Spaces:
Starting
on
T4
Starting
on
T4
File size: 13,676 Bytes
1ce5e18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
from collections import defaultdict
from typing import Optional
from ..image_utils import load_image
from ..utils import (
add_end_docstrings,
is_torch_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING_NAMES
logger = logging.get_logger(__name__)
@add_end_docstrings(PIPELINE_INIT_ARGS)
class MaskGenerationPipeline(ChunkPipeline):
"""
Automatic mask generation for images using `SamForMaskGeneration`. This pipeline predicts binary masks for an
image, given an image. It is a `ChunkPipeline` because you can seperate the points in a mini-batch in order to
avoid OOM issues. Use the `points_per_batch` argument to control the number of points that will be processed at the
same time. Default is `64`.
The pipeline works in 3 steps:
1. `preprocess`: A grid of 1024 points evenly separated is generated along with bounding boxes and point
labels.
For more details on how the points and bounding boxes are created, check the `_generate_crop_boxes`
function. The image is also preprocessed using the `image_processor`. This function `yields` a minibatch of
`points_per_batch`.
2. `forward`: feeds the outputs of `preprocess` to the model. The image embedding is computed only once.
Calls both `self.model.get_image_embeddings` and makes sure that the gradients are not computed, and the
tensors and models are on the same device.
3. `postprocess`: The most important part of the automatic mask generation happens here. Three steps
are induced:
- image_processor.postprocess_masks (run on each minibatch loop): takes in the raw output masks,
resizes them according
to the image size, and transforms there to binary masks.
- image_processor.filter_masks (on each minibatch loop): uses both `pred_iou_thresh` and
`stability_scores`. Also
applies a variety of filters based on non maximum suppression to remove bad masks.
- image_processor.postprocess_masks_for_amg applies the NSM on the mask to only keep relevant ones.
Arguments:
model ([`PreTrainedModel`] or [`TFPreTrainedModel`]):
The model that will be used by the pipeline to make predictions. This needs to be a model inheriting from
[`PreTrainedModel`] for PyTorch and [`TFPreTrainedModel`] for TensorFlow.
tokenizer ([`PreTrainedTokenizer`]):
The tokenizer that will be used by the pipeline to encode data for the model. This object inherits from
[`PreTrainedTokenizer`].
feature_extractor ([`SequenceFeatureExtractor`]):
The feature extractor that will be used by the pipeline to encode the input.
points_per_batch (*optional*, int, default to 64):
Sets the number of points run simultaneously by the model. Higher numbers may be faster but use more GPU
memory.
output_bboxes_mask (`bool`, *optional*, default to `False`):
Whether or not to output the bounding box predictions.
output_rle_masks (`bool`, *optional*, default to `False`):
Whether or not to output the masks in `RLE` format
Example:
```python
>>> from transformers import pipeline
>>> generator = pipeline(model="facebook/sam-vit-base", task="mask-generation")
>>> outputs = generator(
... "http://images.cocodataset.org/val2017/000000039769.jpg",
... )
>>> outputs = generator(
... "https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png", points_per_batch=128
... )
```
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)
This segmentation pipeline can currently be loaded from [`pipeline`] using the following task identifier:
`"mask-generation"`.
See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=mask-generation).
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
requires_backends(self, "vision")
requires_backends(self, "torch")
if self.framework != "pt":
raise ValueError(f"The {self.__class__} is only available in PyTorch.")
self.check_model_type(MODEL_FOR_MASK_GENERATION_MAPPING_NAMES)
def _sanitize_parameters(self, **kwargs):
preprocess_kwargs = {}
postprocess_kwargs = {}
forward_params = {}
# preprocess args
if "points_per_batch" in kwargs:
preprocess_kwargs["points_per_batch"] = kwargs["points_per_batch"]
if "points_per_crop" in kwargs:
preprocess_kwargs["points_per_crop"] = kwargs["points_per_crop"]
if "crops_n_layers" in kwargs:
preprocess_kwargs["crops_n_layers"] = kwargs["crops_n_layers"]
if "crop_overlap_ratio" in kwargs:
preprocess_kwargs["crop_overlap_ratio"] = kwargs["crop_overlap_ratio"]
if "crop_n_points_downscale_factor" in kwargs:
preprocess_kwargs["crop_n_points_downscale_factor"] = kwargs["crop_n_points_downscale_factor"]
if "timeout" in kwargs:
preprocess_kwargs["timeout"] = kwargs["timeout"]
# postprocess args
if "pred_iou_thresh" in kwargs:
forward_params["pred_iou_thresh"] = kwargs["pred_iou_thresh"]
if "stability_score_offset" in kwargs:
forward_params["stability_score_offset"] = kwargs["stability_score_offset"]
if "mask_threshold" in kwargs:
forward_params["mask_threshold"] = kwargs["mask_threshold"]
if "stability_score_thresh" in kwargs:
forward_params["stability_score_thresh"] = kwargs["stability_score_thresh"]
if "crops_nms_thresh" in kwargs:
postprocess_kwargs["crops_nms_thresh"] = kwargs["crops_nms_thresh"]
if "output_rle_mask" in kwargs:
postprocess_kwargs["output_rle_mask"] = kwargs["output_rle_mask"]
if "output_bboxes_mask" in kwargs:
postprocess_kwargs["output_bboxes_mask"] = kwargs["output_bboxes_mask"]
return preprocess_kwargs, forward_params, postprocess_kwargs
def __call__(self, image, *args, num_workers=None, batch_size=None, **kwargs):
"""
Generates binary segmentation masks
Args:
inputs (`np.ndarray` or `bytes` or `str` or `dict`):
Image or list of images.
mask_threshold (`float`, *optional*, defaults to 0.0):
Threshold to use when turning the predicted masks into binary values.
pred_iou_thresh (`float`, *optional*, defaults to 0.88):
A filtering threshold in `[0,1]` applied on the model's predicted mask quality.
stability_score_thresh (`float`, *optional*, defaults to 0.95):
A filtering threshold in `[0,1]`, using the stability of the mask under changes to the cutoff used to
binarize the model's mask predictions.
stability_score_offset (`int`, *optional*, defaults to 1):
The amount to shift the cutoff when calculated the stability score.
crops_nms_thresh (`float`, *optional*, defaults to 0.7):
The box IoU cutoff used by non-maximal suppression to filter duplicate masks.
crops_n_layers (`int`, *optional*, defaults to 0):
If `crops_n_layers>0`, mask prediction will be run again on crops of the image. Sets the number of
layers to run, where each layer has 2**i_layer number of image crops.
crop_overlap_ratio (`float`, *optional*, defaults to `512 / 1500`):
Sets the degree to which crops overlap. In the first crop layer, crops will overlap by this fraction of
the image length. Later layers with more crops scale down this overlap.
crop_n_points_downscale_factor (`int`, *optional*, defaults to `1`):
The number of points-per-side sampled in layer n is scaled down by crop_n_points_downscale_factor**n.
timeout (`float`, *optional*, defaults to None):
The maximum time in seconds to wait for fetching images from the web. If None, no timeout is set and
the call may block forever.
Return:
`Dict`: A dictionary with the following keys:
- **mask** (`PIL.Image`) -- A binary mask of the detected object as a PIL Image of shape `(width,
height)` of the original image. Returns a mask filled with zeros if no object is found.
- **score** (*optional* `float`) -- Optionally, when the model is capable of estimating a confidence of
the "object" described by the label and the mask.
"""
return super().__call__(image, *args, num_workers=num_workers, batch_size=batch_size, **kwargs)
def preprocess(
self,
image,
points_per_batch=64,
crops_n_layers: int = 0,
crop_overlap_ratio: float = 512 / 1500,
points_per_crop: Optional[int] = 32,
crop_n_points_downscale_factor: Optional[int] = 1,
timeout: Optional[float] = None,
):
image = load_image(image, timeout=timeout)
target_size = self.image_processor.size["longest_edge"]
crop_boxes, grid_points, cropped_images, input_labels = self.image_processor.generate_crop_boxes(
image, target_size, crops_n_layers, crop_overlap_ratio, points_per_crop, crop_n_points_downscale_factor
)
model_inputs = self.image_processor(images=cropped_images, return_tensors="pt")
with self.device_placement():
if self.framework == "pt":
inference_context = self.get_inference_context()
with inference_context():
model_inputs = self._ensure_tensor_on_device(model_inputs, device=self.device)
image_embeddings = self.model.get_image_embeddings(model_inputs.pop("pixel_values"))
model_inputs["image_embeddings"] = image_embeddings
n_points = grid_points.shape[1]
points_per_batch = points_per_batch if points_per_batch is not None else n_points
if points_per_batch <= 0:
raise ValueError(
"Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. "
"To return all points at once, set points_per_batch to None"
)
for i in range(0, n_points, points_per_batch):
batched_points = grid_points[:, i : i + points_per_batch, :, :]
labels = input_labels[:, i : i + points_per_batch]
is_last = i == n_points - points_per_batch
yield {
"input_points": batched_points,
"input_labels": labels,
"input_boxes": crop_boxes,
"is_last": is_last,
**model_inputs,
}
def _forward(
self,
model_inputs,
pred_iou_thresh=0.88,
stability_score_thresh=0.95,
mask_threshold=0,
stability_score_offset=1,
):
input_boxes = model_inputs.pop("input_boxes")
is_last = model_inputs.pop("is_last")
original_sizes = model_inputs.pop("original_sizes").tolist()
reshaped_input_sizes = model_inputs.pop("reshaped_input_sizes").tolist()
model_outputs = self.model(**model_inputs)
# post processing happens here in order to avoid CPU GPU copies of ALL the masks
low_resolution_masks = model_outputs["pred_masks"]
masks = self.image_processor.post_process_masks(
low_resolution_masks, original_sizes, reshaped_input_sizes, mask_threshold, binarize=False
)
iou_scores = model_outputs["iou_scores"]
masks, iou_scores, boxes = self.image_processor.filter_masks(
masks[0],
iou_scores[0],
original_sizes[0],
input_boxes[0],
pred_iou_thresh,
stability_score_thresh,
mask_threshold,
stability_score_offset,
)
return {
"masks": masks,
"is_last": is_last,
"boxes": boxes,
"iou_scores": iou_scores,
}
def postprocess(
self,
model_outputs,
output_rle_mask=False,
output_bboxes_mask=False,
crops_nms_thresh=0.7,
):
all_scores = []
all_masks = []
all_boxes = []
for model_output in model_outputs:
all_scores.append(model_output.pop("iou_scores"))
all_masks.extend(model_output.pop("masks"))
all_boxes.append(model_output.pop("boxes"))
all_scores = torch.cat(all_scores)
all_boxes = torch.cat(all_boxes)
output_masks, iou_scores, rle_mask, bounding_boxes = self.image_processor.post_process_for_mask_generation(
all_masks, all_scores, all_boxes, crops_nms_thresh
)
extra = defaultdict(list)
for output in model_outputs:
for k, v in output.items():
extra[k].append(v)
optional = {}
if output_rle_mask:
optional["rle_mask"] = rle_mask
if output_bboxes_mask:
optional["bounding_boxes"] = bounding_boxes
return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
|