch_nn_mseloss,
torch.nn.CrossEntropyLoss: torch_nn_crossentropyloss,
torch.nn.BCEWithLogitsLoss: torch_nn_bcewithlogitsloss,
operator.getitem: operator_getitem,
}
class HFProxy(Proxy):
"""
Proxy that uses metadata to handle data-dependent control-flow.
"""
def install_metadata(self, metadata):
self._metadata = metadata
@property
def shape(self):
return self.tracer.create_proxy("call_method", "size", (self,), {})
@property
def device(self):
# Hack so we can track when devices are used. During meta-tensor propagation,
# replace these values with a constant 'meta'
return MetaDeviceAttribute(self, "device")
def __len__(self):
if hasattr(self, "_metadata") and self._metadata is not None:
return len(self._metadata)
return super().__len__()
def __bool__(self):
if hasattr(self, "_metadata") and self._metadata is not None:
return self._metadata
return super().__bool__()
def __getattr__(self, k):
if k == "_metadata":
return self.__getattribute__(k)
# note: not added to the graph yet, if this is a method call
# we peephole optimize to the method invocation
return HFAttribute(self, k)
def __setitem__(self, indices, values):
return self.tracer.create_proxy("call_function", operator.setitem, (self, indices, values), {})
def __contains__(self, key):
if hasattr(self, "_metadata") and self._metadata is not None:
return key in self._metadata
return super().__contains__(key)
class HFAttribute(HFProxy):
def __init__(self, root, attr: str):
self.root = root
self.attr = attr
self.tracer = root.tracer
self._node = None
if hasattr(self.root, "_metadata"):
self.install_metadata(getattr(self.root._metadata, attr))
@property
def node(self):
# the node for attributes is added lazily, since most will just be method calls
# which do not rely on the getitem call
if self._node is None:
self._node = self.tracer.create_proxy("call_function", builtins.getattr, (self.root, self.attr), {}).node
return self._node
def __call__(self, *args, **kwargs):
return self.tracer.create_proxy("call_method", self.attr, (self.root,) + args, kwargs)
class MetaDeviceAttribute(HFAttribute):
pass
def _proxies_to_metas(v):
"""Returns the underlying metadata for HFProxies, and behaves like the identity for the others."""
if isinstance(v, MetaDeviceAttribute):
return "meta"
if isinstance(v, torch.fx.Proxy):
if not (isinstance(v, HFProxy) and hasattr(v, "_metadata")):
raise RuntimeError(f"No metadata was found for {v}")
return v._metadata
return v
def _gen_constructor_wrapper(target):
@functools.wraps(target)
def wrapper(*args, **kwargs):
proxy = None
def check_has_proxy(v):
if isinstance(v, Proxy):
nonlocal proxy
proxy = v
torch.fx.node.map_aggregate(args, check_has_proxy)
torch.fx.node.map_aggregate(kwargs, check_has_proxy)
if proxy is not None:
return proxy.tracer.create_proxy("call_function", target, args, kwargs)
else:
return target(*args, **kwargs)
return wrapper, target
def _generate_random_int(low: int = 10, high: int = 20, forbidden_values: Optional[List[int]] = None):
if forbidden_values is None:
forbidden_values = []
value = random.randint(low, high)
while value in forbidden_values:
value = random.randint(low, high)
return value
class HFTracer(Tracer):
"""
Tracer that is able to symbolically trace models from the library. To do that, it uses the HFProxy instead of the
regular PyTorch torch.fx.Proxy.
"""
# Feature flag for proxying accesses to buffer values
proxy_buffer_attributes: bool = True
allow_insert_stateless_mods: bool = True
_TORCH_METHODS_TO_PATCH = [
"arange",
"zeros",
"ones",
"full",
"full_like",
"eye",
"empty",
"tensor",
"clamp",
"finfo",
]
supported_archs = (PreTrainedModel,) if not is_peft_available() else (PreTrainedModel, PeftModel)
def __init__(self, autowrap_modules=(math,), autowrap_functions=()):
super().__init__(autowrap_modules=autowrap_modules, autowrap_functions=autowrap_functions)
if not is_torch_fx_available():
raise ImportError(
f"Found an incompatible version of torch. Found version {get_torch_version()}, but only version "
f"{TORCH_FX_REQUIRED_VERSION} is supported."
)
def _generate_dummy_input(
self, model: PreTrainedModel, input_name: str, shape: List[int]
) -> Dict[str, torch.Tensor]:
"""Generates dummy input for model inference recording."""
# Retrieving the model class, either from the "class_for_deserialization" attribute if the model was restored
# from pickle, or from the "__class__" attribute in the general case.
model_class_name = getattr(model, "class_for_deserialization", model.__class__).__name__
device = model.device
inputs_dict = {}
if input_name in ["labels", "start_positions", "end_positions"]:
batch_size = shape[0]
if model_class_name in [
*get_values(MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES),
*get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES),
*get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES),
*get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES),
*get_values(MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES),
]:
inputs_dict["labels"] = torch.zeros(batch_size, dtype=torch.long, device=device)
elif model_class_name in [
*get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES),
*get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES),
"XLNetForQuestionAnswering",
]:
inputs_dict["start_positions"] = torch.zeros(batch_size, dtype=torch.long, device=device)
inputs_dict["end_positions"] = torch.zeros(batch_size, dtype=torch.long, device=device)
elif model_class_name in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES):
if not hasattr(model.config, "problem_type") or model.config.problem_type is None:
raise ValueError(
"Could not retrieve the problem type for the sequence classification task, please set "
'model.config.problem_type to one of the following values: "regression", '
'"single_label_classification", or "multi_label_classification".'
)
if model.config.problem_type == "regression":
labels_shape = (batch_size, model.config.num_labels)
labels_dtype = torch.float32
elif model.config.problem_type == "single_label_classification":
labels_shape = (batch_size,)
labels_dtype = torch.long
elif model.config.problem_type == "multi_label_classification":
labels_shape = (batch_size, model.config.num_labels)
labels_dtype = torch.float32
else:
raise ValueError(
'Expected model.config.problem_type to be either: "regression", "single_label_classification"'
f', or "multi_label_classification", but "{model.config.problem_type}" was provided.'
)
inputs_dict["labels"] = torch.zeros(*labels_shape, dtype=labels_dtype, device=device)
elif model_class_name in [
*get_values(MODEL_FOR_PRETRAINING_MAPPING_NAMES),
*get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES),
*get_values(MODEL_FOR_CAUSAL_LM_MAPPING_NAMES),
*get_values(MODEL_FOR_MASKED_LM_MAPPING_NAMES),
*get_values(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES),
*get_values(MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES),
"GPT2DoubleHeadsModel",
"PeftModelForCausalLM",
"PeftModelForSeq2SeqLM",
]:
inputs_dict["labels"] = torch.zeros(shape, dtype=torch.long, device=device)
elif model_class_name in [*get_values(MODEL_FOR_CTC_MAPPING_NAMES)]:
inputs_dict["labels"] = torch.zeros(shape, dtype=torch.float32, device=device)
else:
raise NotImplementedError(
f"Generating the dummy input named {input_name} for {model_class_name} is not supported yet."
)
elif "pixel_values" in input_name:
batch_size = shape[0]
image_size = getattr(model.config, "image_size", None)
if image_size is None:
if hasattr(model.config, "vision_config"):
image_size = model.config.vision_config.image_size
elif hasattr(model.config, "encoder"):
image_size = model.config.encoder.image_size
else:
image_size = (_generate_random_int(), _generate_random_int())
# If no num_channels is in the config, use some arbitrary value.
num_channels = getattr(model.config, "num_channels", 3)
if not isinstance(image_size, collections.abc.Iterable):
image_size = (image_size, image_size)
height, width = image_size
inputs_dict[input_name] = torch.zeros(
batch_size, num_channels, height, width, dtype=torch.float32, device=device
)
elif "bbox" in input_name:
inputs_dict[input_name] = torch.zeros(*shape, 4, dtype=torch.float, device=device)
elif "input_features" in input_name:
inputs_dict[input_name] = torch.zeros(
*shape, model.config.input_feat_per_channel, dtype=torch.float, device=device
)
elif "visual_feats" in input_name:
inputs_dict[input_name] = torch.zeros(
shape
+ [
model.config.visual_feat_dim,
],
dtype=torch.float,
device=device,
)
elif "visual_pos" in input_name:
inputs_dict[input_name] = torch.zeros(
shape
+ [
model.config.visual_pos_dim,
],
dtype=torch.float,
device=device,
)
elif "inputs" in input_name:
inputs_dict[input_name] = torch.zeros(*shape, dtype=torch.float, device=device)
elif "input_values" in input_name:
batch_size, _ = shape
# Generating big sequence length for audio inputs.
seq_length = _generate_random_int(low=10000, high=20000)
inputs_dict[input_name] = torch.zeros(batch_size, seq_length, dtype=torch.float, device=device)
elif "mask" in input_name or "ids" in input_name:
inputs_dict[input_name] = torch.zeros(shape, dtype=torch.long, device=device)
else:
shape_with_hidden_size = shape + [model.config.hidden_size]
inputs_dict[input_name] = torch.zeros(shape_with_hidden_size, dtype=torch.float, device=device)
return inputs_dict
def create_proxy(self, kind, target, args, kwargs, name=None, type_expr=None, proxy_factory_fn=None):
rv = super().create_proxy(kind, target, args, kwargs, name, type_expr, proxy_factory_fn)
if kind == "placeholder" and target in self.meta_args:
rv.install_metadata(self.meta_args[target])
return rv
if target in self.orig_fns:
# NOTE: tensor constructors in PyTorch define the `device` argument as
# *kwargs-only*. That is why this works. If you add methods to
# _TORCH_METHODS_TO_PATCH that do not define `device` as kwarg-only,
# this will break and you will likely see issues where we cannot infer
# the size of the output.
if "device" in kwargs:
kwargs["device"] = "meta"
try:
args_metas = torch.fx.node.map_aggregate(args, _proxies_to_metas)
kwargs_metas = torch.fx.node.map_aggregate(kwargs, _proxies_to_metas)
if kind == "call_function":
meta_target = _MANUAL_META_OVERRIDES.get(target, target)
meta_out = meta_target(*args_metas, **kwargs_metas)
if isinstance(meta_out, torch.Tensor):
meta_out = meta_out.to(device="meta")
elif kind == "call_method":
method = getattr(args_metas[0].__class__, target)
meta_target = _MANUAL_META_OVERRIDES.get(method, method)
meta_out = meta_target(*args_metas, **kwargs_metas)
elif kind == "call_module":
if not hasattr(self, "orig_forward"):
raise AttributeError(f"{self} does not have an attribute called orig_forward")
self._disable_module_getattr = True
try:
mod = self.root.get_submodule(target)
mod_type = type(mod)
if mod_type in _MANUAL_META_OVERRIDES:
meta_out = _MANUAL_META_OVERRIDES[mod_type](mod, *args_metas, **kwargs_metas)
else:
meta_out = self.orig_forward(*args_metas, **kwargs_metas)
finally:
self._disable_module_getattr = False
elif kind == "get_attr":
self._disable_module_getattr = True
try:
attr_itr = self.root
atoms = target.split(".")
for atom in atoms:
attr_itr = getattr(attr_itr, atom)
if isinstance(attr_itr, torch.Tensor):
meta_out = attr_itr.to(device="meta")
else:
meta_out = attr_itr
finally:
self._disable_module_getattr = False
else:
return rv
if not isinstance(rv, Proxy):
raise ValueError("Don't support composite output yet")
rv.install_metadata(meta_out)
except Exception as e:
if _IS_IN_DEBUG_MODE:
warnings.warn(f"Could not compute metadata for {kind} target {target}: {e}")
return rv
# Replaced by .getattr from PyTorch 1.13
def _module_getattr(self, attr, attr_val, parameter_proxy_cache):
if getattr(self, "_disable_module_getattr", False):
return attr_val
else:
def maybe_get_proxy_for_attr(attr_val, collection_to_search, parameter_proxy_cache):
for n, p in collection_to_search:
if attr_val is p:
if n not in parameter_proxy_cache:
kwargs = {}
if "proxy_factory_fn" in inspect.signature(self.create_proxy).parameters:
kwargs["proxy_factory_fn"] = (
None
if not self.param_shapes_constant
else lambda node: ParameterProxy(self, node, n, attr_val)
)
val_proxy = self.create_proxy("get_attr", n, (), {}, **kwargs) # type: ignore[arg-type]
parameter_proxy_cache[n] = val_proxy
return parameter_proxy_cache[n]
return None
if isinstance(attr_val, torch.nn.Parameter):
maybe_parameter_proxy = maybe_get_proxy_for_attr(
attr_val, self.root.named_parameters(), parameter_proxy_cache
)
if maybe_parameter_proxy is not None:
return maybe_parameter_proxy
if self.proxy_buffer_attributes and isinstance(attr_val, torch.Tensor):
maybe_buffer_proxy = maybe_get_proxy_for_attr(
attr_val, self.root.named_buffers(), parameter_proxy_cache
)
if maybe_buffer_proxy is not None:
return maybe_buffer_proxy
return attr_val
# Needed for PyTorch 1.13+
def getattr(self, attr: str, attr_val: Any, parameter_proxy_cache: Dict[str, Any]):
return self._module_getattr(attr, attr_val, parameter_proxy_cache)
def call_module(self, m, forward, args, kwargs):
self.orig_forward = forward
return super().call_module(m, forward, args, kwargs)
def proxy(self, node):
return HFProxy(node, self)
def trace(
self,
root: Union[torch.nn.Module, Callable[..., Any]],
concrete_args: Optional[Dict[str, Any]] = None,
dummy_inputs: Optional[Dict[str, Any]] = None,
complete_concrete_args_with_inputs_not_in_dummy_inputs: bool = True,
) -> Graph:
"""
Traces `root` and returns the corresponding FX `torch.fx.Graph` representation. `root` can either be a
`torch.nn.Module` instance or a Python callable. Note that after this call, `self.root` may be different from
the `root` passed in here. For example, when a free function is passed to `trace()`, we will create a
`torch.nn.Module` instance to use as the root and add embedded constants to.
Args:
root (`torch.nn.Module` or `Callable`):
Either a `torch.nn.Module`` or a function to be traced through. If root is not a
[`~transformers.PreTrainedModel`], then `dummy_inputs` must be passed, otherwise tracing will fail.
concrete_args (`Dict[str, Any], *optional*):
Concrete arguments that should not be treated as Proxies
dummy_inputs (`Dict[str, Any]`, *optional*):
The dummy inputs needed to handle data-dependent control-flow if `root` is not a
[`~transformers.PreTrainedModel`]. It can also be used when `root` is a
[`~transformers.PreTrainedModel`] to specify custom dummy inputs for a subset or all the model inputs.
complete_concrete_args_with_inputs_not_in_dummy_inputs (`bool`, *optional*, defaults to `True`):
If `True`, and `dummy_inputs` is specified, every argument that `root` can take that is not in
`dummy_inputs` and not in `concrete_args` will be added to `concrete_args`, otherwise does nothing.
Returns:
`torch.fx.Graph`:
A FX `torch.fx.Graph` representing the semantics of the passed-in `root`.
"""
sig = inspect.signature(root.forward if isinstance(root, torch.nn.Module) else root)
if concrete_args is None:
concrete_args = {}
if dummy_inputs is not None and complete_concrete_args_with_inputs_not_in_dummy_inputs:
for param in sig.parameters.values():
if param.name in dummy_inputs:
continue
if param.default is inspect.Parameter.empty:
raise ValueError(f"You need to specify a default value for the parameter {param.name}.")
concrete_args.update(
{
p.name: p.default
for p in sig.parameters.values()
if (p.name not in dummy_inputs and p.name not in concrete_args)
}
)
input_names = sig.parameters.keys() - concrete_args.keys()
# Creating a random input shape to generate dummy inputs.
batch_size = _generate_random_int()
sequence_length = _generate_random_int()
shape = [batch_size, sequence_length]
if root.__class__.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES):
num_choices = _generate_random_int(low=2, high=5)
shape.insert(1, num_choices)
inputs = dict(dummy_inputs) if dummy_inputs is not None else {}
for input_name in input_names:
if input_name in inputs:
continue
# We enforce that root must either be a PreTrainedModel or deserialized from a serialized traced model to
# be able to use HFTracer._generate_dummy_input.
if isinstance(root, self.supported_archs) or type(root).__qualname__.startswith(
("_deserialize_graph_module", "_CodeOnlyModule")
):
inputs.update(self._generate_dummy_input(root, input_name, shape))
else:
raise RuntimeError(
f"Could not generate input named {input_name} for because root is not a"
" transformers.PreTrainedModel."
)
concrete_metas = {
input_name: input_.to("meta") if isinstance(input_, torch.Tensor) else input_
for input_name, input_ in inputs.items()
}
for param in sig.parameters.values():
if param.kind == inspect.Parameter.VAR_KEYWORD and param.name not in input_names:
concrete_metas[f"**{param.name}"] = {}
self.meta_args = concrete_metas
self.patched_torch_methods = {
target: _gen_constructor_wrapper(getattr(torch, target)) for target in self._TORCH_METHODS_TO_PATCH
}
self.orig_fns = set()
for name, (wrapper, orig) in self.patched_torch_methods.items():
setattr(torch, name, wrapper)
self.orig_fns.add(orig)
try:
self.graph = super().trace(root, concrete_args=concrete_args)
finally:
for name, (_, orig) in self.patched_torch_methods.items():
setattr(torch, name, orig)
# This is necessary because concrete args are added as input to the traced module since
# https://github.com/pytorch/pytorch/pull/55888.
for node in self.graph.nodes:
if node.op == "placeholder":
# Removing default values for inputs as the forward pass will fail with them.
if node.target in input_names:
node.args = ()
# Without this, torch.jit.script fails because the inputs type is Optional[torch.Tensor].
# It cannot infer on the attributes and methods the input should have, and fails.
node.type = torch.Tensor
# It is a concrete arg so it is not used and should be removed.
else:
to_visit = [node]
to_delete = collections.OrderedDict()
while to_visit:
n = to_visit.pop(0)
to_delete[n] = None
to_visit += list(n.users.keys())
for user in reversed(to_delete.keys()):
self.graph.erase_node(user)
# TODO: solves GraphModule creation.
# Without this, return type annotation "Tuple" is causing code execution failure.
if node.op == "output":
node.type = None
return self.graph
def _stateless_mod_instanciation_depends_on_proxies(self, mod: nn.Module) -> bool:
"""
Whether the module was instantiated with Proxies. If that is the case, such module cannot be a leaf module
because its attributes are input-dependent.
"""
return any(isinstance(attr, Proxy) for attr in mod.__dict__.values())
def _insert_module_as_submodule(self, mod: nn.Module) -> str:
"""
Helper method which tries to insert a module that was not declared as submodule.
"""
# If one of the module attributes is a Proxy, it means that its instantiation is input-dependent.
# It is not possible to insert such modules, those should be traced through.
if self._stateless_mod_instanciation_depends_on_proxies(mod):
return ""
idx = 0
mod_name = mod.__class__.__name__.lower()
path = f"{mod_name}_{idx}"
already_inserted = False
while hasattr(self.root, path):
if getattr(self.root, path) is mod:
already_inserted = True
break
path = f"{mod_name}_{idx}"
idx += 1
# No need to add multiple instances of the same module.
if not already_inserted:
self.root.add_module(path, mod)
return path
def path_of_module(self, mod: nn.Module) -> str:
"""
Helper method to find the qualified name of `mod` in the Module hierarchy of `root`. For example, if `root` has
a submodule named `foo`, which has a submodule named `bar`, passing `bar` into this function will return the
string "foo.bar".
Args:
mod (str): The `Module` to retrieve the qualified name for.
"""
try:
return super().path_of_module(mod)
except NameError as e:
if self.allow_insert_stateless_mods and len(list(mod.parameters())) == 0 and len(list(mod.buffers())) == 0:
path = self._insert_module_as_submodule(mod)
return path
raise e
def is_leaf_module(self, m: torch.nn.Module, module_qualified_name: str) -> bool:
return (not self._stateless_mod_instanciation_depends_on_proxies(m)) and super().is_leaf_module(
m, module_qualified_name
)
@compatibility(is_backward_compatible=True)
def keys(self, obj: "Proxy") -> Any:
"""Called when a proxy object is has the keys() method called.
This is what happens when ** is called on a proxy. This should return an iterator if ** is supposed to work in
your custom tracer.
"""
attribute = HFAttribute(obj, "keys")()
if obj.node.target == "**kwargs":
return attribute._metadata
return attribute
def get_concrete_args(model: nn.Module, input_names: List[str]):
sig = inspect.signature(model.forward)
if not (set(input_names) <= set(sig.parameters.keys())):
formatted_input_names = input_names[0] if len(input_names) == 1 else ", ".join(input_names)
formatted_allowed_input_names = ", ".join(sig.parameters.keys())
raise ValueError(
f"The model does not have input(s) named: {formatted_input_names}, expected a subset of the following:"
f" {formatted_allowed_input_names}"
)
return {p.name: p.default for p in sig.parameters.values() if p.name not in input_names}
def check_if_model_is_supported(model: PreTrainedModel):
if model.__class__.__name__ not in _SUPPORTED_MODELS:
supported_model_names = ", ".join(_SUPPORTED_MODELS)
raise NotImplementedError(
f"Model {model.__class__.__name__} is not supported yet, supported models: {supported_model_names}"
)
def symbolic_trace(
model: PreTrainedModel,
input_names: Optional[List[str]] = None,
disable_check: bool = False,
tracer_cls: Type[HFTracer] = HFTracer,
) -> GraphModule:
"""
Performs symbolic tracing on the model.
Args:
model ([`PretrainedModel`]):
The model to trace.
input_names (`List[str]`, *optional*):
The names of the inputs of the traced model. If unset, model.dummy_inputs.keys() are used instead.
disable_check (`bool`, *optional*, defaults to `False`):
If `True`, no check is done before trying to trace the model, this is mostly usesul for debugging purposes.
tracer_cls (`Type[HFTracer]`, *optional*, defaults to `HFTracer`):
The tracer class to use for instantiating the tracer. If unset, `HFTracer` is used instead.
Returns:
`torch.fx.GraphModule`: A GraphModule constructed by recording operations seen while tracing the model.
Example:
```python
from transformers.utils.fx import symbolic_trace
traced_model = symbolic_trace(model, input_names=["input_ids", "attention_mask", "token_type_ids"])
```
"""
if input_names is None:
input_names = model.dummy_inputs.keys()
input_names = list(input_names)
concrete_args = get_concrete_args(model, input_names)
if not disable_check:
check_if_model_is_supported(model)
# Tracing.
tracer = tracer_cls()
traced_graph = tracer.trace(model, concrete_args=concrete_args)
traced = torch.fx.GraphModule(model, traced_graph)
traced.config = model.config
# The model class must be stored as an attribute to allow model deserialization, which uses trace, and thus
# _generate_dummy_input, where the model class is needed.
traced.class_for_deserialization = model.__class__
traced.device = model.device
return traced
|