File size: 8,847 Bytes
1ce5e18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" ALBERT model configuration"""
from collections import OrderedDict
from typing import Mapping

from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig


ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/config.json",
    "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/config.json",
    "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/config.json",
    "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json",
    "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/config.json",
    "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/config.json",
    "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/config.json",
    "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json",
}


class AlbertConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`AlbertModel`] or a [`TFAlbertModel`]. It is used
    to instantiate an ALBERT model according to the specified arguments, defining the model architecture. Instantiating
    a configuration with the defaults will yield a similar configuration to that of the ALBERT
    [albert-xxlarge-v2](https://huggingface.co/albert-xxlarge-v2) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 30000):
            Vocabulary size of the ALBERT model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`AlbertModel`] or [`TFAlbertModel`].
        embedding_size (`int`, *optional*, defaults to 128):
            Dimensionality of vocabulary embeddings.
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_hidden_groups (`int`, *optional*, defaults to 1):
            Number of groups for the hidden layers, parameters in the same group are shared.
        num_attention_heads (`int`, *optional*, defaults to 64):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 16384):
            The dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
        inner_group_num (`int`, *optional*, defaults to 1):
            The number of inner repetition of attention and ffn.
        hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu_new"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            (e.g., 512 or 1024 or 2048).
        type_vocab_size (`int`, *optional*, defaults to 2):
            The vocabulary size of the `token_type_ids` passed when calling [`AlbertModel`] or [`TFAlbertModel`].
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        classifier_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for attached classifiers.
        position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
            Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
            positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
            [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
            For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
            with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
        pad_token_id (`int`, *optional*, defaults to 0):
            Padding token id.
        bos_token_id (`int`, *optional*, defaults to 2):
            Beginning of stream token id.
        eos_token_id (`int`, *optional*, defaults to 3):
            End of stream token id.

    Examples:

    ```python
    >>> from transformers import AlbertConfig, AlbertModel

    >>> # Initializing an ALBERT-xxlarge style configuration
    >>> albert_xxlarge_configuration = AlbertConfig()

    >>> # Initializing an ALBERT-base style configuration
    >>> albert_base_configuration = AlbertConfig(
    ...     hidden_size=768,
    ...     num_attention_heads=12,
    ...     intermediate_size=3072,
    ... )

    >>> # Initializing a model (with random weights) from the ALBERT-base style configuration
    >>> model = AlbertModel(albert_xxlarge_configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""

    model_type = "albert"

    def __init__(
        self,
        vocab_size=30000,
        embedding_size=128,
        hidden_size=4096,
        num_hidden_layers=12,
        num_hidden_groups=1,
        num_attention_heads=64,
        intermediate_size=16384,
        inner_group_num=1,
        hidden_act="gelu_new",
        hidden_dropout_prob=0,
        attention_probs_dropout_prob=0,
        max_position_embeddings=512,
        type_vocab_size=2,
        initializer_range=0.02,
        layer_norm_eps=1e-12,
        classifier_dropout_prob=0.1,
        position_embedding_type="absolute",
        pad_token_id=0,
        bos_token_id=2,
        eos_token_id=3,
        **kwargs,
    ):
        super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)

        self.vocab_size = vocab_size
        self.embedding_size = embedding_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_hidden_groups = num_hidden_groups
        self.num_attention_heads = num_attention_heads
        self.inner_group_num = inner_group_num
        self.hidden_act = hidden_act
        self.intermediate_size = intermediate_size
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.initializer_range = initializer_range
        self.layer_norm_eps = layer_norm_eps
        self.classifier_dropout_prob = classifier_dropout_prob
        self.position_embedding_type = position_embedding_type


# Copied from transformers.models.bert.configuration_bert.BertOnnxConfig with Roberta->Albert
class AlbertOnnxConfig(OnnxConfig):
    @property
    def inputs(self) -> Mapping[str, Mapping[int, str]]:
        if self.task == "multiple-choice":
            dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
        else:
            dynamic_axis = {0: "batch", 1: "sequence"}
        return OrderedDict(
            [
                ("input_ids", dynamic_axis),
                ("attention_mask", dynamic_axis),
                ("token_type_ids", dynamic_axis),
            ]
        )