Spaces:
Running
on
T4
Running
on
T4
File size: 17,712 Bytes
4ba09fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 |
import argparse
import json
import warnings
from collections import OrderedDict
from copy import deepcopy
from typing import Any, Dict, List
import numpy as np
import torch
from transformers import AutoTokenizer
from groundingdino.util.slconfig import SLConfig
def slprint(x, name="x"):
if isinstance(x, (torch.Tensor, np.ndarray)):
print(f"{name}.shape:", x.shape)
elif isinstance(x, (tuple, list)):
print("type x:", type(x))
for i in range(min(10, len(x))):
slprint(x[i], f"{name}[{i}]")
elif isinstance(x, dict):
for k, v in x.items():
slprint(v, f"{name}[{k}]")
else:
print(f"{name}.type:", type(x))
def clean_state_dict(state_dict):
new_state_dict = OrderedDict()
for k, v in state_dict.items():
if k[:7] == "module.":
k = k[7:] # remove `module.`
new_state_dict[k] = v
return new_state_dict
def renorm(
img: torch.FloatTensor, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
) -> torch.FloatTensor:
# img: tensor(3,H,W) or tensor(B,3,H,W)
# return: same as img
assert img.dim() == 3 or img.dim() == 4, "img.dim() should be 3 or 4 but %d" % img.dim()
if img.dim() == 3:
assert img.size(0) == 3, 'img.size(0) shoule be 3 but "%d". (%s)' % (
img.size(0),
str(img.size()),
)
img_perm = img.permute(1, 2, 0)
mean = torch.Tensor(mean)
std = torch.Tensor(std)
img_res = img_perm * std + mean
return img_res.permute(2, 0, 1)
else: # img.dim() == 4
assert img.size(1) == 3, 'img.size(1) shoule be 3 but "%d". (%s)' % (
img.size(1),
str(img.size()),
)
img_perm = img.permute(0, 2, 3, 1)
mean = torch.Tensor(mean)
std = torch.Tensor(std)
img_res = img_perm * std + mean
return img_res.permute(0, 3, 1, 2)
class CocoClassMapper:
def __init__(self) -> None:
self.category_map_str = {
"1": 1,
"2": 2,
"3": 3,
"4": 4,
"5": 5,
"6": 6,
"7": 7,
"8": 8,
"9": 9,
"10": 10,
"11": 11,
"13": 12,
"14": 13,
"15": 14,
"16": 15,
"17": 16,
"18": 17,
"19": 18,
"20": 19,
"21": 20,
"22": 21,
"23": 22,
"24": 23,
"25": 24,
"27": 25,
"28": 26,
"31": 27,
"32": 28,
"33": 29,
"34": 30,
"35": 31,
"36": 32,
"37": 33,
"38": 34,
"39": 35,
"40": 36,
"41": 37,
"42": 38,
"43": 39,
"44": 40,
"46": 41,
"47": 42,
"48": 43,
"49": 44,
"50": 45,
"51": 46,
"52": 47,
"53": 48,
"54": 49,
"55": 50,
"56": 51,
"57": 52,
"58": 53,
"59": 54,
"60": 55,
"61": 56,
"62": 57,
"63": 58,
"64": 59,
"65": 60,
"67": 61,
"70": 62,
"72": 63,
"73": 64,
"74": 65,
"75": 66,
"76": 67,
"77": 68,
"78": 69,
"79": 70,
"80": 71,
"81": 72,
"82": 73,
"84": 74,
"85": 75,
"86": 76,
"87": 77,
"88": 78,
"89": 79,
"90": 80,
}
self.origin2compact_mapper = {int(k): v - 1 for k, v in self.category_map_str.items()}
self.compact2origin_mapper = {int(v - 1): int(k) for k, v in self.category_map_str.items()}
def origin2compact(self, idx):
return self.origin2compact_mapper[int(idx)]
def compact2origin(self, idx):
return self.compact2origin_mapper[int(idx)]
def to_device(item, device):
if isinstance(item, torch.Tensor):
return item.to(device)
elif isinstance(item, list):
return [to_device(i, device) for i in item]
elif isinstance(item, dict):
return {k: to_device(v, device) for k, v in item.items()}
else:
raise NotImplementedError(
"Call Shilong if you use other containers! type: {}".format(type(item))
)
#
def get_gaussian_mean(x, axis, other_axis, softmax=True):
"""
Args:
x (float): Input images(BxCxHxW)
axis (int): The index for weighted mean
other_axis (int): The other index
Returns: weighted index for axis, BxC
"""
mat2line = torch.sum(x, axis=other_axis)
# mat2line = mat2line / mat2line.mean() * 10
if softmax:
u = torch.softmax(mat2line, axis=2)
else:
u = mat2line / (mat2line.sum(2, keepdim=True) + 1e-6)
size = x.shape[axis]
ind = torch.linspace(0, 1, size).to(x.device)
batch = x.shape[0]
channel = x.shape[1]
index = ind.repeat([batch, channel, 1])
mean_position = torch.sum(index * u, dim=2)
return mean_position
def get_expected_points_from_map(hm, softmax=True):
"""get_gaussian_map_from_points
B,C,H,W -> B,N,2 float(0, 1) float(0, 1)
softargmax function
Args:
hm (float): Input images(BxCxHxW)
Returns:
weighted index for axis, BxCx2. float between 0 and 1.
"""
# hm = 10*hm
B, C, H, W = hm.shape
y_mean = get_gaussian_mean(hm, 2, 3, softmax=softmax) # B,C
x_mean = get_gaussian_mean(hm, 3, 2, softmax=softmax) # B,C
# return torch.cat((x_mean.unsqueeze(-1), y_mean.unsqueeze(-1)), 2)
return torch.stack([x_mean, y_mean], dim=2)
# Positional encoding (section 5.1)
# borrow from nerf
class Embedder:
def __init__(self, **kwargs):
self.kwargs = kwargs
self.create_embedding_fn()
def create_embedding_fn(self):
embed_fns = []
d = self.kwargs["input_dims"]
out_dim = 0
if self.kwargs["include_input"]:
embed_fns.append(lambda x: x)
out_dim += d
max_freq = self.kwargs["max_freq_log2"]
N_freqs = self.kwargs["num_freqs"]
if self.kwargs["log_sampling"]:
freq_bands = 2.0 ** torch.linspace(0.0, max_freq, steps=N_freqs)
else:
freq_bands = torch.linspace(2.0**0.0, 2.0**max_freq, steps=N_freqs)
for freq in freq_bands:
for p_fn in self.kwargs["periodic_fns"]:
embed_fns.append(lambda x, p_fn=p_fn, freq=freq: p_fn(x * freq))
out_dim += d
self.embed_fns = embed_fns
self.out_dim = out_dim
def embed(self, inputs):
return torch.cat([fn(inputs) for fn in self.embed_fns], -1)
def get_embedder(multires, i=0):
import torch.nn as nn
if i == -1:
return nn.Identity(), 3
embed_kwargs = {
"include_input": True,
"input_dims": 3,
"max_freq_log2": multires - 1,
"num_freqs": multires,
"log_sampling": True,
"periodic_fns": [torch.sin, torch.cos],
}
embedder_obj = Embedder(**embed_kwargs)
embed = lambda x, eo=embedder_obj: eo.embed(x)
return embed, embedder_obj.out_dim
class APOPMeter:
def __init__(self) -> None:
self.tp = 0
self.fp = 0
self.tn = 0
self.fn = 0
def update(self, pred, gt):
"""
Input:
pred, gt: Tensor()
"""
assert pred.shape == gt.shape
self.tp += torch.logical_and(pred == 1, gt == 1).sum().item()
self.fp += torch.logical_and(pred == 1, gt == 0).sum().item()
self.tn += torch.logical_and(pred == 0, gt == 0).sum().item()
self.tn += torch.logical_and(pred == 1, gt == 0).sum().item()
def update_cm(self, tp, fp, tn, fn):
self.tp += tp
self.fp += fp
self.tn += tn
self.tn += fn
def inverse_sigmoid(x, eps=1e-5):
x = x.clamp(min=0, max=1)
x1 = x.clamp(min=eps)
x2 = (1 - x).clamp(min=eps)
return torch.log(x1 / x2)
def get_raw_dict(args):
"""
return the dicf contained in args.
e.g:
>>> with open(path, 'w') as f:
json.dump(get_raw_dict(args), f, indent=2)
"""
if isinstance(args, argparse.Namespace):
return vars(args)
elif isinstance(args, dict):
return args
elif isinstance(args, SLConfig):
return args._cfg_dict
else:
raise NotImplementedError("Unknown type {}".format(type(args)))
def stat_tensors(tensor):
assert tensor.dim() == 1
tensor_sm = tensor.softmax(0)
entropy = (tensor_sm * torch.log(tensor_sm + 1e-9)).sum()
return {
"max": tensor.max(),
"min": tensor.min(),
"mean": tensor.mean(),
"var": tensor.var(),
"std": tensor.var() ** 0.5,
"entropy": entropy,
}
class NiceRepr:
"""Inherit from this class and define ``__nice__`` to "nicely" print your
objects.
Defines ``__str__`` and ``__repr__`` in terms of ``__nice__`` function
Classes that inherit from :class:`NiceRepr` should redefine ``__nice__``.
If the inheriting class has a ``__len__``, method then the default
``__nice__`` method will return its length.
Example:
>>> class Foo(NiceRepr):
... def __nice__(self):
... return 'info'
>>> foo = Foo()
>>> assert str(foo) == '<Foo(info)>'
>>> assert repr(foo).startswith('<Foo(info) at ')
Example:
>>> class Bar(NiceRepr):
... pass
>>> bar = Bar()
>>> import pytest
>>> with pytest.warns(None) as record:
>>> assert 'object at' in str(bar)
>>> assert 'object at' in repr(bar)
Example:
>>> class Baz(NiceRepr):
... def __len__(self):
... return 5
>>> baz = Baz()
>>> assert str(baz) == '<Baz(5)>'
"""
def __nice__(self):
"""str: a "nice" summary string describing this module"""
if hasattr(self, "__len__"):
# It is a common pattern for objects to use __len__ in __nice__
# As a convenience we define a default __nice__ for these objects
return str(len(self))
else:
# In all other cases force the subclass to overload __nice__
raise NotImplementedError(f"Define the __nice__ method for {self.__class__!r}")
def __repr__(self):
"""str: the string of the module"""
try:
nice = self.__nice__()
classname = self.__class__.__name__
return f"<{classname}({nice}) at {hex(id(self))}>"
except NotImplementedError as ex:
warnings.warn(str(ex), category=RuntimeWarning)
return object.__repr__(self)
def __str__(self):
"""str: the string of the module"""
try:
classname = self.__class__.__name__
nice = self.__nice__()
return f"<{classname}({nice})>"
except NotImplementedError as ex:
warnings.warn(str(ex), category=RuntimeWarning)
return object.__repr__(self)
def ensure_rng(rng=None):
"""Coerces input into a random number generator.
If the input is None, then a global random state is returned.
If the input is a numeric value, then that is used as a seed to construct a
random state. Otherwise the input is returned as-is.
Adapted from [1]_.
Args:
rng (int | numpy.random.RandomState | None):
if None, then defaults to the global rng. Otherwise this can be an
integer or a RandomState class
Returns:
(numpy.random.RandomState) : rng -
a numpy random number generator
References:
.. [1] https://gitlab.kitware.com/computer-vision/kwarray/blob/master/kwarray/util_random.py#L270 # noqa: E501
"""
if rng is None:
rng = np.random.mtrand._rand
elif isinstance(rng, int):
rng = np.random.RandomState(rng)
else:
rng = rng
return rng
def random_boxes(num=1, scale=1, rng=None):
"""Simple version of ``kwimage.Boxes.random``
Returns:
Tensor: shape (n, 4) in x1, y1, x2, y2 format.
References:
https://gitlab.kitware.com/computer-vision/kwimage/blob/master/kwimage/structs/boxes.py#L1390
Example:
>>> num = 3
>>> scale = 512
>>> rng = 0
>>> boxes = random_boxes(num, scale, rng)
>>> print(boxes)
tensor([[280.9925, 278.9802, 308.6148, 366.1769],
[216.9113, 330.6978, 224.0446, 456.5878],
[405.3632, 196.3221, 493.3953, 270.7942]])
"""
rng = ensure_rng(rng)
tlbr = rng.rand(num, 4).astype(np.float32)
tl_x = np.minimum(tlbr[:, 0], tlbr[:, 2])
tl_y = np.minimum(tlbr[:, 1], tlbr[:, 3])
br_x = np.maximum(tlbr[:, 0], tlbr[:, 2])
br_y = np.maximum(tlbr[:, 1], tlbr[:, 3])
tlbr[:, 0] = tl_x * scale
tlbr[:, 1] = tl_y * scale
tlbr[:, 2] = br_x * scale
tlbr[:, 3] = br_y * scale
boxes = torch.from_numpy(tlbr)
return boxes
class ModelEma(torch.nn.Module):
def __init__(self, model, decay=0.9997, device=None):
super(ModelEma, self).__init__()
# make a copy of the model for accumulating moving average of weights
self.module = deepcopy(model)
self.module.eval()
# import ipdb; ipdb.set_trace()
self.decay = decay
self.device = device # perform ema on different device from model if set
if self.device is not None:
self.module.to(device=device)
def _update(self, model, update_fn):
with torch.no_grad():
for ema_v, model_v in zip(
self.module.state_dict().values(), model.state_dict().values()
):
if self.device is not None:
model_v = model_v.to(device=self.device)
ema_v.copy_(update_fn(ema_v, model_v))
def update(self, model):
self._update(model, update_fn=lambda e, m: self.decay * e + (1.0 - self.decay) * m)
def set(self, model):
self._update(model, update_fn=lambda e, m: m)
class BestMetricSingle:
def __init__(self, init_res=0.0, better="large") -> None:
self.init_res = init_res
self.best_res = init_res
self.best_ep = -1
self.better = better
assert better in ["large", "small"]
def isbetter(self, new_res, old_res):
if self.better == "large":
return new_res > old_res
if self.better == "small":
return new_res < old_res
def update(self, new_res, ep):
if self.isbetter(new_res, self.best_res):
self.best_res = new_res
self.best_ep = ep
return True
return False
def __str__(self) -> str:
return "best_res: {}\t best_ep: {}".format(self.best_res, self.best_ep)
def __repr__(self) -> str:
return self.__str__()
def summary(self) -> dict:
return {
"best_res": self.best_res,
"best_ep": self.best_ep,
}
class BestMetricHolder:
def __init__(self, init_res=0.0, better="large", use_ema=False) -> None:
self.best_all = BestMetricSingle(init_res, better)
self.use_ema = use_ema
if use_ema:
self.best_ema = BestMetricSingle(init_res, better)
self.best_regular = BestMetricSingle(init_res, better)
def update(self, new_res, epoch, is_ema=False):
"""
return if the results is the best.
"""
if not self.use_ema:
return self.best_all.update(new_res, epoch)
else:
if is_ema:
self.best_ema.update(new_res, epoch)
return self.best_all.update(new_res, epoch)
else:
self.best_regular.update(new_res, epoch)
return self.best_all.update(new_res, epoch)
def summary(self):
if not self.use_ema:
return self.best_all.summary()
res = {}
res.update({f"all_{k}": v for k, v in self.best_all.summary().items()})
res.update({f"regular_{k}": v for k, v in self.best_regular.summary().items()})
res.update({f"ema_{k}": v for k, v in self.best_ema.summary().items()})
return res
def __repr__(self) -> str:
return json.dumps(self.summary(), indent=2)
def __str__(self) -> str:
return self.__repr__()
def targets_to(targets: List[Dict[str, Any]], device):
"""Moves the target dicts to the given device."""
excluded_keys = [
"questionId",
"tokens_positive",
"strings_positive",
"tokens",
"dataset_name",
"sentence_id",
"original_img_id",
"nb_eval",
"task_id",
"original_id",
"token_span",
"caption",
"dataset_type",
]
return [
{k: v.to(device) if k not in excluded_keys else v for k, v in t.items()} for t in targets
]
def get_phrases_from_posmap(
posmap: torch.BoolTensor, tokenized: Dict, tokenizer: AutoTokenizer
):
assert isinstance(posmap, torch.Tensor), "posmap must be torch.Tensor"
if posmap.dim() == 1:
non_zero_idx = posmap.nonzero(as_tuple=True)[0].tolist()
token_ids = [tokenized["input_ids"][i] for i in non_zero_idx]
return tokenizer.decode(token_ids)
else:
raise NotImplementedError("posmap must be 1-dim")
|