File size: 58,414 Bytes
1ce5e18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 |
# coding=utf-8
# Copyright 2020 Microsoft and the Hugging Face Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch DeBERTa model."""
from collections.abc import Sequence
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutput,
MaskedLMOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import softmax_backward_data
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_deberta import DebertaConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "DebertaConfig"
_CHECKPOINT_FOR_DOC = "microsoft/deberta-base"
# Masked LM docstring
_CHECKPOINT_FOR_MASKED_LM = "lsanochkin/deberta-large-feedback"
_MASKED_LM_EXPECTED_OUTPUT = "' Paris'"
_MASKED_LM_EXPECTED_LOSS = "0.54"
# QuestionAnswering docstring
_CHECKPOINT_FOR_QA = "Palak/microsoft_deberta-large_squad"
_QA_EXPECTED_OUTPUT = "' a nice puppet'"
_QA_EXPECTED_LOSS = 0.14
_QA_TARGET_START_INDEX = 12
_QA_TARGET_END_INDEX = 14
DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = [
"microsoft/deberta-base",
"microsoft/deberta-large",
"microsoft/deberta-xlarge",
"microsoft/deberta-base-mnli",
"microsoft/deberta-large-mnli",
"microsoft/deberta-xlarge-mnli",
]
class ContextPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.pooler_hidden_size, config.pooler_hidden_size)
self.dropout = StableDropout(config.pooler_dropout)
self.config = config
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
context_token = hidden_states[:, 0]
context_token = self.dropout(context_token)
pooled_output = self.dense(context_token)
pooled_output = ACT2FN[self.config.pooler_hidden_act](pooled_output)
return pooled_output
@property
def output_dim(self):
return self.config.hidden_size
class XSoftmax(torch.autograd.Function):
"""
Masked Softmax which is optimized for saving memory
Args:
input (`torch.tensor`): The input tensor that will apply softmax.
mask (`torch.IntTensor`):
The mask matrix where 0 indicate that element will be ignored in the softmax calculation.
dim (int): The dimension that will apply softmax
Example:
```python
>>> import torch
>>> from transformers.models.deberta.modeling_deberta import XSoftmax
>>> # Make a tensor
>>> x = torch.randn([4, 20, 100])
>>> # Create a mask
>>> mask = (x > 0).int()
>>> # Specify the dimension to apply softmax
>>> dim = -1
>>> y = XSoftmax.apply(x, mask, dim)
```"""
@staticmethod
def forward(self, input, mask, dim):
self.dim = dim
rmask = ~(mask.to(torch.bool))
output = input.masked_fill(rmask, torch.tensor(torch.finfo(input.dtype).min))
output = torch.softmax(output, self.dim)
output.masked_fill_(rmask, 0)
self.save_for_backward(output)
return output
@staticmethod
def backward(self, grad_output):
(output,) = self.saved_tensors
inputGrad = softmax_backward_data(self, grad_output, output, self.dim, output)
return inputGrad, None, None
@staticmethod
def symbolic(g, self, mask, dim):
import torch.onnx.symbolic_helper as sym_help
from torch.onnx.symbolic_opset9 import masked_fill, softmax
mask_cast_value = g.op("Cast", mask, to_i=sym_help.cast_pytorch_to_onnx["Long"])
r_mask = g.op(
"Cast",
g.op("Sub", g.op("Constant", value_t=torch.tensor(1, dtype=torch.int64)), mask_cast_value),
to_i=sym_help.cast_pytorch_to_onnx["Bool"],
)
output = masked_fill(
g, self, r_mask, g.op("Constant", value_t=torch.tensor(torch.finfo(self.type().dtype()).min))
)
output = softmax(g, output, dim)
return masked_fill(g, output, r_mask, g.op("Constant", value_t=torch.tensor(0, dtype=torch.bool)))
class DropoutContext(object):
def __init__(self):
self.dropout = 0
self.mask = None
self.scale = 1
self.reuse_mask = True
def get_mask(input, local_context):
if not isinstance(local_context, DropoutContext):
dropout = local_context
mask = None
else:
dropout = local_context.dropout
dropout *= local_context.scale
mask = local_context.mask if local_context.reuse_mask else None
if dropout > 0 and mask is None:
mask = (1 - torch.empty_like(input).bernoulli_(1 - dropout)).to(torch.bool)
if isinstance(local_context, DropoutContext):
if local_context.mask is None:
local_context.mask = mask
return mask, dropout
class XDropout(torch.autograd.Function):
"""Optimized dropout function to save computation and memory by using mask operation instead of multiplication."""
@staticmethod
def forward(ctx, input, local_ctx):
mask, dropout = get_mask(input, local_ctx)
ctx.scale = 1.0 / (1 - dropout)
if dropout > 0:
ctx.save_for_backward(mask)
return input.masked_fill(mask, 0) * ctx.scale
else:
return input
@staticmethod
def backward(ctx, grad_output):
if ctx.scale > 1:
(mask,) = ctx.saved_tensors
return grad_output.masked_fill(mask, 0) * ctx.scale, None
else:
return grad_output, None
@staticmethod
def symbolic(g: torch._C.Graph, input: torch._C.Value, local_ctx: Union[float, DropoutContext]) -> torch._C.Value:
from torch.onnx import symbolic_opset12
dropout_p = local_ctx
if isinstance(local_ctx, DropoutContext):
dropout_p = local_ctx.dropout
# StableDropout only calls this function when training.
train = True
# TODO: We should check if the opset_version being used to export
# is > 12 here, but there's no good way to do that. As-is, if the
# opset_version < 12, export will fail with a CheckerError.
# Once https://github.com/pytorch/pytorch/issues/78391 is fixed, do something like:
# if opset_version < 12:
# return torch.onnx.symbolic_opset9.dropout(g, input, dropout_p, train)
return symbolic_opset12.dropout(g, input, dropout_p, train)
class StableDropout(nn.Module):
"""
Optimized dropout module for stabilizing the training
Args:
drop_prob (float): the dropout probabilities
"""
def __init__(self, drop_prob):
super().__init__()
self.drop_prob = drop_prob
self.count = 0
self.context_stack = None
def forward(self, x):
"""
Call the module
Args:
x (`torch.tensor`): The input tensor to apply dropout
"""
if self.training and self.drop_prob > 0:
return XDropout.apply(x, self.get_context())
return x
def clear_context(self):
self.count = 0
self.context_stack = None
def init_context(self, reuse_mask=True, scale=1):
if self.context_stack is None:
self.context_stack = []
self.count = 0
for c in self.context_stack:
c.reuse_mask = reuse_mask
c.scale = scale
def get_context(self):
if self.context_stack is not None:
if self.count >= len(self.context_stack):
self.context_stack.append(DropoutContext())
ctx = self.context_stack[self.count]
ctx.dropout = self.drop_prob
self.count += 1
return ctx
else:
return self.drop_prob
class DebertaLayerNorm(nn.Module):
"""LayerNorm module in the TF style (epsilon inside the square root)."""
def __init__(self, size, eps=1e-12):
super().__init__()
self.weight = nn.Parameter(torch.ones(size))
self.bias = nn.Parameter(torch.zeros(size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_type = hidden_states.dtype
hidden_states = hidden_states.float()
mean = hidden_states.mean(-1, keepdim=True)
variance = (hidden_states - mean).pow(2).mean(-1, keepdim=True)
hidden_states = (hidden_states - mean) / torch.sqrt(variance + self.variance_epsilon)
hidden_states = hidden_states.to(input_type)
y = self.weight * hidden_states + self.bias
return y
class DebertaSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = DebertaLayerNorm(config.hidden_size, config.layer_norm_eps)
self.dropout = StableDropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class DebertaAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.self = DisentangledSelfAttention(config)
self.output = DebertaSelfOutput(config)
self.config = config
def forward(
self,
hidden_states,
attention_mask,
output_attentions=False,
query_states=None,
relative_pos=None,
rel_embeddings=None,
):
self_output = self.self(
hidden_states,
attention_mask,
output_attentions,
query_states=query_states,
relative_pos=relative_pos,
rel_embeddings=rel_embeddings,
)
if output_attentions:
self_output, att_matrix = self_output
if query_states is None:
query_states = hidden_states
attention_output = self.output(self_output, query_states)
if output_attentions:
return (attention_output, att_matrix)
else:
return attention_output
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Deberta
class DebertaIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class DebertaOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = DebertaLayerNorm(config.hidden_size, config.layer_norm_eps)
self.dropout = StableDropout(config.hidden_dropout_prob)
self.config = config
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class DebertaLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.attention = DebertaAttention(config)
self.intermediate = DebertaIntermediate(config)
self.output = DebertaOutput(config)
def forward(
self,
hidden_states,
attention_mask,
query_states=None,
relative_pos=None,
rel_embeddings=None,
output_attentions=False,
):
attention_output = self.attention(
hidden_states,
attention_mask,
output_attentions=output_attentions,
query_states=query_states,
relative_pos=relative_pos,
rel_embeddings=rel_embeddings,
)
if output_attentions:
attention_output, att_matrix = attention_output
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
if output_attentions:
return (layer_output, att_matrix)
else:
return layer_output
class DebertaEncoder(nn.Module):
"""Modified BertEncoder with relative position bias support"""
def __init__(self, config):
super().__init__()
self.layer = nn.ModuleList([DebertaLayer(config) for _ in range(config.num_hidden_layers)])
self.relative_attention = getattr(config, "relative_attention", False)
if self.relative_attention:
self.max_relative_positions = getattr(config, "max_relative_positions", -1)
if self.max_relative_positions < 1:
self.max_relative_positions = config.max_position_embeddings
self.rel_embeddings = nn.Embedding(self.max_relative_positions * 2, config.hidden_size)
self.gradient_checkpointing = False
def get_rel_embedding(self):
rel_embeddings = self.rel_embeddings.weight if self.relative_attention else None
return rel_embeddings
def get_attention_mask(self, attention_mask):
if attention_mask.dim() <= 2:
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
attention_mask = extended_attention_mask * extended_attention_mask.squeeze(-2).unsqueeze(-1)
elif attention_mask.dim() == 3:
attention_mask = attention_mask.unsqueeze(1)
return attention_mask
def get_rel_pos(self, hidden_states, query_states=None, relative_pos=None):
if self.relative_attention and relative_pos is None:
q = query_states.size(-2) if query_states is not None else hidden_states.size(-2)
relative_pos = build_relative_position(q, hidden_states.size(-2), hidden_states.device)
return relative_pos
def forward(
self,
hidden_states,
attention_mask,
output_hidden_states=True,
output_attentions=False,
query_states=None,
relative_pos=None,
return_dict=True,
):
attention_mask = self.get_attention_mask(attention_mask)
relative_pos = self.get_rel_pos(hidden_states, query_states, relative_pos)
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
if isinstance(hidden_states, Sequence):
next_kv = hidden_states[0]
else:
next_kv = hidden_states
rel_embeddings = self.get_rel_embedding()
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, output_attentions)
return custom_forward
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(layer_module),
next_kv,
attention_mask,
query_states,
relative_pos,
rel_embeddings,
)
else:
hidden_states = layer_module(
next_kv,
attention_mask,
query_states=query_states,
relative_pos=relative_pos,
rel_embeddings=rel_embeddings,
output_attentions=output_attentions,
)
if output_attentions:
hidden_states, att_m = hidden_states
if query_states is not None:
query_states = hidden_states
if isinstance(hidden_states, Sequence):
next_kv = hidden_states[i + 1] if i + 1 < len(self.layer) else None
else:
next_kv = hidden_states
if output_attentions:
all_attentions = all_attentions + (att_m,)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
)
def build_relative_position(query_size, key_size, device):
"""
Build relative position according to the query and key
We assume the absolute position of query \\(P_q\\) is range from (0, query_size) and the absolute position of key
\\(P_k\\) is range from (0, key_size), The relative positions from query to key is \\(R_{q \\rightarrow k} = P_q -
P_k\\)
Args:
query_size (int): the length of query
key_size (int): the length of key
Return:
`torch.LongTensor`: A tensor with shape [1, query_size, key_size]
"""
q_ids = torch.arange(query_size, dtype=torch.long, device=device)
k_ids = torch.arange(key_size, dtype=torch.long, device=device)
rel_pos_ids = q_ids[:, None] - k_ids.view(1, -1).repeat(query_size, 1)
rel_pos_ids = rel_pos_ids[:query_size, :]
rel_pos_ids = rel_pos_ids.unsqueeze(0)
return rel_pos_ids
@torch.jit.script
def c2p_dynamic_expand(c2p_pos, query_layer, relative_pos):
return c2p_pos.expand([query_layer.size(0), query_layer.size(1), query_layer.size(2), relative_pos.size(-1)])
@torch.jit.script
def p2c_dynamic_expand(c2p_pos, query_layer, key_layer):
return c2p_pos.expand([query_layer.size(0), query_layer.size(1), key_layer.size(-2), key_layer.size(-2)])
@torch.jit.script
def pos_dynamic_expand(pos_index, p2c_att, key_layer):
return pos_index.expand(p2c_att.size()[:2] + (pos_index.size(-2), key_layer.size(-2)))
class DisentangledSelfAttention(nn.Module):
"""
Disentangled self-attention module
Parameters:
config (`str`):
A model config class instance with the configuration to build a new model. The schema is similar to
*BertConfig*, for more details, please refer [`DebertaConfig`]
"""
def __init__(self, config):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.in_proj = nn.Linear(config.hidden_size, self.all_head_size * 3, bias=False)
self.q_bias = nn.Parameter(torch.zeros((self.all_head_size), dtype=torch.float))
self.v_bias = nn.Parameter(torch.zeros((self.all_head_size), dtype=torch.float))
self.pos_att_type = config.pos_att_type if config.pos_att_type is not None else []
self.relative_attention = getattr(config, "relative_attention", False)
self.talking_head = getattr(config, "talking_head", False)
if self.talking_head:
self.head_logits_proj = nn.Linear(config.num_attention_heads, config.num_attention_heads, bias=False)
self.head_weights_proj = nn.Linear(config.num_attention_heads, config.num_attention_heads, bias=False)
if self.relative_attention:
self.max_relative_positions = getattr(config, "max_relative_positions", -1)
if self.max_relative_positions < 1:
self.max_relative_positions = config.max_position_embeddings
self.pos_dropout = StableDropout(config.hidden_dropout_prob)
if "c2p" in self.pos_att_type:
self.pos_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
if "p2c" in self.pos_att_type:
self.pos_q_proj = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = StableDropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, -1)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states,
attention_mask,
output_attentions=False,
query_states=None,
relative_pos=None,
rel_embeddings=None,
):
"""
Call the module
Args:
hidden_states (`torch.FloatTensor`):
Input states to the module usually the output from previous layer, it will be the Q,K and V in
*Attention(Q,K,V)*
attention_mask (`torch.BoolTensor`):
An attention mask matrix of shape [*B*, *N*, *N*] where *B* is the batch size, *N* is the maximum
sequence length in which element [i,j] = *1* means the *i* th token in the input can attend to the *j*
th token.
output_attentions (`bool`, optional):
Whether return the attention matrix.
query_states (`torch.FloatTensor`, optional):
The *Q* state in *Attention(Q,K,V)*.
relative_pos (`torch.LongTensor`):
The relative position encoding between the tokens in the sequence. It's of shape [*B*, *N*, *N*] with
values ranging in [*-max_relative_positions*, *max_relative_positions*].
rel_embeddings (`torch.FloatTensor`):
The embedding of relative distances. It's a tensor of shape [\\(2 \\times
\\text{max_relative_positions}\\), *hidden_size*].
"""
if query_states is None:
qp = self.in_proj(hidden_states) # .split(self.all_head_size, dim=-1)
query_layer, key_layer, value_layer = self.transpose_for_scores(qp).chunk(3, dim=-1)
else:
def linear(w, b, x):
if b is not None:
return torch.matmul(x, w.t()) + b.t()
else:
return torch.matmul(x, w.t()) # + b.t()
ws = self.in_proj.weight.chunk(self.num_attention_heads * 3, dim=0)
qkvw = [torch.cat([ws[i * 3 + k] for i in range(self.num_attention_heads)], dim=0) for k in range(3)]
qkvb = [None] * 3
q = linear(qkvw[0], qkvb[0], query_states.to(dtype=qkvw[0].dtype))
k, v = [linear(qkvw[i], qkvb[i], hidden_states.to(dtype=qkvw[i].dtype)) for i in range(1, 3)]
query_layer, key_layer, value_layer = [self.transpose_for_scores(x) for x in [q, k, v]]
query_layer = query_layer + self.transpose_for_scores(self.q_bias[None, None, :])
value_layer = value_layer + self.transpose_for_scores(self.v_bias[None, None, :])
rel_att = None
# Take the dot product between "query" and "key" to get the raw attention scores.
scale_factor = 1 + len(self.pos_att_type)
scale = torch.sqrt(torch.tensor(query_layer.size(-1), dtype=torch.float) * scale_factor)
query_layer = query_layer / scale.to(dtype=query_layer.dtype)
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if self.relative_attention:
rel_embeddings = self.pos_dropout(rel_embeddings)
rel_att = self.disentangled_att_bias(query_layer, key_layer, relative_pos, rel_embeddings, scale_factor)
if rel_att is not None:
attention_scores = attention_scores + rel_att
# bxhxlxd
if self.talking_head:
attention_scores = self.head_logits_proj(attention_scores.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
attention_probs = XSoftmax.apply(attention_scores, attention_mask, -1)
attention_probs = self.dropout(attention_probs)
if self.talking_head:
attention_probs = self.head_weights_proj(attention_probs.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (-1,)
context_layer = context_layer.view(new_context_layer_shape)
if output_attentions:
return (context_layer, attention_probs)
else:
return context_layer
def disentangled_att_bias(self, query_layer, key_layer, relative_pos, rel_embeddings, scale_factor):
if relative_pos is None:
q = query_layer.size(-2)
relative_pos = build_relative_position(q, key_layer.size(-2), query_layer.device)
if relative_pos.dim() == 2:
relative_pos = relative_pos.unsqueeze(0).unsqueeze(0)
elif relative_pos.dim() == 3:
relative_pos = relative_pos.unsqueeze(1)
# bxhxqxk
elif relative_pos.dim() != 4:
raise ValueError(f"Relative position ids must be of dim 2 or 3 or 4. {relative_pos.dim()}")
att_span = min(max(query_layer.size(-2), key_layer.size(-2)), self.max_relative_positions)
relative_pos = relative_pos.long().to(query_layer.device)
rel_embeddings = rel_embeddings[
self.max_relative_positions - att_span : self.max_relative_positions + att_span, :
].unsqueeze(0)
score = 0
# content->position
if "c2p" in self.pos_att_type:
pos_key_layer = self.pos_proj(rel_embeddings)
pos_key_layer = self.transpose_for_scores(pos_key_layer)
c2p_att = torch.matmul(query_layer, pos_key_layer.transpose(-1, -2))
c2p_pos = torch.clamp(relative_pos + att_span, 0, att_span * 2 - 1)
c2p_att = torch.gather(c2p_att, dim=-1, index=c2p_dynamic_expand(c2p_pos, query_layer, relative_pos))
score += c2p_att
# position->content
if "p2c" in self.pos_att_type:
pos_query_layer = self.pos_q_proj(rel_embeddings)
pos_query_layer = self.transpose_for_scores(pos_query_layer)
pos_query_layer /= torch.sqrt(torch.tensor(pos_query_layer.size(-1), dtype=torch.float) * scale_factor)
if query_layer.size(-2) != key_layer.size(-2):
r_pos = build_relative_position(key_layer.size(-2), key_layer.size(-2), query_layer.device)
else:
r_pos = relative_pos
p2c_pos = torch.clamp(-r_pos + att_span, 0, att_span * 2 - 1)
p2c_att = torch.matmul(key_layer, pos_query_layer.transpose(-1, -2).to(dtype=key_layer.dtype))
p2c_att = torch.gather(
p2c_att, dim=-1, index=p2c_dynamic_expand(p2c_pos, query_layer, key_layer)
).transpose(-1, -2)
if query_layer.size(-2) != key_layer.size(-2):
pos_index = relative_pos[:, :, :, 0].unsqueeze(-1)
p2c_att = torch.gather(p2c_att, dim=-2, index=pos_dynamic_expand(pos_index, p2c_att, key_layer))
score += p2c_att
return score
class DebertaEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config):
super().__init__()
pad_token_id = getattr(config, "pad_token_id", 0)
self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
self.word_embeddings = nn.Embedding(config.vocab_size, self.embedding_size, padding_idx=pad_token_id)
self.position_biased_input = getattr(config, "position_biased_input", True)
if not self.position_biased_input:
self.position_embeddings = None
else:
self.position_embeddings = nn.Embedding(config.max_position_embeddings, self.embedding_size)
if config.type_vocab_size > 0:
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, self.embedding_size)
if self.embedding_size != config.hidden_size:
self.embed_proj = nn.Linear(self.embedding_size, config.hidden_size, bias=False)
self.LayerNorm = DebertaLayerNorm(config.hidden_size, config.layer_norm_eps)
self.dropout = StableDropout(config.hidden_dropout_prob)
self.config = config
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, mask=None, inputs_embeds=None):
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
if self.position_embeddings is not None:
position_embeddings = self.position_embeddings(position_ids.long())
else:
position_embeddings = torch.zeros_like(inputs_embeds)
embeddings = inputs_embeds
if self.position_biased_input:
embeddings += position_embeddings
if self.config.type_vocab_size > 0:
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings += token_type_embeddings
if self.embedding_size != self.config.hidden_size:
embeddings = self.embed_proj(embeddings)
embeddings = self.LayerNorm(embeddings)
if mask is not None:
if mask.dim() != embeddings.dim():
if mask.dim() == 4:
mask = mask.squeeze(1).squeeze(1)
mask = mask.unsqueeze(2)
mask = mask.to(embeddings.dtype)
embeddings = embeddings * mask
embeddings = self.dropout(embeddings)
return embeddings
class DebertaPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = DebertaConfig
base_model_prefix = "deberta"
_keys_to_ignore_on_load_unexpected = ["position_embeddings"]
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, DebertaEncoder):
module.gradient_checkpointing = value
DEBERTA_START_DOCSTRING = r"""
The DeBERTa model was proposed in [DeBERTa: Decoding-enhanced BERT with Disentangled
Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen. It's build
on top of BERT/RoBERTa with two improvements, i.e. disentangled attention and enhanced mask decoder. With those two
improvements, it out perform BERT/RoBERTa on a majority of tasks with 80GB pretraining data.
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`DebertaConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
DEBERTA_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare DeBERTa Model transformer outputting raw hidden-states without any specific head on top.",
DEBERTA_START_DOCSTRING,
)
class DebertaModel(DebertaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.embeddings = DebertaEmbeddings(config)
self.encoder = DebertaEncoder(config)
self.z_steps = 0
self.config = config
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, new_embeddings):
self.embeddings.word_embeddings = new_embeddings
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
raise NotImplementedError("The prune function is not implemented in DeBERTa model.")
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=device)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
embedding_output = self.embeddings(
input_ids=input_ids,
token_type_ids=token_type_ids,
position_ids=position_ids,
mask=attention_mask,
inputs_embeds=inputs_embeds,
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask,
output_hidden_states=True,
output_attentions=output_attentions,
return_dict=return_dict,
)
encoded_layers = encoder_outputs[1]
if self.z_steps > 1:
hidden_states = encoded_layers[-2]
layers = [self.encoder.layer[-1] for _ in range(self.z_steps)]
query_states = encoded_layers[-1]
rel_embeddings = self.encoder.get_rel_embedding()
attention_mask = self.encoder.get_attention_mask(attention_mask)
rel_pos = self.encoder.get_rel_pos(embedding_output)
for layer in layers[1:]:
query_states = layer(
hidden_states,
attention_mask,
output_attentions=False,
query_states=query_states,
relative_pos=rel_pos,
rel_embeddings=rel_embeddings,
)
encoded_layers.append(query_states)
sequence_output = encoded_layers[-1]
if not return_dict:
return (sequence_output,) + encoder_outputs[(1 if output_hidden_states else 2) :]
return BaseModelOutput(
last_hidden_state=sequence_output,
hidden_states=encoder_outputs.hidden_states if output_hidden_states else None,
attentions=encoder_outputs.attentions,
)
@add_start_docstrings("""DeBERTa Model with a `language modeling` head on top.""", DEBERTA_START_DOCSTRING)
class DebertaForMaskedLM(DebertaPreTrainedModel):
_tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"]
def __init__(self, config):
super().__init__(config)
self.deberta = DebertaModel(config)
self.cls = DebertaOnlyMLMHead(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.cls.predictions.decoder
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_MASKED_LM,
output_type=MaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
mask="[MASK]",
expected_output=_MASKED_LM_EXPECTED_OUTPUT,
expected_loss=_MASKED_LM_EXPECTED_LOSS,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.deberta(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.cls(sequence_output)
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss() # -100 index = padding token
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class DebertaPredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
self.dense = nn.Linear(config.hidden_size, self.embedding_size)
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = nn.LayerNorm(self.embedding_size, eps=config.layer_norm_eps)
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
class DebertaLMPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
self.transform = DebertaPredictionHeadTransform(config)
self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(self.embedding_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
# copied from transformers.models.bert.BertOnlyMLMHead with bert -> deberta
class DebertaOnlyMLMHead(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = DebertaLMPredictionHead(config)
def forward(self, sequence_output):
prediction_scores = self.predictions(sequence_output)
return prediction_scores
@add_start_docstrings(
"""
DeBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the
pooled output) e.g. for GLUE tasks.
""",
DEBERTA_START_DOCSTRING,
)
class DebertaForSequenceClassification(DebertaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
num_labels = getattr(config, "num_labels", 2)
self.num_labels = num_labels
self.deberta = DebertaModel(config)
self.pooler = ContextPooler(config)
output_dim = self.pooler.output_dim
self.classifier = nn.Linear(output_dim, num_labels)
drop_out = getattr(config, "cls_dropout", None)
drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out
self.dropout = StableDropout(drop_out)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.deberta.get_input_embeddings()
def set_input_embeddings(self, new_embeddings):
self.deberta.set_input_embeddings(new_embeddings)
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.deberta(
input_ids,
token_type_ids=token_type_ids,
attention_mask=attention_mask,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
encoder_layer = outputs[0]
pooled_output = self.pooler(encoder_layer)
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
# regression task
loss_fn = nn.MSELoss()
logits = logits.view(-1).to(labels.dtype)
loss = loss_fn(logits, labels.view(-1))
elif labels.dim() == 1 or labels.size(-1) == 1:
label_index = (labels >= 0).nonzero()
labels = labels.long()
if label_index.size(0) > 0:
labeled_logits = torch.gather(
logits, 0, label_index.expand(label_index.size(0), logits.size(1))
)
labels = torch.gather(labels, 0, label_index.view(-1))
loss_fct = CrossEntropyLoss()
loss = loss_fct(labeled_logits.view(-1, self.num_labels).float(), labels.view(-1))
else:
loss = torch.tensor(0).to(logits)
else:
log_softmax = nn.LogSoftmax(-1)
loss = -((log_softmax(logits) * labels).sum(-1)).mean()
elif self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
)
@add_start_docstrings(
"""
DeBERTa Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
DEBERTA_START_DOCSTRING,
)
class DebertaForTokenClassification(DebertaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.deberta = DebertaModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.deberta(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
)
@add_start_docstrings(
"""
DeBERTa Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
DEBERTA_START_DOCSTRING,
)
class DebertaForQuestionAnswering(DebertaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.deberta = DebertaModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_QA,
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_QA_EXPECTED_OUTPUT,
expected_loss=_QA_EXPECTED_LOSS,
qa_target_start_index=_QA_TARGET_START_INDEX,
qa_target_end_index=_QA_TARGET_END_INDEX,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
start_positions: Optional[torch.Tensor] = None,
end_positions: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.deberta(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[1:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|