Spaces:
Running
on
T4
Running
on
T4
File size: 25,624 Bytes
1ce5e18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import base64
import os
from io import BytesIO
from typing import TYPE_CHECKING, Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
import requests
from packaging import version
from .utils import (
ExplicitEnum,
is_jax_tensor,
is_tf_tensor,
is_torch_available,
is_torch_tensor,
is_vision_available,
requires_backends,
to_numpy,
)
from .utils.constants import ( # noqa: F401
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
)
if is_vision_available():
import PIL.Image
import PIL.ImageOps
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"):
PILImageResampling = PIL.Image.Resampling
else:
PILImageResampling = PIL.Image
if TYPE_CHECKING:
if is_torch_available():
import torch
ImageInput = Union[
"PIL.Image.Image", np.ndarray, "torch.Tensor", List["PIL.Image.Image"], List[np.ndarray], List["torch.Tensor"]
] # noqa
class ChannelDimension(ExplicitEnum):
FIRST = "channels_first"
LAST = "channels_last"
def is_pil_image(img):
return is_vision_available() and isinstance(img, PIL.Image.Image)
def is_valid_image(img):
return (
(is_vision_available() and isinstance(img, PIL.Image.Image))
or isinstance(img, np.ndarray)
or is_torch_tensor(img)
or is_tf_tensor(img)
or is_jax_tensor(img)
)
def valid_images(imgs):
# If we have an list of images, make sure every image is valid
if isinstance(imgs, (list, tuple)):
for img in imgs:
if not valid_images(img):
return False
# If not a list of tuple, we have been given a single image or batched tensor of images
elif not is_valid_image(imgs):
return False
return True
def is_batched(img):
if isinstance(img, (list, tuple)):
return is_valid_image(img[0])
return False
def is_scaled_image(image: np.ndarray) -> bool:
"""
Checks to see whether the pixel values have already been rescaled to [0, 1].
"""
if image.dtype == np.uint8:
return False
# It's possible the image has pixel values in [0, 255] but is of floating type
return np.min(image) >= 0 and np.max(image) <= 1
def make_list_of_images(images, expected_ndims: int = 3) -> List[ImageInput]:
"""
Ensure that the input is a list of images. If the input is a single image, it is converted to a list of length 1.
If the input is a batch of images, it is converted to a list of images.
Args:
images (`ImageInput`):
Image of images to turn into a list of images.
expected_ndims (`int`, *optional*, defaults to 3):
Expected number of dimensions for a single input image. If the input image has a different number of
dimensions, an error is raised.
"""
if is_batched(images):
return images
# Either the input is a single image, in which case we create a list of length 1
if isinstance(images, PIL.Image.Image):
# PIL images are never batched
return [images]
if is_valid_image(images):
if images.ndim == expected_ndims + 1:
# Batch of images
images = list(images)
elif images.ndim == expected_ndims:
# Single image
images = [images]
else:
raise ValueError(
f"Invalid image shape. Expected either {expected_ndims + 1} or {expected_ndims} dimensions, but got"
f" {images.ndim} dimensions."
)
return images
raise ValueError(
"Invalid image type. Expected either PIL.Image.Image, numpy.ndarray, torch.Tensor, tf.Tensor or "
f"jax.ndarray, but got {type(images)}."
)
def to_numpy_array(img) -> np.ndarray:
if not is_valid_image(img):
raise ValueError(f"Invalid image type: {type(img)}")
if is_vision_available() and isinstance(img, PIL.Image.Image):
return np.array(img)
return to_numpy(img)
def infer_channel_dimension_format(
image: np.ndarray, num_channels: Optional[Union[int, Tuple[int, ...]]] = None
) -> ChannelDimension:
"""
Infers the channel dimension format of `image`.
Args:
image (`np.ndarray`):
The image to infer the channel dimension of.
num_channels (`int` or `Tuple[int, ...]`, *optional*, defaults to `(1, 3)`):
The number of channels of the image.
Returns:
The channel dimension of the image.
"""
num_channels = num_channels if num_channels is not None else (1, 3)
num_channels = (num_channels,) if isinstance(num_channels, int) else num_channels
if image.ndim == 3:
first_dim, last_dim = 0, 2
elif image.ndim == 4:
first_dim, last_dim = 1, 3
else:
raise ValueError(f"Unsupported number of image dimensions: {image.ndim}")
if image.shape[first_dim] in num_channels:
return ChannelDimension.FIRST
elif image.shape[last_dim] in num_channels:
return ChannelDimension.LAST
raise ValueError("Unable to infer channel dimension format")
def get_channel_dimension_axis(
image: np.ndarray, input_data_format: Optional[Union[ChannelDimension, str]] = None
) -> int:
"""
Returns the channel dimension axis of the image.
Args:
image (`np.ndarray`):
The image to get the channel dimension axis of.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the image. If `None`, will infer the channel dimension from the image.
Returns:
The channel dimension axis of the image.
"""
if input_data_format is None:
input_data_format = infer_channel_dimension_format(image)
if input_data_format == ChannelDimension.FIRST:
return image.ndim - 3
elif input_data_format == ChannelDimension.LAST:
return image.ndim - 1
raise ValueError(f"Unsupported data format: {input_data_format}")
def get_image_size(image: np.ndarray, channel_dim: ChannelDimension = None) -> Tuple[int, int]:
"""
Returns the (height, width) dimensions of the image.
Args:
image (`np.ndarray`):
The image to get the dimensions of.
channel_dim (`ChannelDimension`, *optional*):
Which dimension the channel dimension is in. If `None`, will infer the channel dimension from the image.
Returns:
A tuple of the image's height and width.
"""
if channel_dim is None:
channel_dim = infer_channel_dimension_format(image)
if channel_dim == ChannelDimension.FIRST:
return image.shape[-2], image.shape[-1]
elif channel_dim == ChannelDimension.LAST:
return image.shape[-3], image.shape[-2]
else:
raise ValueError(f"Unsupported data format: {channel_dim}")
def is_valid_annotation_coco_detection(annotation: Dict[str, Union[List, Tuple]]) -> bool:
if (
isinstance(annotation, dict)
and "image_id" in annotation
and "annotations" in annotation
and isinstance(annotation["annotations"], (list, tuple))
and (
# an image can have no annotations
len(annotation["annotations"]) == 0
or isinstance(annotation["annotations"][0], dict)
)
):
return True
return False
def is_valid_annotation_coco_panoptic(annotation: Dict[str, Union[List, Tuple]]) -> bool:
if (
isinstance(annotation, dict)
and "image_id" in annotation
and "segments_info" in annotation
and "file_name" in annotation
and isinstance(annotation["segments_info"], (list, tuple))
and (
# an image can have no segments
len(annotation["segments_info"]) == 0
or isinstance(annotation["segments_info"][0], dict)
)
):
return True
return False
def valid_coco_detection_annotations(annotations: Iterable[Dict[str, Union[List, Tuple]]]) -> bool:
return all(is_valid_annotation_coco_detection(ann) for ann in annotations)
def valid_coco_panoptic_annotations(annotations: Iterable[Dict[str, Union[List, Tuple]]]) -> bool:
return all(is_valid_annotation_coco_panoptic(ann) for ann in annotations)
def load_image(image: Union[str, "PIL.Image.Image"], timeout: Optional[float] = None) -> "PIL.Image.Image":
"""
Loads `image` to a PIL Image.
Args:
image (`str` or `PIL.Image.Image`):
The image to convert to the PIL Image format.
timeout (`float`, *optional*):
The timeout value in seconds for the URL request.
Returns:
`PIL.Image.Image`: A PIL Image.
"""
requires_backends(load_image, ["vision"])
if isinstance(image, str):
if image.startswith("http://") or image.startswith("https://"):
# We need to actually check for a real protocol, otherwise it's impossible to use a local file
# like http_huggingface_co.png
image = PIL.Image.open(requests.get(image, stream=True, timeout=timeout).raw)
elif os.path.isfile(image):
image = PIL.Image.open(image)
else:
if image.startswith("data:image/"):
image = image.split(",")[1]
# Try to load as base64
try:
b64 = base64.b64decode(image, validate=True)
image = PIL.Image.open(BytesIO(b64))
except Exception as e:
raise ValueError(
f"Incorrect image source. Must be a valid URL starting with `http://` or `https://`, a valid path to an image file, or a base64 encoded string. Got {image}. Failed with {e}"
)
elif isinstance(image, PIL.Image.Image):
image = image
else:
raise ValueError(
"Incorrect format used for image. Should be an url linking to an image, a base64 string, a local path, or a PIL image."
)
image = PIL.ImageOps.exif_transpose(image)
image = image.convert("RGB")
return image
# In the future we can add a TF implementation here when we have TF models.
class ImageFeatureExtractionMixin:
"""
Mixin that contain utilities for preparing image features.
"""
def _ensure_format_supported(self, image):
if not isinstance(image, (PIL.Image.Image, np.ndarray)) and not is_torch_tensor(image):
raise ValueError(
f"Got type {type(image)} which is not supported, only `PIL.Image.Image`, `np.array` and "
"`torch.Tensor` are."
)
def to_pil_image(self, image, rescale=None):
"""
Converts `image` to a PIL Image. Optionally rescales it and puts the channel dimension back as the last axis if
needed.
Args:
image (`PIL.Image.Image` or `numpy.ndarray` or `torch.Tensor`):
The image to convert to the PIL Image format.
rescale (`bool`, *optional*):
Whether or not to apply the scaling factor (to make pixel values integers between 0 and 255). Will
default to `True` if the image type is a floating type, `False` otherwise.
"""
self._ensure_format_supported(image)
if is_torch_tensor(image):
image = image.numpy()
if isinstance(image, np.ndarray):
if rescale is None:
# rescale default to the array being of floating type.
rescale = isinstance(image.flat[0], np.floating)
# If the channel as been moved to first dim, we put it back at the end.
if image.ndim == 3 and image.shape[0] in [1, 3]:
image = image.transpose(1, 2, 0)
if rescale:
image = image * 255
image = image.astype(np.uint8)
return PIL.Image.fromarray(image)
return image
def convert_rgb(self, image):
"""
Converts `PIL.Image.Image` to RGB format.
Args:
image (`PIL.Image.Image`):
The image to convert.
"""
self._ensure_format_supported(image)
if not isinstance(image, PIL.Image.Image):
return image
return image.convert("RGB")
def rescale(self, image: np.ndarray, scale: Union[float, int]) -> np.ndarray:
"""
Rescale a numpy image by scale amount
"""
self._ensure_format_supported(image)
return image * scale
def to_numpy_array(self, image, rescale=None, channel_first=True):
"""
Converts `image` to a numpy array. Optionally rescales it and puts the channel dimension as the first
dimension.
Args:
image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
The image to convert to a NumPy array.
rescale (`bool`, *optional*):
Whether or not to apply the scaling factor (to make pixel values floats between 0. and 1.). Will
default to `True` if the image is a PIL Image or an array/tensor of integers, `False` otherwise.
channel_first (`bool`, *optional*, defaults to `True`):
Whether or not to permute the dimensions of the image to put the channel dimension first.
"""
self._ensure_format_supported(image)
if isinstance(image, PIL.Image.Image):
image = np.array(image)
if is_torch_tensor(image):
image = image.numpy()
rescale = isinstance(image.flat[0], np.integer) if rescale is None else rescale
if rescale:
image = self.rescale(image.astype(np.float32), 1 / 255.0)
if channel_first and image.ndim == 3:
image = image.transpose(2, 0, 1)
return image
def expand_dims(self, image):
"""
Expands 2-dimensional `image` to 3 dimensions.
Args:
image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
The image to expand.
"""
self._ensure_format_supported(image)
# Do nothing if PIL image
if isinstance(image, PIL.Image.Image):
return image
if is_torch_tensor(image):
image = image.unsqueeze(0)
else:
image = np.expand_dims(image, axis=0)
return image
def normalize(self, image, mean, std, rescale=False):
"""
Normalizes `image` with `mean` and `std`. Note that this will trigger a conversion of `image` to a NumPy array
if it's a PIL Image.
Args:
image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
The image to normalize.
mean (`List[float]` or `np.ndarray` or `torch.Tensor`):
The mean (per channel) to use for normalization.
std (`List[float]` or `np.ndarray` or `torch.Tensor`):
The standard deviation (per channel) to use for normalization.
rescale (`bool`, *optional*, defaults to `False`):
Whether or not to rescale the image to be between 0 and 1. If a PIL image is provided, scaling will
happen automatically.
"""
self._ensure_format_supported(image)
if isinstance(image, PIL.Image.Image):
image = self.to_numpy_array(image, rescale=True)
# If the input image is a PIL image, it automatically gets rescaled. If it's another
# type it may need rescaling.
elif rescale:
if isinstance(image, np.ndarray):
image = self.rescale(image.astype(np.float32), 1 / 255.0)
elif is_torch_tensor(image):
image = self.rescale(image.float(), 1 / 255.0)
if isinstance(image, np.ndarray):
if not isinstance(mean, np.ndarray):
mean = np.array(mean).astype(image.dtype)
if not isinstance(std, np.ndarray):
std = np.array(std).astype(image.dtype)
elif is_torch_tensor(image):
import torch
if not isinstance(mean, torch.Tensor):
mean = torch.tensor(mean)
if not isinstance(std, torch.Tensor):
std = torch.tensor(std)
if image.ndim == 3 and image.shape[0] in [1, 3]:
return (image - mean[:, None, None]) / std[:, None, None]
else:
return (image - mean) / std
def resize(self, image, size, resample=None, default_to_square=True, max_size=None):
"""
Resizes `image`. Enforces conversion of input to PIL.Image.
Args:
image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
The image to resize.
size (`int` or `Tuple[int, int]`):
The size to use for resizing the image. If `size` is a sequence like (h, w), output size will be
matched to this.
If `size` is an int and `default_to_square` is `True`, then image will be resized to (size, size). If
`size` is an int and `default_to_square` is `False`, then smaller edge of the image will be matched to
this number. i.e, if height > width, then image will be rescaled to (size * height / width, size).
resample (`int`, *optional*, defaults to `PILImageResampling.BILINEAR`):
The filter to user for resampling.
default_to_square (`bool`, *optional*, defaults to `True`):
How to convert `size` when it is a single int. If set to `True`, the `size` will be converted to a
square (`size`,`size`). If set to `False`, will replicate
[`torchvision.transforms.Resize`](https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.Resize)
with support for resizing only the smallest edge and providing an optional `max_size`.
max_size (`int`, *optional*, defaults to `None`):
The maximum allowed for the longer edge of the resized image: if the longer edge of the image is
greater than `max_size` after being resized according to `size`, then the image is resized again so
that the longer edge is equal to `max_size`. As a result, `size` might be overruled, i.e the smaller
edge may be shorter than `size`. Only used if `default_to_square` is `False`.
Returns:
image: A resized `PIL.Image.Image`.
"""
resample = resample if resample is not None else PILImageResampling.BILINEAR
self._ensure_format_supported(image)
if not isinstance(image, PIL.Image.Image):
image = self.to_pil_image(image)
if isinstance(size, list):
size = tuple(size)
if isinstance(size, int) or len(size) == 1:
if default_to_square:
size = (size, size) if isinstance(size, int) else (size[0], size[0])
else:
width, height = image.size
# specified size only for the smallest edge
short, long = (width, height) if width <= height else (height, width)
requested_new_short = size if isinstance(size, int) else size[0]
if short == requested_new_short:
return image
new_short, new_long = requested_new_short, int(requested_new_short * long / short)
if max_size is not None:
if max_size <= requested_new_short:
raise ValueError(
f"max_size = {max_size} must be strictly greater than the requested "
f"size for the smaller edge size = {size}"
)
if new_long > max_size:
new_short, new_long = int(max_size * new_short / new_long), max_size
size = (new_short, new_long) if width <= height else (new_long, new_short)
return image.resize(size, resample=resample)
def center_crop(self, image, size):
"""
Crops `image` to the given size using a center crop. Note that if the image is too small to be cropped to the
size given, it will be padded (so the returned result has the size asked).
Args:
image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor` of shape (n_channels, height, width) or (height, width, n_channels)):
The image to resize.
size (`int` or `Tuple[int, int]`):
The size to which crop the image.
Returns:
new_image: A center cropped `PIL.Image.Image` or `np.ndarray` or `torch.Tensor` of shape: (n_channels,
height, width).
"""
self._ensure_format_supported(image)
if not isinstance(size, tuple):
size = (size, size)
# PIL Image.size is (width, height) but NumPy array and torch Tensors have (height, width)
if is_torch_tensor(image) or isinstance(image, np.ndarray):
if image.ndim == 2:
image = self.expand_dims(image)
image_shape = image.shape[1:] if image.shape[0] in [1, 3] else image.shape[:2]
else:
image_shape = (image.size[1], image.size[0])
top = (image_shape[0] - size[0]) // 2
bottom = top + size[0] # In case size is odd, (image_shape[0] + size[0]) // 2 won't give the proper result.
left = (image_shape[1] - size[1]) // 2
right = left + size[1] # In case size is odd, (image_shape[1] + size[1]) // 2 won't give the proper result.
# For PIL Images we have a method to crop directly.
if isinstance(image, PIL.Image.Image):
return image.crop((left, top, right, bottom))
# Check if image is in (n_channels, height, width) or (height, width, n_channels) format
channel_first = True if image.shape[0] in [1, 3] else False
# Transpose (height, width, n_channels) format images
if not channel_first:
if isinstance(image, np.ndarray):
image = image.transpose(2, 0, 1)
if is_torch_tensor(image):
image = image.permute(2, 0, 1)
# Check if cropped area is within image boundaries
if top >= 0 and bottom <= image_shape[0] and left >= 0 and right <= image_shape[1]:
return image[..., top:bottom, left:right]
# Otherwise, we may need to pad if the image is too small. Oh joy...
new_shape = image.shape[:-2] + (max(size[0], image_shape[0]), max(size[1], image_shape[1]))
if isinstance(image, np.ndarray):
new_image = np.zeros_like(image, shape=new_shape)
elif is_torch_tensor(image):
new_image = image.new_zeros(new_shape)
top_pad = (new_shape[-2] - image_shape[0]) // 2
bottom_pad = top_pad + image_shape[0]
left_pad = (new_shape[-1] - image_shape[1]) // 2
right_pad = left_pad + image_shape[1]
new_image[..., top_pad:bottom_pad, left_pad:right_pad] = image
top += top_pad
bottom += top_pad
left += left_pad
right += left_pad
new_image = new_image[
..., max(0, top) : min(new_image.shape[-2], bottom), max(0, left) : min(new_image.shape[-1], right)
]
return new_image
def flip_channel_order(self, image):
"""
Flips the channel order of `image` from RGB to BGR, or vice versa. Note that this will trigger a conversion of
`image` to a NumPy array if it's a PIL Image.
Args:
image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
The image whose color channels to flip. If `np.ndarray` or `torch.Tensor`, the channel dimension should
be first.
"""
self._ensure_format_supported(image)
if isinstance(image, PIL.Image.Image):
image = self.to_numpy_array(image)
return image[::-1, :, :]
def rotate(self, image, angle, resample=None, expand=0, center=None, translate=None, fillcolor=None):
"""
Returns a rotated copy of `image`. This method returns a copy of `image`, rotated the given number of degrees
counter clockwise around its centre.
Args:
image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
The image to rotate. If `np.ndarray` or `torch.Tensor`, will be converted to `PIL.Image.Image` before
rotating.
Returns:
image: A rotated `PIL.Image.Image`.
"""
resample = resample if resample is not None else PIL.Image.NEAREST
self._ensure_format_supported(image)
if not isinstance(image, PIL.Image.Image):
image = self.to_pil_image(image)
return image.rotate(
angle, resample=resample, expand=expand, center=center, translate=translate, fillcolor=fillcolor
)
|