Spaces:
Starting
on
T4
Starting
on
T4
File size: 2,424 Bytes
1ce5e18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.speecht5 import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor
from ..utils import is_datasets_available
from .base import PipelineTool
if is_datasets_available():
from datasets import load_dataset
class TextToSpeechTool(PipelineTool):
default_checkpoint = "microsoft/speecht5_tts"
description = (
"This is a tool that reads an English text out loud. It takes an input named `text` which should contain the "
"text to read (in English) and returns a waveform object containing the sound."
)
name = "text_reader"
pre_processor_class = SpeechT5Processor
model_class = SpeechT5ForTextToSpeech
post_processor_class = SpeechT5HifiGan
inputs = ["text"]
outputs = ["audio"]
def setup(self):
if self.post_processor is None:
self.post_processor = "microsoft/speecht5_hifigan"
super().setup()
def encode(self, text, speaker_embeddings=None):
inputs = self.pre_processor(text=text, return_tensors="pt", truncation=True)
if speaker_embeddings is None:
if not is_datasets_available():
raise ImportError("Datasets needs to be installed if not passing speaker embeddings.")
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embeddings = torch.tensor(embeddings_dataset[7305]["xvector"]).unsqueeze(0)
return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings}
def forward(self, inputs):
with torch.no_grad():
return self.model.generate_speech(**inputs)
def decode(self, outputs):
with torch.no_grad():
return self.post_processor(outputs).cpu().detach()
|