File size: 22,132 Bytes
1ce5e18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Generic utilities
"""

import inspect
import tempfile
from collections import OrderedDict, UserDict
from collections.abc import MutableMapping
from contextlib import ExitStack, contextmanager
from dataclasses import fields, is_dataclass
from enum import Enum
from typing import Any, ContextManager, List, Tuple

import numpy as np

from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy


if is_flax_available():
    import jax.numpy as jnp


class cached_property(property):
    """
    Descriptor that mimics @property but caches output in member variable.

    From tensorflow_datasets

    Built-in in functools from Python 3.8.
    """

    def __get__(self, obj, objtype=None):
        # See docs.python.org/3/howto/descriptor.html#properties
        if obj is None:
            return self
        if self.fget is None:
            raise AttributeError("unreadable attribute")
        attr = "__cached_" + self.fget.__name__
        cached = getattr(obj, attr, None)
        if cached is None:
            cached = self.fget(obj)
            setattr(obj, attr, cached)
        return cached


# vendored from distutils.util
def strtobool(val):
    """Convert a string representation of truth to true (1) or false (0).

    True values are 'y', 'yes', 't', 'true', 'on', and '1'; false values are 'n', 'no', 'f', 'false', 'off', and '0'.
    Raises ValueError if 'val' is anything else.
    """
    val = val.lower()
    if val in {"y", "yes", "t", "true", "on", "1"}:
        return 1
    if val in {"n", "no", "f", "false", "off", "0"}:
        return 0
    raise ValueError(f"invalid truth value {val!r}")


def infer_framework_from_repr(x):
    """
    Tries to guess the framework of an object `x` from its repr (brittle but will help in `is_tensor` to try the
    frameworks in a smart order, without the need to import the frameworks).
    """
    representation = str(type(x))
    if representation.startswith("<class 'torch."):
        return "pt"
    elif representation.startswith("<class 'tensorflow."):
        return "tf"
    elif representation.startswith("<class 'jax"):
        return "jax"
    elif representation.startswith("<class 'numpy."):
        return "np"


def _get_frameworks_and_test_func(x):
    """
    Returns an (ordered since we are in Python 3.7+) dictionary framework to test function, which places the framework
    we can guess from the repr first, then Numpy, then the others.
    """
    framework_to_test = {
        "pt": is_torch_tensor,
        "tf": is_tf_tensor,
        "jax": is_jax_tensor,
        "np": is_numpy_array,
    }
    preferred_framework = infer_framework_from_repr(x)
    # We will test this one first, then numpy, then the others.
    frameworks = [] if preferred_framework is None else [preferred_framework]
    if preferred_framework != "np":
        frameworks.append("np")
    frameworks.extend([f for f in framework_to_test if f not in [preferred_framework, "np"]])
    return {f: framework_to_test[f] for f in frameworks}


def is_tensor(x):
    """
    Tests if `x` is a `torch.Tensor`, `tf.Tensor`, `jaxlib.xla_extension.DeviceArray` or `np.ndarray` in the order
    defined by `infer_framework_from_repr`
    """
    # This gives us a smart order to test the frameworks with the corresponding tests.
    framework_to_test_func = _get_frameworks_and_test_func(x)
    for test_func in framework_to_test_func.values():
        if test_func(x):
            return True

    # Tracers
    if is_torch_fx_proxy(x):
        return True

    if is_flax_available():
        from jax.core import Tracer

        if isinstance(x, Tracer):
            return True

    return False


def _is_numpy(x):
    return isinstance(x, np.ndarray)


def is_numpy_array(x):
    """
    Tests if `x` is a numpy array or not.
    """
    return _is_numpy(x)


def _is_torch(x):
    import torch

    return isinstance(x, torch.Tensor)


def is_torch_tensor(x):
    """
    Tests if `x` is a torch tensor or not. Safe to call even if torch is not installed.
    """
    return False if not is_torch_available() else _is_torch(x)


def _is_torch_device(x):
    import torch

    return isinstance(x, torch.device)


def is_torch_device(x):
    """
    Tests if `x` is a torch device or not. Safe to call even if torch is not installed.
    """
    return False if not is_torch_available() else _is_torch_device(x)


def _is_torch_dtype(x):
    import torch

    if isinstance(x, str):
        if hasattr(torch, x):
            x = getattr(torch, x)
        else:
            return False
    return isinstance(x, torch.dtype)


def is_torch_dtype(x):
    """
    Tests if `x` is a torch dtype or not. Safe to call even if torch is not installed.
    """
    return False if not is_torch_available() else _is_torch_dtype(x)


def _is_tensorflow(x):
    import tensorflow as tf

    return isinstance(x, tf.Tensor)


def is_tf_tensor(x):
    """
    Tests if `x` is a tensorflow tensor or not. Safe to call even if tensorflow is not installed.
    """
    return False if not is_tf_available() else _is_tensorflow(x)


def _is_tf_symbolic_tensor(x):
    import tensorflow as tf

    # the `is_symbolic_tensor` predicate is only available starting with TF 2.14
    if hasattr(tf, "is_symbolic_tensor"):
        return tf.is_symbolic_tensor(x)
    return type(x) == tf.Tensor


def is_tf_symbolic_tensor(x):
    """
    Tests if `x` is a tensorflow symbolic tensor or not (ie. not eager). Safe to call even if tensorflow is not
    installed.
    """
    return False if not is_tf_available() else _is_tf_symbolic_tensor(x)


def _is_jax(x):
    import jax.numpy as jnp  # noqa: F811

    return isinstance(x, jnp.ndarray)


def is_jax_tensor(x):
    """
    Tests if `x` is a Jax tensor or not. Safe to call even if jax is not installed.
    """
    return False if not is_flax_available() else _is_jax(x)


def to_py_obj(obj):
    """
    Convert a TensorFlow tensor, PyTorch tensor, Numpy array or python list to a python list.
    """

    framework_to_py_obj = {
        "pt": lambda obj: obj.detach().cpu().tolist(),
        "tf": lambda obj: obj.numpy().tolist(),
        "jax": lambda obj: np.asarray(obj).tolist(),
        "np": lambda obj: obj.tolist(),
    }

    if isinstance(obj, (dict, UserDict)):
        return {k: to_py_obj(v) for k, v in obj.items()}
    elif isinstance(obj, (list, tuple)):
        return [to_py_obj(o) for o in obj]

    # This gives us a smart order to test the frameworks with the corresponding tests.
    framework_to_test_func = _get_frameworks_and_test_func(obj)
    for framework, test_func in framework_to_test_func.items():
        if test_func(obj):
            return framework_to_py_obj[framework](obj)

    # tolist also works on 0d np arrays
    if isinstance(obj, np.number):
        return obj.tolist()
    else:
        return obj


def to_numpy(obj):
    """
    Convert a TensorFlow tensor, PyTorch tensor, Numpy array or python list to a Numpy array.
    """

    framework_to_numpy = {
        "pt": lambda obj: obj.detach().cpu().numpy(),
        "tf": lambda obj: obj.numpy(),
        "jax": lambda obj: np.asarray(obj),
        "np": lambda obj: obj,
    }

    if isinstance(obj, (dict, UserDict)):
        return {k: to_numpy(v) for k, v in obj.items()}
    elif isinstance(obj, (list, tuple)):
        return np.array(obj)

    # This gives us a smart order to test the frameworks with the corresponding tests.
    framework_to_test_func = _get_frameworks_and_test_func(obj)
    for framework, test_func in framework_to_test_func.items():
        if test_func(obj):
            return framework_to_numpy[framework](obj)

    return obj


class ModelOutput(OrderedDict):
    """
    Base class for all model outputs as dataclass. Has a `__getitem__` that allows indexing by integer or slice (like a
    tuple) or strings (like a dictionary) that will ignore the `None` attributes. Otherwise behaves like a regular
    python dictionary.

    <Tip warning={true}>

    You can't unpack a `ModelOutput` directly. Use the [`~utils.ModelOutput.to_tuple`] method to convert it to a tuple
    before.

    </Tip>
    """

    def __init_subclass__(cls) -> None:
        """Register subclasses as pytree nodes.

        This is necessary to synchronize gradients when using `torch.nn.parallel.DistributedDataParallel` with
        `static_graph=True` with modules that output `ModelOutput` subclasses.
        """
        if is_torch_available():
            import torch.utils._pytree

            torch.utils._pytree._register_pytree_node(
                cls,
                torch.utils._pytree._dict_flatten,
                lambda values, context: cls(**torch.utils._pytree._dict_unflatten(values, context)),
            )

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

        # Subclasses of ModelOutput must use the @dataclass decorator
        # This check is done in __init__ because the @dataclass decorator operates after __init_subclass__
        # issubclass() would return True for issubclass(ModelOutput, ModelOutput) when False is needed
        # Just need to check that the current class is not ModelOutput
        is_modeloutput_subclass = self.__class__ != ModelOutput

        if is_modeloutput_subclass and not is_dataclass(self):
            raise TypeError(
                f"{self.__module__}.{self.__class__.__name__} is not a dataclasss."
                " This is a subclass of ModelOutput and so must use the @dataclass decorator."
            )

    def __post_init__(self):
        """Check the ModelOutput dataclass.

        Only occurs if @dataclass decorator has been used.
        """
        class_fields = fields(self)

        # Safety and consistency checks
        if not len(class_fields):
            raise ValueError(f"{self.__class__.__name__} has no fields.")
        if not all(field.default is None for field in class_fields[1:]):
            raise ValueError(f"{self.__class__.__name__} should not have more than one required field.")

        first_field = getattr(self, class_fields[0].name)
        other_fields_are_none = all(getattr(self, field.name) is None for field in class_fields[1:])

        if other_fields_are_none and not is_tensor(first_field):
            if isinstance(first_field, dict):
                iterator = first_field.items()
                first_field_iterator = True
            else:
                try:
                    iterator = iter(first_field)
                    first_field_iterator = True
                except TypeError:
                    first_field_iterator = False

            # if we provided an iterator as first field and the iterator is a (key, value) iterator
            # set the associated fields
            if first_field_iterator:
                for idx, element in enumerate(iterator):
                    if (
                        not isinstance(element, (list, tuple))
                        or not len(element) == 2
                        or not isinstance(element[0], str)
                    ):
                        if idx == 0:
                            # If we do not have an iterator of key/values, set it as attribute
                            self[class_fields[0].name] = first_field
                        else:
                            # If we have a mixed iterator, raise an error
                            raise ValueError(
                                f"Cannot set key/value for {element}. It needs to be a tuple (key, value)."
                            )
                        break
                    setattr(self, element[0], element[1])
                    if element[1] is not None:
                        self[element[0]] = element[1]
            elif first_field is not None:
                self[class_fields[0].name] = first_field
        else:
            for field in class_fields:
                v = getattr(self, field.name)
                if v is not None:
                    self[field.name] = v

    def __delitem__(self, *args, **kwargs):
        raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.")

    def setdefault(self, *args, **kwargs):
        raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.")

    def pop(self, *args, **kwargs):
        raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.")

    def update(self, *args, **kwargs):
        raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.")

    def __getitem__(self, k):
        if isinstance(k, str):
            inner_dict = dict(self.items())
            return inner_dict[k]
        else:
            return self.to_tuple()[k]

    def __setattr__(self, name, value):
        if name in self.keys() and value is not None:
            # Don't call self.__setitem__ to avoid recursion errors
            super().__setitem__(name, value)
        super().__setattr__(name, value)

    def __setitem__(self, key, value):
        # Will raise a KeyException if needed
        super().__setitem__(key, value)
        # Don't call self.__setattr__ to avoid recursion errors
        super().__setattr__(key, value)

    def __reduce__(self):
        if not is_dataclass(self):
            return super().__reduce__()
        callable, _args, *remaining = super().__reduce__()
        args = tuple(getattr(self, field.name) for field in fields(self))
        return callable, args, *remaining

    def to_tuple(self) -> Tuple[Any]:
        """
        Convert self to a tuple containing all the attributes/keys that are not `None`.
        """
        return tuple(self[k] for k in self.keys())


class ExplicitEnum(str, Enum):
    """
    Enum with more explicit error message for missing values.
    """

    @classmethod
    def _missing_(cls, value):
        raise ValueError(
            f"{value} is not a valid {cls.__name__}, please select one of {list(cls._value2member_map_.keys())}"
        )


class PaddingStrategy(ExplicitEnum):
    """
    Possible values for the `padding` argument in [`PreTrainedTokenizerBase.__call__`]. Useful for tab-completion in an
    IDE.
    """

    LONGEST = "longest"
    MAX_LENGTH = "max_length"
    DO_NOT_PAD = "do_not_pad"


class TensorType(ExplicitEnum):
    """
    Possible values for the `return_tensors` argument in [`PreTrainedTokenizerBase.__call__`]. Useful for
    tab-completion in an IDE.
    """

    PYTORCH = "pt"
    TENSORFLOW = "tf"
    NUMPY = "np"
    JAX = "jax"


class ContextManagers:
    """
    Wrapper for `contextlib.ExitStack` which enters a collection of context managers. Adaptation of `ContextManagers`
    in the `fastcore` library.
    """

    def __init__(self, context_managers: List[ContextManager]):
        self.context_managers = context_managers
        self.stack = ExitStack()

    def __enter__(self):
        for context_manager in self.context_managers:
            self.stack.enter_context(context_manager)

    def __exit__(self, *args, **kwargs):
        self.stack.__exit__(*args, **kwargs)


def can_return_loss(model_class):
    """
    Check if a given model can return loss.

    Args:
        model_class (`type`): The class of the model.
    """
    framework = infer_framework(model_class)
    if framework == "tf":
        signature = inspect.signature(model_class.call)  # TensorFlow models
    elif framework == "pt":
        signature = inspect.signature(model_class.forward)  # PyTorch models
    else:
        signature = inspect.signature(model_class.__call__)  # Flax models

    for p in signature.parameters:
        if p == "return_loss" and signature.parameters[p].default is True:
            return True

    return False


def find_labels(model_class):
    """
    Find the labels used by a given model.

    Args:
        model_class (`type`): The class of the model.
    """
    model_name = model_class.__name__
    framework = infer_framework(model_class)
    if framework == "tf":
        signature = inspect.signature(model_class.call)  # TensorFlow models
    elif framework == "pt":
        signature = inspect.signature(model_class.forward)  # PyTorch models
    else:
        signature = inspect.signature(model_class.__call__)  # Flax models

    if "QuestionAnswering" in model_name:
        return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")]
    else:
        return [p for p in signature.parameters if "label" in p]


def flatten_dict(d: MutableMapping, parent_key: str = "", delimiter: str = "."):
    """Flatten a nested dict into a single level dict."""

    def _flatten_dict(d, parent_key="", delimiter="."):
        for k, v in d.items():
            key = str(parent_key) + delimiter + str(k) if parent_key else k
            if v and isinstance(v, MutableMapping):
                yield from flatten_dict(v, key, delimiter=delimiter).items()
            else:
                yield key, v

    return dict(_flatten_dict(d, parent_key, delimiter))


@contextmanager
def working_or_temp_dir(working_dir, use_temp_dir: bool = False):
    if use_temp_dir:
        with tempfile.TemporaryDirectory() as tmp_dir:
            yield tmp_dir
    else:
        yield working_dir


def transpose(array, axes=None):
    """
    Framework-agnostic version of `numpy.transpose` that will work on torch/TensorFlow/Jax tensors as well as NumPy
    arrays.
    """
    if is_numpy_array(array):
        return np.transpose(array, axes=axes)
    elif is_torch_tensor(array):
        return array.T if axes is None else array.permute(*axes)
    elif is_tf_tensor(array):
        import tensorflow as tf

        return tf.transpose(array, perm=axes)
    elif is_jax_tensor(array):
        return jnp.transpose(array, axes=axes)
    else:
        raise ValueError(f"Type not supported for transpose: {type(array)}.")


def reshape(array, newshape):
    """
    Framework-agnostic version of `numpy.reshape` that will work on torch/TensorFlow/Jax tensors as well as NumPy
    arrays.
    """
    if is_numpy_array(array):
        return np.reshape(array, newshape)
    elif is_torch_tensor(array):
        return array.reshape(*newshape)
    elif is_tf_tensor(array):
        import tensorflow as tf

        return tf.reshape(array, newshape)
    elif is_jax_tensor(array):
        return jnp.reshape(array, newshape)
    else:
        raise ValueError(f"Type not supported for reshape: {type(array)}.")


def squeeze(array, axis=None):
    """
    Framework-agnostic version of `numpy.squeeze` that will work on torch/TensorFlow/Jax tensors as well as NumPy
    arrays.
    """
    if is_numpy_array(array):
        return np.squeeze(array, axis=axis)
    elif is_torch_tensor(array):
        return array.squeeze() if axis is None else array.squeeze(dim=axis)
    elif is_tf_tensor(array):
        import tensorflow as tf

        return tf.squeeze(array, axis=axis)
    elif is_jax_tensor(array):
        return jnp.squeeze(array, axis=axis)
    else:
        raise ValueError(f"Type not supported for squeeze: {type(array)}.")


def expand_dims(array, axis):
    """
    Framework-agnostic version of `numpy.expand_dims` that will work on torch/TensorFlow/Jax tensors as well as NumPy
    arrays.
    """
    if is_numpy_array(array):
        return np.expand_dims(array, axis)
    elif is_torch_tensor(array):
        return array.unsqueeze(dim=axis)
    elif is_tf_tensor(array):
        import tensorflow as tf

        return tf.expand_dims(array, axis=axis)
    elif is_jax_tensor(array):
        return jnp.expand_dims(array, axis=axis)
    else:
        raise ValueError(f"Type not supported for expand_dims: {type(array)}.")


def tensor_size(array):
    """
    Framework-agnostic version of `numpy.size` that will work on torch/TensorFlow/Jax tensors as well as NumPy arrays.
    """
    if is_numpy_array(array):
        return np.size(array)
    elif is_torch_tensor(array):
        return array.numel()
    elif is_tf_tensor(array):
        import tensorflow as tf

        return tf.size(array)
    elif is_jax_tensor(array):
        return array.size
    else:
        raise ValueError(f"Type not supported for expand_dims: {type(array)}.")


def add_model_info_to_auto_map(auto_map, repo_id):
    """
    Adds the information of the repo_id to a given auto map.
    """
    for key, value in auto_map.items():
        if isinstance(value, (tuple, list)):
            auto_map[key] = [f"{repo_id}--{v}" if (v is not None and "--" not in v) else v for v in value]
        elif value is not None and "--" not in value:
            auto_map[key] = f"{repo_id}--{value}"

    return auto_map


def infer_framework(model_class):
    """
    Infers the framework of a given model without using isinstance(), because we cannot guarantee that the relevant
    classes are imported or available.
    """
    for base_class in inspect.getmro(model_class):
        module = base_class.__module__
        name = base_class.__name__
        if module.startswith("tensorflow") or module.startswith("keras") or name == "TFPreTrainedModel":
            return "tf"
        elif module.startswith("torch") or name == "PreTrainedModel":
            return "pt"
        elif module.startswith("flax") or module.startswith("jax") or name == "FlaxPreTrainedModel":
            return "flax"
    else:
        raise TypeError(f"Could not infer framework from class {model_class}.")