File size: 51,061 Bytes
760bde3
6e4c9f7
 
 
72fe59d
e12d135
a895da4
e12d135
0bfb07f
9546498
760bde3
434a891
 
72fe59d
 
bc4c863
40c7708
058f70d
 
abcd303
bc4c863
ed7763f
 
760bde3
4ba09fa
 
 
 
 
72fe59d
4ba09fa
 
6061d17
 
 
 
 
4ba09fa
 
 
e12d135
 
 
 
7a52d01
aa19a55
3840fde
47dfe4c
634639d
f76c27b
f3804ec
6d54f1e
3b75b11
32f6715
0dae273
 
 
3840fde
 
6f9b26d
80ad95f
3840fde
 
f76c27b
 
 
 
 
 
4ba09fa
72fe59d
7a7f9d8
4ba09fa
 
 
 
 
 
 
 
5ee6e09
f76c27b
5836895
 
99678ed
5836895
7a52d01
 
 
 
 
 
 
5836895
bd50af0
 
21dafa0
 
f76c27b
21dafa0
f76c27b
 
bd50af0
5ee6e09
0dae273
df25cfa
 
5836895
 
 
 
 
32f6715
6d54f1e
5836895
 
abcd303
5836895
 
 
0cc37e5
5836895
 
bd50af0
 
fb4a881
c74712e
 
4ba09fa
 
 
 
 
 
7957dbb
4ba09fa
bc4c863
4ba09fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d0da89
e94be43
 
 
 
 
 
 
 
4ba09fa
 
 
 
 
 
 
72fe59d
 
 
 
4ba09fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72fe59d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
058f70d
 
0cc37e5
058f70d
0cc37e5
 
bc4c863
5836895
dfba81f
5836895
058f70d
5836895
dfba81f
058f70d
dfba81f
 
 
 
efc7a78
bc4c863
5836895
dfba81f
5836895
dfba81f
 
5836895
 
 
 
 
 
dfba81f
5836895
dfba81f
5836895
0cc37e5
47dfe4c
5836895
c74712e
 
 
 
 
 
 
47dfe4c
5836895
dfba81f
5836895
dfba81f
5836895
72fe59d
5836895
 
dfba81f
5836895
 
0bfb07f
e12d135
ed4b6a1
e12d135
 
 
ed4b6a1
e12d135
ed4b6a1
e12d135
 
ed4b6a1
e12d135
ed4b6a1
e12d135
 
 
 
ed4b6a1
e12d135
 
ed4b6a1
e12d135
 
ed4b6a1
e12d135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed4b6a1
e12d135
e56f195
72fe59d
e12d135
ed4b6a1
e12d135
 
 
 
ed4b6a1
e12d135
 
72fe59d
ed4b6a1
e12d135
ed4b6a1
e12d135
 
ed4b6a1
e12d135
ed4b6a1
e12d135
ed4b6a1
e12d135
72fe59d
 
af76788
 
7a7f9d8
 
 
 
 
 
 
 
 
4962329
dfba81f
5836895
9003ca5
bd50af0
 
5836895
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a7f9d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddc4ac1
 
7a7f9d8
ddc4ac1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a7f9d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63e6e86
648a7f1
7a7f9d8
 
 
 
 
 
 
6e3e561
7a7f9d8
 
 
 
 
 
6e3e561
7a7f9d8
 
 
 
 
 
 
6e3e561
7a7f9d8
 
 
 
 
 
 
 
 
 
 
 
 
ddc4ac1
7a7f9d8
 
 
 
c7d2050
63e6e86
7a7f9d8
72fe59d
 
 
2a71ebd
 
 
 
 
 
 
 
 
 
 
df25cfa
80ad95f
 
e56f195
9ba66a8
 
 
 
 
 
 
 
 
 
80ad95f
df25cfa
 
e56f195
a895da4
 
 
 
 
 
 
 
 
 
 
 
 
df25cfa
a895da4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01325d0
df25cfa
 
a895da4
df25cfa
 
 
 
 
 
 
 
 
 
442e994
df25cfa
 
 
80ad95f
df25cfa
 
 
80ad95f
df25cfa
e56f195
df25cfa
e56f195
 
 
 
80ad95f
 
 
 
 
 
 
df25cfa
80ad95f
47dfe4c
7a7f9d8
607dee4
0dae273
 
 
2a71ebd
 
 
1ef3fca
3f45e36
47dfe4c
df25cfa
1ef3fca
baf1b75
1ef3fca
 
 
 
df25cfa
 
2a71ebd
bd50af0
 
27d8fa3
 
 
 
 
 
 
dea5caa
2a71ebd
1ef3fca
bd50af0
63e6e86
 
2a71ebd
1ef3fca
63e6e86
b902809
634639d
b902809
1ef3fca
91f6a3d
 
1ef3fca
72fe59d
779c33a
607dee4
4ba09fa
e94be43
 
4ba09fa
e94be43
 
 
 
3f5ffbb
e94be43
 
 
2a71ebd
e94be43
 
 
 
2a71ebd
9546498
72fe59d
82b6069
 
4ba09fa
634639d
72fe59d
 
 
 
 
 
 
 
 
 
 
 
 
b902809
0cc37e5
1ef3fca
72fe59d
4ba09fa
72fe59d
 
 
 
 
e94be43
72fe59d
63e6e86
2a71ebd
4ba09fa
7a7f9d8
881ab59
d829f40
 
e94be43
5128046
d829f40
5128046
d829f40
607dee4
d829f40
5128046
82b6069
4ba09fa
 
 
 
 
 
d829f40
5128046
82b6069
 
 
 
 
 
 
 
 
 
 
 
5128046
82b6069
 
 
 
 
 
 
4ba09fa
5128046
4ba09fa
 
 
 
 
 
dae4b5a
4ba09fa
ed7763f
4ba09fa
e12d135
 
72fe59d
 
82b6069
2a71ebd
72fe59d
7a7f9d8
72fe59d
7a7f9d8
1ef3fca
634639d
72fe59d
 
 
7a7f9d8
72fe59d
 
 
 
6e4c9f7
72fe59d
 
82b6069
72fe59d
82b6069
63e6e86
2a71ebd
72fe59d
634639d
72fe59d
e56f195
 
634639d
 
 
68b6cad
634639d
 
 
 
47dfe4c
 
df25cfa
80ad95f
df25cfa
 
9ba66a8
72fe59d
 
 
 
6e4c9f7
72fe59d
 
 
 
 
 
 
 
 
6e4c9f7
82b6069
72fe59d
 
 
 
 
 
 
 
 
82b6069
72fe59d
6e4c9f7
72fe59d
2a71ebd
 
72fe59d
0bfb07f
 
e12d135
 
9ba66a8
 
e12d135
c8a8dc4
2a71ebd
0bfb07f
 
1f8f331
63e6e86
2a71ebd
0bfb07f
1ef3fca
4ba09fa
72fe59d
7a7f9d8
1ef3fca
72fe59d
11e651f
72fe59d
 
 
7a7f9d8
bd50af0
 
 
 
 
 
 
9912950
 
 
 
 
5c28041
9912950
634639d
9912950
634639d
9912950
 
bd50af0
9912950
 
 
bd50af0
1ef3fca
 
 
 
 
 
 
 
ca589ef
1f359be
f47bc1e
0cc37e5
 
f47bc1e
 
 
 
 
 
 
0cc37e5
f47bc1e
0cc37e5
1f359be
82b6069
9463411
 
df25cfa
9463411
4ba09fa
 
 
6d54f1e
 
 
 
 
e56f195
6d54f1e
 
 
 
 
 
e56f195
a895da4
e56f195
df25cfa
 
 
 
 
 
 
e56f195
9912950
7a7f9d8
72fe59d
 
7a7f9d8
dfba81f
e56f195
7a7f9d8
bd50af0
 
 
1ef3fca
7a7f9d8
4ba09fa
5d0da89
4ba09fa
 
5d0da89
4ba09fa
72fe59d
5d0da89
72fe59d
 
 
 
 
 
 
7120670
607dee4
4ba09fa
ed4b6a1
1ef3fca
2a71ebd
 
bd50af0
 
 
 
 
 
1ef3fca
bd50af0
1ef3fca
bd50af0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a7f9d8
2644166
bd50af0
607dee4
2a71ebd
2644166
bd50af0
 
 
 
 
 
1c6fec7
867ce75
7a52d01
 
9912950
27d8fa3
0dae273
 
80ad95f
01325d0
 
867ce75
 
 
 
e5f7fa3
bc4c863
 
fb4a881
35bdba8
bc4c863
c74712e
82b6069
 
 
 
 
 
058f70d
82b6069
bc4c863
82b6069
 
 
 
058f70d
82b6069
 
 
 
 
 
 
058f70d
82b6069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2262ea9
ed4b6a1
82b6069
0cc37e5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184

import warnings
warnings.filterwarnings('ignore')

import subprocess, io, os, sys, time

# os.system("pip install gradio==4.42.0")

import gradio as gr
from loguru import logger

os.environ["CUDA_VISIBLE_DEVICES"] = "0"

if os.environ.get('IS_MY_DEBUG') is None:
    result = subprocess.run(['pip', 'install', '-e', 'GroundingDINO'], check=True)
    logger.info(f'pip install GroundingDINO = {result}')

logger.info(f"Start app...")

# result = subprocess.run(['pip', 'list'], check=True)
# logger.info(f'pip list = {result}')

sys.path.insert(0, './GroundingDINO')

import argparse
import copy

import numpy as np
import torch
from PIL import Image, ImageDraw, ImageFont, ImageOps

# Grounding DINO
import GroundingDINO.groundingdino.datasets.transforms as T
from GroundingDINO.groundingdino.models import build_model
from GroundingDINO.groundingdino.util import box_ops
from GroundingDINO.groundingdino.util.slconfig import SLConfig
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap

import cv2
import numpy as np
import matplotlib
matplotlib.use('AGG')
plt = matplotlib.pyplot
# import matplotlib.pyplot as plt

groundingdino_enable = True
sam_enable = True
inpainting_enable = True
ram_enable = False

lama_cleaner_enable = True

kosmos_enable = False

# qwen_enable = True
# from qwen_utils import *

if os.environ.get('IS_MY_DEBUG') is not None:
    sam_enable = False
    ram_enable = False
    # inpainting_enable = False
    kosmos_enable = False

if lama_cleaner_enable:
    try:    
        from lama_cleaner.model_manager import ModelManager
        from lama_cleaner.schema import Config as lama_Config    
    except Exception as e:
        lama_cleaner_enable = False

# segment anything
from segment_anything import build_sam, SamPredictor, SamAutomaticMaskGenerator

# diffusers
import PIL
import requests
from io import BytesIO
from diffusers import StableDiffusionInpaintPipeline
from huggingface_hub import hf_hub_download

from util_computer import computer_info

# relate anything
from ram_utils import iou, sort_and_deduplicate, relation_classes, MLP, show_anns, ram_show_mask
from ram_train_eval import RamModel, RamPredictor
from mmengine.config import Config as mmengine_Config

if lama_cleaner_enable:
    from lama_cleaner.helper import (
        load_img,
        numpy_to_bytes,
        resize_max_size,
    )

# from transformers import AutoProcessor, AutoModelForVision2Seq
import ast

if kosmos_enable:
    os.system("pip install transformers@git+https://github.com/huggingface/transformers.git@main")
    # os.system("pip install transformers==4.32.0")

from kosmos_utils import *

from util_tencent import getTextTrans

huggingface_token = os.getenv("HUGGINGFACE_TOKEN")

config_file = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py'
ckpt_repo_id = "ShilongLiu/GroundingDINO"
ckpt_filenmae = "groundingdino_swint_ogc.pth"
sam_checkpoint = './sam_vit_h_4b8939.pth' 
output_dir = "outputs"

device = 'cpu'
os.makedirs(output_dir, exist_ok=True)
groundingdino_model = None
sam_device = None
sam_model = None
sam_predictor = None
sam_mask_generator = None
sd_model = None
lama_cleaner_model= None
ram_model = None
kosmos_model = None
kosmos_processor = None

MAX_SEED = np.iinfo(np.int32).max

def load_model_hf(model_config_path, repo_id, filename, device='cpu'):
    args = SLConfig.fromfile(model_config_path) 
    model = build_model(args)
    args.device = device

    cache_file = hf_hub_download(repo_id=repo_id, filename=filename)
    checkpoint = torch.load(cache_file, map_location=device)
    log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
    logger.info("Model loaded from {} \n => {}".format(cache_file, log))
    _ = model.eval()
    return model    

def plot_boxes_to_image(image_pil, tgt):
    H, W = tgt["size"]
    boxes = tgt["boxes"]
    labels = tgt["labels"]
    assert len(boxes) == len(labels), "boxes and labels must have same length"

    draw = ImageDraw.Draw(image_pil)
    mask = Image.new("L", image_pil.size, 0)
    mask_draw = ImageDraw.Draw(mask)

    # draw boxes and masks
    for box, label in zip(boxes, labels):
        # from 0..1 to 0..W, 0..H
        box = box * torch.Tensor([W, H, W, H])
        # from xywh to xyxy
        box[:2] -= box[2:] / 2
        box[2:] += box[:2]
        # random color
        color = tuple(np.random.randint(0, 255, size=3).tolist())
        # draw
        x0, y0, x1, y1 = box
        x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1)

        draw.rectangle([x0, y0, x1, y1], outline=color, width=6)
        # draw.text((x0, y0), str(label), fill=color)

        font = ImageFont.load_default()
        if hasattr(font, "getbbox"):
            bbox = draw.textbbox((x0, y0), str(label), font)
        else:
            w, h = draw.textsize(str(label), font)
            bbox = (x0, y0, w + x0, y0 + h)
        # bbox = draw.textbbox((x0, y0), str(label))
        draw.rectangle(bbox, fill=color)

        try:
            font = os.path.join(cv2.__path__[0],'qt','fonts','DejaVuSans.ttf')
            font_size = 36
            new_font = ImageFont.truetype(font, font_size)

            draw.text((x0+2, y0+2), str(label), font=new_font, fill="white")
        except Exception as e:
            pass

        mask_draw.rectangle([x0, y0, x1, y1], fill=255, width=6)

    return image_pil, mask

def load_image(image_path):
    # # load image
    if isinstance(image_path, PIL.Image.Image):
        image_pil = image_path
    else:
        image_pil = Image.open(image_path).convert("RGB")  # load image

    transform = T.Compose(
        [
            T.RandomResize([800], max_size=1333),
            T.ToTensor(),
            T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
        ]
    )
    image, _ = transform(image_pil, None)  # 3, h, w
    return image_pil, image

def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True, device="cpu"):
    caption = caption.lower()
    caption = caption.strip()
    if not caption.endswith("."):
        caption = caption + "."
    model = model.to(device)
    image = image.to(device)
    with torch.no_grad():
        outputs = model(image[None], captions=[caption])
    logits = outputs["pred_logits"].cpu().sigmoid()[0]  # (nq, 256)
    boxes = outputs["pred_boxes"].cpu()[0]  # (nq, 4)
    logits.shape[0]

    # filter output
    logits_filt = logits.clone()
    boxes_filt = boxes.clone()
    filt_mask = logits_filt.max(dim=1)[0] > box_threshold
    logits_filt = logits_filt[filt_mask]  # num_filt, 256
    boxes_filt = boxes_filt[filt_mask]  # num_filt, 4
    logits_filt.shape[0]

    # get phrase
    tokenlizer = model.tokenizer
    tokenized = tokenlizer(caption)
    # build pred
    pred_phrases = []
    for logit, box in zip(logits_filt, boxes_filt):
        pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
        if with_logits:
            pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
        else:
            pred_phrases.append(pred_phrase)

    return boxes_filt, pred_phrases

def show_mask(mask, ax, random_color=False):
    if random_color:
        color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
    else:
        color = np.array([30/255, 144/255, 255/255, 0.6])
    h, w = mask.shape[-2:]
    mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
    ax.imshow(mask_image)

def show_box(box, ax, label):
    x0, y0 = box[0], box[1]
    w, h = box[2] - box[0], box[3] - box[1]
    ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2)) 
    ax.text(x0, y0, label)

def xywh_to_xyxy(box, sizeW, sizeH):
    if isinstance(box, list):
        box = torch.Tensor(box)
    box = box * torch.Tensor([sizeW, sizeH, sizeW, sizeH])
    box[:2] -= box[2:] / 2
    box[2:] += box[:2]
    box = box.numpy()
    return box

def mask_extend(img, box, extend_pixels=10, useRectangle=True):
    box[0] = int(box[0])
    box[1] = int(box[1])
    box[2] = int(box[2])
    box[3] = int(box[3])
    region = img.crop(tuple(box))
    new_width = box[2] - box[0] + 2*extend_pixels
    new_height = box[3] - box[1] + 2*extend_pixels

    region_BILINEAR = region.resize((int(new_width), int(new_height)))
    if useRectangle:
        region_draw = ImageDraw.Draw(region_BILINEAR)
        region_draw.rectangle((0, 0, new_width, new_height), fill=(255, 255, 255))    
    img.paste(region_BILINEAR, (int(box[0]-extend_pixels), int(box[1]-extend_pixels)))
    return img

def mix_masks(imgs):
    re_img =  1 - np.asarray(imgs[0].convert("1"))
    for i in range(len(imgs)-1):
        re_img = np.multiply(re_img, 1 - np.asarray(imgs[i+1].convert("1")))
    re_img =  1 - re_img
    return  Image.fromarray(np.uint8(255*re_img))

def set_device(args):
    global device
    if os.environ.get('IS_MY_DEBUG') is None:
        device = args.cuda if torch.cuda.is_available() else 'cpu'
    else:
        device = 'cpu'
    logger.info(f'device={device}')

def load_groundingdino_model(device):
    # initialize groundingdino model
    global groundingdino_model
    logger.info(f"initialize groundingdino model...")
    groundingdino_model = load_model_hf(config_file, ckpt_repo_id, ckpt_filenmae, device=device) #'cpu')
    logger.info(f"initialize groundingdino model...{type(groundingdino_model)}")

def get_sam_vit_h_4b8939():
    if not os.path.exists('./sam_vit_h_4b8939.pth'):
        logger.info(f"get sam_vit_h_4b8939.pth...")
        result = subprocess.run(['wget', '-nv', 'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth'], check=True)
        logger.info(f'wget sam_vit_h_4b8939.pth result = {result}')

def load_sam_model(device):
    # initialize SAM
    global sam_model, sam_predictor, sam_mask_generator, sam_device
    get_sam_vit_h_4b8939()
    logger.info(f"initialize SAM model...")
    sam_device = device
    sam_model = build_sam(checkpoint=sam_checkpoint).to(sam_device)
    sam_predictor = SamPredictor(sam_model)
    sam_mask_generator = SamAutomaticMaskGenerator(sam_model)

def load_sd_model(device):
    # initialize stable-diffusion-inpainting
    global sd_model
    logger.info(f"initialize stable-diffusion-inpainting...")
    sd_model = None
    '''
    if os.environ.get('IS_MY_DEBUG') is None:
        # sd_model = StableDiffusionInpaintPipeline.from_pretrained(
        #         "runwayml/stable-diffusion-inpainting", 
        #         revision="fp16",
        #         # "stabilityai/stable-diffusion-2-inpainting",
        #         torch_dtype=torch.float16,
        # )
        # sd_model = sd_model.to(device)
    '''

def load_lama_cleaner_model(device):
    # initialize lama_cleaner
    global lama_cleaner_model
    logger.info(f"initialize lama_cleaner...")

    lama_cleaner_model = ModelManager(
            name='lama',
            device=device,
        )

def lama_cleaner_process(image, mask, cleaner_size_limit=1080):
    try:
        logger.info(f'_______lama_cleaner_process_______1____') 
        ori_image = image
        if mask.shape[0] == image.shape[1] and mask.shape[1] == image.shape[0] and mask.shape[0] != mask.shape[1]:
            # rotate image
            logger.info(f'_______lama_cleaner_process_______2____')
            ori_image = np.transpose(image[::-1, ...][:, ::-1], axes=(1, 0, 2))[::-1, ...]
            logger.info(f'_______lama_cleaner_process_______3____')
            image = ori_image
        
        logger.info(f'_______lama_cleaner_process_______4____')
        original_shape = ori_image.shape
        logger.info(f'_______lama_cleaner_process_______5____')
        interpolation = cv2.INTER_CUBIC
        
        size_limit = cleaner_size_limit
        if size_limit == -1:
            logger.info(f'_______lama_cleaner_process_______6____')
            size_limit = max(image.shape)
        else:
            logger.info(f'_______lama_cleaner_process_______7____')
            size_limit = int(size_limit)

        logger.info(f'_______lama_cleaner_process_______8____')
        config = lama_Config(
            ldm_steps=25,
            ldm_sampler='plms',
            zits_wireframe=True,
            hd_strategy='Original',
            hd_strategy_crop_margin=196,
            hd_strategy_crop_trigger_size=1280,
            hd_strategy_resize_limit=2048,
            prompt='',
            use_croper=False,
            croper_x=0,
            croper_y=0,
            croper_height=512,
            croper_width=512,
            sd_mask_blur=5,
            sd_strength=0.75,
            sd_steps=50,
            sd_guidance_scale=7.5,
            sd_sampler='ddim',
            sd_seed=42,
            cv2_flag='INPAINT_NS',
            cv2_radius=5,
        )
        
        logger.info(f'_______lama_cleaner_process_______9____')
        if config.sd_seed == -1:
            config.sd_seed = random.randint(1, MAX_SEED)

        # logger.info(f"Origin image shape_0_: {original_shape} / {size_limit}")
        logger.info(f'_______lama_cleaner_process_______10____')
        image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation)
        # logger.info(f"Resized image shape_1_: {image.shape}")
        
        # logger.info(f"mask image shape_0_: {mask.shape} / {type(mask)}")
        logger.info(f'_______lama_cleaner_process_______11____')
        mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation)
        # logger.info(f"mask image shape_1_: {mask.shape} / {type(mask)}")

        logger.info(f'_______lama_cleaner_process_______12____')
        res_np_img = lama_cleaner_model(image, mask, config)
        logger.info(f'_______lama_cleaner_process_______13____')
        torch.cuda.empty_cache()
    
        logger.info(f'_______lama_cleaner_process_______14____')
        image = Image.open(io.BytesIO(numpy_to_bytes(res_np_img, 'png')))
        logger.info(f'_______lama_cleaner_process_______15____')
    except Exception as e:
        logger.info(f'lama_cleaner_process[Error]:' + str(e))
        image = None        
    return  image

class Ram_Predictor(RamPredictor):
    def __init__(self, config, device='cpu'):
        self.config = config
        self.device = torch.device(device)
        self._build_model()

    def _build_model(self):
        self.model = RamModel(**self.config.model).to(self.device)
        if self.config.load_from is not None:
            self.model.load_state_dict(torch.load(self.config.load_from, map_location=self.device))
        self.model.train()

def load_ram_model(device):
    # load ram model
    global ram_model
    if os.environ.get('IS_MY_DEBUG') is not None:
        return
    model_path = "./checkpoints/ram_epoch12.pth"
    ram_config = dict(
        model=dict(
            pretrained_model_name_or_path='bert-base-uncased',
            load_pretrained_weights=False,
            num_transformer_layer=2,
            input_feature_size=256,
            output_feature_size=768,
            cls_feature_size=512,
            num_relation_classes=56,
            pred_type='attention',
            loss_type='multi_label_ce',
        ),
        load_from=model_path,
    )
    ram_config = mmengine_Config(ram_config)
    ram_model = Ram_Predictor(ram_config, device)

# visualization
def draw_selected_mask(mask, draw):
    color = (255, 0, 0, 153)
    nonzero_coords = np.transpose(np.nonzero(mask))
    for coord in nonzero_coords:
        draw.point(coord[::-1], fill=color)

def draw_object_mask(mask, draw):
    color = (0, 0, 255, 153)
    nonzero_coords = np.transpose(np.nonzero(mask))
    for coord in nonzero_coords:
        draw.point(coord[::-1], fill=color)

def create_title_image(word1, word2, word3, width, font_path='./assets/OpenSans-Bold.ttf'):
    # Define the colors to use for each word
    color_red = (255, 0, 0)
    color_black = (0, 0, 0)
    color_blue = (0, 0, 255)

    # Define the initial font size and spacing between words
    font_size = 40

    # Create a new image with the specified width and white background
    image = Image.new('RGB', (width, 60), (255, 255, 255))

    try:
        # Load the specified font
        font = ImageFont.truetype(font_path, font_size)

        # Keep increasing the font size until all words fit within the desired width
        while True:
            # Create a draw object for the image
            draw = ImageDraw.Draw(image)
            
            word_spacing = font_size / 2
            # Draw each word in the appropriate color
            x_offset = word_spacing
            draw.text((x_offset, 0), word1, color_red, font=font)
            x_offset += font.getsize(word1)[0] + word_spacing
            draw.text((x_offset, 0), word2, color_black, font=font)
            x_offset += font.getsize(word2)[0] + word_spacing
            draw.text((x_offset, 0), word3, color_blue, font=font)
            
            word_sizes = [font.getsize(word) for word in [word1, word2, word3]]
            total_width = sum([size[0] for size in word_sizes]) + word_spacing * 3

            # Stop increasing font size if the image is within the desired width
            if total_width <= width:
                break
                
            # Increase font size and reset the draw object
            font_size -= 1
            image = Image.new('RGB', (width, 50), (255, 255, 255))
            font = ImageFont.truetype(font_path, font_size)
            draw = None
    except Exception as e:
        pass

    return image

def concatenate_images_vertical(image1, image2):
    # Get the dimensions of the two images
    width1, height1 = image1.size
    width2, height2 = image2.size

    # Create a new image with the combined height and the maximum width
    new_image = Image.new('RGBA', (max(width1, width2), height1 + height2))

    # Paste the first image at the top of the new image
    new_image.paste(image1, (0, 0))

    # Paste the second image below the first image
    new_image.paste(image2, (0, height1))

    return new_image

def relate_anything(input_image, k):    
    logger.info(f'relate_anything_1_{input_image.size}_')
    w, h = input_image.size
    max_edge = 1500
    if w > max_edge or h > max_edge:
        ratio = max(w, h) / max_edge
        new_size = (int(w / ratio), int(h / ratio))
        input_image.thumbnail(new_size)
    
    logger.info(f'relate_anything_2_')
    # load image
    pil_image = input_image.convert('RGBA')
    image = np.array(input_image)
    sam_masks = sam_mask_generator.generate(image)
    filtered_masks = sort_and_deduplicate(sam_masks)

    logger.info(f'relate_anything_3_')
    feat_list = []
    for fm in filtered_masks:
        feat = torch.Tensor(fm['feat']).unsqueeze(0).unsqueeze(0).to(device)
        feat_list.append(feat)
    feat = torch.cat(feat_list, dim=1).to(device)
    matrix_output, rel_triplets = ram_model.predict(feat)

    logger.info(f'relate_anything_4_')
    pil_image_list = []
    for i, rel in enumerate(rel_triplets[:k]):
        s,o,r = int(rel[0]),int(rel[1]),int(rel[2])
        relation = relation_classes[r]

        mask_image = Image.new('RGBA', pil_image.size, color=(0, 0, 0, 0))
        mask_draw = ImageDraw.Draw(mask_image)
            
        draw_selected_mask(filtered_masks[s]['segmentation'], mask_draw)
        draw_object_mask(filtered_masks[o]['segmentation'], mask_draw)

        current_pil_image = pil_image.copy()
        current_pil_image.alpha_composite(mask_image)
                
        title_image = create_title_image('Red', relation, 'Blue', current_pil_image.size[0])
        concate_pil_image = concatenate_images_vertical(current_pil_image, title_image)
        pil_image_list.append(concate_pil_image)

    logger.info(f'relate_anything_5_{len(pil_image_list)}')
    return pil_image_list

mask_source_draw = "draw a mask on input image"
mask_source_segment = "type what to detect below"

def get_time_cost(run_task_time, time_cost_str):
    now_time = int(time.time()*1000)
    if run_task_time == 0:
        time_cost_str = 'start'
    else:
        if time_cost_str != '': 
            time_cost_str += f'-->'
        time_cost_str += f'{now_time - run_task_time}'
    run_task_time = now_time
    return run_task_time, time_cost_str

def processs_inpainting(inpaint_prompt, input_image, mask_image, image_input_composite, debug=False):
    from gradio_client import Client, handle_file
    import tempfile
    MAX_IMAGE_SIZE = 1024

    def change_RGB_value(image, r0, g0, b0, r1, g1, b1):
        pixels = image.load()
        for i in range(image.size[0]):
            for j in range(image.size[1]):
                r, g, b = pixels[i, j]
                if r == r0 and g == g0 and b == b0:
                    pixels[i, j] = (r1, g1, b1)
        return image

    try:
        # logger.info(f'processs_inpainting_input_image={inpaint_prompt} // {input_image}')
        # logger.info(f'processs_inpainting_mask_image={mask_image}')

        # job_image = {}
        # job_mask_image = None
        # if 'background' in input_image.keys():
        #     width, height = input_image['background'].size
        #     if max(width, height) > MAX_IMAGE_SIZE:
        #         if width > height:
        #             resize_width = MAX_IMAGE_SIZE
        #             resize_height = int(height * MAX_IMAGE_SIZE / width)
        #         else:
        #             resize_height = MAX_IMAGE_SIZE
        #             resize_width = int(width * MAX_IMAGE_SIZE / height)
        #     else:
        #         resize_width, resize_height = width, height
            
        #     logger.info(f"resize____{width}, {height}==>{resize_width}, {resize_height}")
        #     _, temp_file_path = tempfile.mkstemp(suffix='.png')
        #     img = input_image['background'].convert("RGB").resize((resize_width, resize_height))
        #     img.save(temp_file_path)
        #     # logger.info(f'processs_inpainting_temp_file_background_={temp_file_path}')
        #     job_image["background"] = handle_file(temp_file_path)

        # if mask_image is not None:
        #     _, temp_file_path = tempfile.mkstemp(suffix='.png')
        #     logger.info(f"mask_temp_file_path={temp_file_path}")
        #     img = mask_image.convert("RGB").resize((resize_width, resize_height))
        #     # RGB(0,0,0) -->  RGB(230,230,230)           
        #     img = change_RGB_value(img, 0, 0, 0, 230, 230, 230)
        #     # RGB(255,255,255) --> RGB(170,170,170)
        #     # img = change_RGB_value(img, 255, 255, 255, 170, 170, 170)
        #     img.save(temp_file_path)
        #     # logger.info(f'processs_inpainting_temp_file___mask_={temp_file_path}')
        #     job_image["layers"] = [handle_file(temp_file_path)]            

        # if image_input_composite:
        #     _, temp_file_path = tempfile.mkstemp(suffix='.png')
        #     image_input_composite.save(temp_file_path)
        #     job_image["composite"] = handle_file(temp_file_path)

        # logger.info(f'processs_inpainting_input_image={job_image}')    
        # logger.info(f'processs_inpainting_job_image={job_image}')
        # logger.info(f'processs_inpainting_job_mask_image={job_mask_image}')

        # if 0==1:
        #     logger.info(f'processs_inpainting_HF = Kwai-Kolors/Kolors-Inpainting')
        #     client = Client("Kwai-Kolors/Kolors-Inpainting", hf_token=huggingface_token, verbose=True)        
        #     job = client.submit(
        #             prompt=inpaint_prompt,
        #             image=job_image,
        #             mask_image=job_mask_image,
        #             negative_prompt="broken fingers, deformed fingers, deformed hands, stumps, blurriness, low quality",
        #             seed=0,
        #             randomize_seed=True,
        #             guidance_scale=6.0,
        #             num_inference_steps=25,
        #             api_name="/infer"
        #     )
        
        if 0==0:
            logger.info(f'processs_inpainting_HF = ameerazam08/FLUX.1-dev-Inpainting-Model-Beta-GPU')
            client = Client("ameerazam08/FLUX.1-dev-Inpainting-Model-Beta-GPU")
            job = client.submit(
                    input_image_editor=input_image,
                    # input_image_editor={"background":handle_file('https://ameerazam08-flux-1-dev-inpainting-model-beta-gpu.hf.space/file=/tmp/gradio/d9270300d40346834ccf596c97d9795fef6af692/background.png'),"layers":[handle_file('https://ameerazam08-flux-1-dev-inpainting-model-beta-gpu.hf.space/file=/tmp/gradio/4245eafd2d9aa8969d94dc22ffff62be95d4df02/layer_0.png')],"composite":handle_file('https://ameerazam08-flux-1-dev-inpainting-model-beta-gpu.hf.space/file=/tmp/gradio/7fe6ddfacbb3b394d19a32b01113a0460e2279ac/composite.png')},
                    prompt=inpaint_prompt,
                    negative_prompt="",
                    controlnet_conditioning_scale=0.9,
                    guidance_scale=3.5,
                    seed=124,
                    num_inference_steps=24,
                    true_guidance_scale=3.5,
                    api_name="/process"
            )
        debug = True
        if debug:
            count = 0
            logger.info(f'{count}___{job.status()}')
        while not job.done():
            if debug:
                count += 1
                logger.info(f'{count}___{job.status()}')
            time.sleep(0.1)
        
        result = job.outputs()
        logger.info(f'processs_inpainting_result={result}')
        if len(result) <= 0:
            return None

        result = result[0]
        im = Image.open(result)
        if im.mode == "RGBA":
            im.load()  
            background = Image.new("RGB", im.size, (255, 255, 255))
            background.paste(im, mask=im.split()[3]) 
        return im 
    except Exception as e:
        logger.info(f'processs_inpainting_[Error]:' + str(e))
        return None

def run_anything_task(input_image, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold, 
            iou_threshold, inpaint_mode, mask_source_radio, remove_mode, remove_mask_extend, remove_use_segment, num_relation, kosmos_input, cleaner_size_limit=1080):
    text_prompt = getTextTrans(text_prompt, source='zh', target='en')
    inpaint_prompt = getTextTrans(inpaint_prompt, source='zh', target='en')

    run_task_time = 0
    time_cost_str = ''
    run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
        
    # logger.info(f"input_image==={input_image}")
    ori_input_image = input_image
    image_input_composite = None
    if 'background' in input_image.keys():
        input_image['image'] = input_image['background'].convert("RGB")
        if len(input_image['layers']) > 0:
            img_arr = np.array(input_image['layers'][0].convert("L"))
            img_arr = np.where(img_arr > 0, 1, img_arr)
            input_image['mask'] = Image.fromarray(255*img_arr.astype('uint8'))
        if 'composite' in input_image.keys():
            image_input_composite = input_image['composite']

    if (task_type == 'Kosmos-2'):
        global kosmos_model, kosmos_processor
        if isinstance(input_image, dict):
            image_pil, image = load_image(input_image['image'].convert("RGB"))
            input_img = input_image['image']
        else:
            image_pil, image = load_image(input_image.convert("RGB"))
            input_img = input_image
            
        kosmos_image, kosmos_text, kosmos_entities = kosmos_generate_predictions(image_pil, kosmos_input, kosmos_model, kosmos_processor)
        run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
        return None, None, time_cost_str, kosmos_image, gr.update(visible=(time_cost_str !='')), kosmos_text, kosmos_entities

    if (task_type == 'relate anything'):
        output_images = relate_anything(input_image['image'], num_relation)
        run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
        return output_images, gr.update(label='relate images'), time_cost_str, gr.update(visible=(time_cost_str !='')), None, None, None

    text_prompt = text_prompt.strip()
    if not ((task_type in ['inpainting', 'outpainting'] or task_type == 'remove') and mask_source_radio == mask_source_draw):
        if text_prompt == '':
            return [], gr.update(label='Detection prompt is not found!πŸ˜‚πŸ˜‚πŸ˜‚πŸ˜‚'), time_cost_str, gr.update(visible=(time_cost_str !='')), None, None, None

    if input_image is None:
            return [], gr.update(label='Please upload a image!πŸ˜‚πŸ˜‚πŸ˜‚πŸ˜‚'), time_cost_str, gr.update(visible=(time_cost_str !='')), None, None, None

    file_temp = int(time.time())
    logger.info(f'run_anything_task_002/{device}_[{file_temp}]_{task_type}/{inpaint_mode}/[{mask_source_radio}]/{remove_mode}/{remove_mask_extend}/{remove_use_segment}_[{text_prompt}]/[{inpaint_prompt}]___1_')

    output_images = []

    # load image
    if mask_source_radio == mask_source_draw:
        input_mask_pil = input_image['mask']
        input_mask = np.array(input_mask_pil.convert("L"))  
    
    if isinstance(input_image, dict):
        image_pil, image = load_image(input_image['image'].convert("RGB"))
        input_img = input_image['image']
        output_images.append(input_image['image'])
        run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
    else:
        image_pil, image = load_image(input_image.convert("RGB"))
        input_img = input_image
        output_images.append(input_image)
        run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)

    size = image_pil.size
    H, W = size[1], size[0]

    # run grounding dino model
    if (task_type in ['inpainting', 'outpainting'] or task_type == 'remove') and mask_source_radio == mask_source_draw:
        pass
    else:
        groundingdino_device = 'cpu'
        if device != 'cpu':
            try:
                from groundingdino import _C
                groundingdino_device = 'cuda:0'
            except:
                warnings.warn("Failed to load custom C++ ops. Running on CPU mode Only in groundingdino!")

        boxes_filt, pred_phrases = get_grounding_output(
            groundingdino_model, image, text_prompt, box_threshold, text_threshold, device=groundingdino_device
        )
        if boxes_filt.size(0) == 0:
            logger.info(f'run_anything_task_[{file_temp}]_{task_type}_[{text_prompt}]_1___{groundingdino_device}/[No objects detected, please try others.]_')
            return [], gr.update(label='No objects detected, please try others.πŸ˜‚πŸ˜‚πŸ˜‚πŸ˜‚'), time_cost_str, gr.update(visible=(time_cost_str !='')), None, None, None
        boxes_filt_ori = copy.deepcopy(boxes_filt)

        pred_dict = {
            "boxes": boxes_filt,
            "size": [size[1], size[0]],  # H,W
            "labels": pred_phrases,
        }

        image_with_box = plot_boxes_to_image(copy.deepcopy(image_pil), pred_dict)[0]
        output_images.append(image_with_box)
        run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)

    logger.info(f'run_anything_task_[{file_temp}]_{task_type}_2_')

    use_sam_predictor = True
    if task_type == 'segment' or ((task_type in ['inpainting', 'outpainting'] or task_type == 'remove') and mask_source_radio == mask_source_segment):
        image = np.array(input_img)
        logger.info(f'run_anything_task_[{file_temp}]_{task_type}_2_1_')
        if task_type == 'remove' and remove_use_segment == False:
            logger.info(f'run_anything_task_[{file_temp}]_{task_type}_2_2_')
            use_sam_predictor = False

        if sam_predictor and use_sam_predictor:
            logger.info(f'run_anything_task_[{file_temp}]_{task_type}_2_3_')
            sam_predictor.set_image(image)

        for i in range(boxes_filt.size(0)):
            boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
            boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
            boxes_filt[i][2:] += boxes_filt[i][:2]

        if sam_predictor and use_sam_predictor:
            logger.info(f'run_anything_task_[{file_temp}]_{task_type}_2_4_')
            boxes_filt = boxes_filt.to(sam_device)
            transformed_boxes = sam_predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2])

            masks, _, _, _ = sam_predictor.predict_torch(
                point_coords = None,
                point_labels = None,
                boxes = transformed_boxes,
                multimask_output = False,
            )
            # masks: [9, 1, 512, 512]
            assert sam_checkpoint, 'sam_checkpoint is not found!'
        else:
            logger.info(f'run_anything_task_[{file_temp}]_{task_type}_2_5_')
            masks = torch.zeros(len(boxes_filt), 1, H, W)   
            mask_count = 0         
            for box in boxes_filt:
                masks[mask_count, 0, int(box[1]):int(box[3]), int(box[0]):int(box[2])] = 1  
                mask_count += 1   
            masks = torch.where(masks > 0, True, False)      
            run_mode = "rectangle"

        logger.info(f'run_anything_task_[{file_temp}]_{task_type}_2_6_')
        # draw output image
        plt.figure(figsize=(10, 10))
        plt.imshow(image)
        for mask in masks:
            show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
        for box, label in zip(boxes_filt, pred_phrases):
            show_box(box.cpu().numpy(), plt.gca(), label)
        plt.axis('off')
        image_path = os.path.join(output_dir, f"grounding_seg_output_{file_temp}.jpg")
        plt.savefig(image_path, bbox_inches="tight")
        plt.clf()
        plt.close('all')
        segment_image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
        os.remove(image_path)
        output_images.append(Image.fromarray(segment_image_result)) 
        run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)       

    logger.info(f'run_anything_task_[{file_temp}]_{task_type}_3_')
    if task_type == 'detection' or task_type == 'segment':
        logger.info(f'run_anything_task_[{file_temp}]_{task_type}_9_')
        return output_images, gr.update(label='result images'), time_cost_str, gr.update(visible=(time_cost_str !='')), None, None, None
    elif task_type in ['inpainting', 'outpainting'] or task_type == 'remove':
        if inpaint_prompt.strip() == '' and mask_source_radio == mask_source_segment:
            task_type = 'remove'

        logger.info(f'run_anything_task_[{file_temp}]_{task_type}_4_')  
        if mask_source_radio == mask_source_draw:
            mask_pil = input_mask_pil
            mask = input_mask          
        else:
            masks_ori = copy.deepcopy(masks)
            if inpaint_mode == 'merge':
                masks = torch.sum(masks, dim=0).unsqueeze(0)
            masks = torch.where(masks > 0, True, False)
            mask = masks[0][0].cpu().numpy()
            mask_pil = Image.fromarray(mask)
        output_images.append(mask_pil.convert("RGB"))
        run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)

        if task_type in ['inpainting', 'outpainting']:
            # inpainting pipeline
            image_source_for_inpaint = image_pil #.resize((512, 512))
            image_mask_for_inpaint = mask_pil #.resize((512, 512))
            if task_type in ['outpainting']:
                # reverse mask
                img_arr = np.array(image_mask_for_inpaint)
                img_arr = np.where(img_arr > 0, 1, img_arr)
                img_arr = 1 - img_arr
                image_mask_for_inpaint = Image.fromarray(255*img_arr.astype('uint8'))
                output_images.append(image_mask_for_inpaint.convert("RGB"))
                run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
            
            # image_inpainting = sd_model(prompt=inpaint_prompt, image=image_source_for_inpaint, mask_image=image_mask_for_inpaint).images[0]
            image_inpainting = processs_inpainting(inpaint_prompt, input_image, image_mask_for_inpaint, image_input_composite)
            if image_inpainting is None:
                logger.info(f'processs_inpainting_failed_')
                time_cost_str = f"processs_inpainting_task__failed!"
                return None, None, time_cost_str, gr.update(visible=(time_cost_str !='')), None, None, None
        else:
            # remove from mask
            if mask_source_radio == mask_source_segment:
                mask_imgs = []
                masks_shape = masks_ori.shape        
                boxes_filt_ori_array = boxes_filt_ori.numpy()
                if inpaint_mode == 'merge':
                    extend_shape_0 = masks_shape[0]
                    extend_shape_1 = masks_shape[1]
                else:
                    extend_shape_0 = 1
                    extend_shape_1 = 1
                for i in range(extend_shape_0):
                    for j in range(extend_shape_1):                
                        mask = masks_ori[i][j].cpu().numpy()
                        mask_pil = Image.fromarray(mask)  
                        if remove_mode == 'segment':
                            useRectangle = False
                        else:
                            useRectangle = True
                        try:
                            remove_mask_extend = int(remove_mask_extend)
                        except:
                            remove_mask_extend = 10
                        mask_pil_exp = mask_extend(copy.deepcopy(mask_pil).convert("RGB"), 
                                        xywh_to_xyxy(torch.tensor(boxes_filt_ori_array[i]), W, H),
                                        extend_pixels=remove_mask_extend, useRectangle=useRectangle)
                        mask_imgs.append(mask_pil_exp)
                mask_pil = mix_masks(mask_imgs)
                output_images.append(mask_pil.convert("RGB")) 
                run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)  

            logger.info(f'run_anything_task_[{file_temp}]_{task_type}_6_')            
            image_inpainting = lama_cleaner_process(np.array(image_pil), np.array(mask_pil.convert("L")), cleaner_size_limit)
            if image_inpainting is None:
                logger.info(f'run_anything_task_failed_')
                time_cost_str = f"run_anything_task[{task_type}]__failed!"
                return None, None, time_cost_str, gr.update(visible=(time_cost_str !='')), None, None, None

            # output_images.append(image_inpainting)
            # run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)

        logger.info(f'run_anything_task_[{file_temp}]_{task_type}_7_')
        image_inpainting = image_inpainting.resize((image_pil.size[0], image_pil.size[1]))
        output_images.append(image_inpainting)
        run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
        logger.info(f'run_anything_task_[{file_temp}]_{task_type}_9_')
        return output_images, gr.update(label='result images'), time_cost_str, gr.update(visible=(time_cost_str !='')), None, None, None       
    else:
        logger.info(f"task_type:{task_type} error!")
    logger.info(f'run_anything_task_[{file_temp}]_9_9_')
    return output_images, gr.update(label='result images'), time_cost_str, gr.update(visible=(time_cost_str !='')), None, None, None

def change_radio_display(task_type, mask_source_radio):
    text_prompt_visible = True
    inpaint_prompt_visible = False
    mask_source_radio_visible = False
    num_relation_visible = False

    image_gallery_visible = True
    kosmos_input_visible = False
    kosmos_output_visible = False
    kosmos_text_output_visible = False

    if task_type == "Kosmos-2":
        if kosmos_enable:
            text_prompt_visible = False
            image_gallery_visible = False
            kosmos_input_visible = True
            kosmos_output_visible = True
            kosmos_text_output_visible = True        

    if task_type in ['inpainting', 'outpainting']:
        inpaint_prompt_visible = True
    if task_type in ['inpainting', 'outpainting'] or task_type == "remove":
        mask_source_radio_visible = True   
        if mask_source_radio == mask_source_draw:
            text_prompt_visible = False
    if task_type == "relate anything":
        text_prompt_visible = False
        num_relation_visible = True

    return  (gr.update(visible=text_prompt_visible), 
            gr.update(visible=inpaint_prompt_visible), 
            gr.update(visible=mask_source_radio_visible), 
            gr.update(visible=num_relation_visible),
            gr.update(visible=image_gallery_visible),
            gr.update(visible=kosmos_input_visible),
            gr.update(visible=kosmos_output_visible),
            gr.update(visible=kosmos_text_output_visible))

def get_model_device(module):
    try:
        if module is None:
            return 'None'
        if isinstance(module, torch.nn.DataParallel):
            module = module.module
        for submodule in module.children():
            if hasattr(submodule, "_parameters"):
                parameters = submodule._parameters
                if "weight" in parameters:
                    return parameters["weight"].device
        return 'UnKnown'
    except Exception as e:
        return 'Error'

def main_gradio(args):
    block = gr.Blocks(
            title="SAM and others",
            # theme="shivi/calm_seafoam@>=0.0.1,<1.0.0",
        )
    with block:
        with gr.Row():
            with gr.Column():
                task_types = ["detection"]
                if sam_enable:
                    task_types.append("segment")
                if inpainting_enable:
                    task_types.append("inpainting")
                    # task_types.append("outpainting")
                if lama_cleaner_enable:
                    task_types.append("remove")
                if ram_enable:
                    task_types.append("relate anything")
                if kosmos_enable:
                    task_types.append("Kosmos-2")           
                
                brush_color = "#FFFFFF"
                color_mode = "fixed"
                input_image = gr.ImageEditor(sources=["upload", "webcam"], 
                                           image_mode='RGB', 
                                           elem_id="image_upload", 
                                           type='pil', 
                                           label="Upload",
                                           layers=False,
                                           brush=gr.Brush(colors=[brush_color], color_mode=color_mode))
                
                task_type = gr.Radio(task_types,  value="detection", 
                                                label='Task type', visible=True) 
                mask_source_radio = gr.Radio([mask_source_draw, mask_source_segment], 
                                    value=mask_source_segment, label="Mask from",
                                    visible=False) 
                text_prompt = gr.Textbox(label="Detection Prompt[To detect multiple objects, seperating each with '.', like this: cat . dog . chair ]", placeholder="Cannot be empty")                                                
                inpaint_prompt = gr.Textbox(label="Inpaint Prompt (if this is empty, then remove)", visible=False)
                num_relation = gr.Slider(label="How many relations do you want to see", minimum=1, maximum=20, value=5, step=1, visible=False)
                
                kosmos_input = gr.Radio(["Brief", "Detailed"], label="Kosmos Description Type", value="Brief", visible=False)

                run_button = gr.Button(value="Run", visible=True)
                with gr.Accordion("Advanced options", open=False) as advanced_options:
                    box_threshold = gr.Slider(
                        label="Box Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.001
                    )
                    text_threshold = gr.Slider(
                        label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
                    )
                    iou_threshold = gr.Slider(
                        label="IOU Threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.001
                    )                    
                    inpaint_mode = gr.Radio(["merge", "first"], value="merge", label="inpaint_mode")
                    with gr.Row():
                        with gr.Column(scale=1):
                            remove_mode = gr.Radio(["segment", "rectangle"],  value="segment", label='remove mode') 
                        with gr.Column(scale=1):
                            remove_mask_extend = gr.Textbox(label="remove_mask_extend", value='10')
                        with gr.Column(scale=1, visible=False):
                            remove_use_segment = gr.Checkbox(value=True, elem_id='remove_use_segment', label="use segment for removing?", info="")
            with gr.Column():
                image_gallery = gr.Gallery(label="result images", show_label=True, elem_id="gallery", height=512, visible=True
                    ) #.style(preview=True, columns=[5], object_fit="scale-down", height="auto")   
                time_cost = gr.Textbox(label="Time cost by step (ms):", visible=False, interactive=False)

                kosmos_output = gr.Image(type="pil", label="result images", visible=False)
                kosmos_text_output = gr.HighlightedText(
                                    label="Generated Description",
                                    combine_adjacent=False,
                                    show_legend=True,
                                    visible=False,
                                ) # .style(color_map=color_map)
                # record which text span (label) is selected
                selected = gr.Number(-1, show_label=False, visible=False)

                # record the current `entities`
                entity_output = gr.Textbox(visible=False)

                # get the current selected span label
                def get_text_span_label(evt: gr.SelectData):
                    if evt.value[-1] is None:
                        return -1
                    return int(evt.value[-1])
                # and set this information to `selected`
                kosmos_text_output.select(get_text_span_label, None, selected)
                
                # update output image when we change the span (enity) selection
                def update_output_image(img_input, image_output, entities, idx):
                    entities = ast.literal_eval(entities)
                    updated_image = draw_entity_boxes_on_image(img_input, entities, entity_index=idx)
                    return updated_image
                selected.change(update_output_image, [kosmos_output, kosmos_output, entity_output, selected], [kosmos_output])

            run_button.click(fn=run_anything_task, inputs=[
                            input_image, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold, 
                            iou_threshold, inpaint_mode, mask_source_radio, remove_mode, remove_mask_extend, remove_use_segment, num_relation, kosmos_input], 
                            outputs=[image_gallery, image_gallery, time_cost, time_cost, kosmos_output, kosmos_text_output, entity_output], show_progress=True, queue=True)
            
            mask_source_radio.change(fn=change_radio_display, inputs=[task_type, mask_source_radio], 
                            outputs=[text_prompt, inpaint_prompt, mask_source_radio, num_relation])
            task_type.change(fn=change_radio_display, inputs=[task_type, mask_source_radio], 
                            outputs=[text_prompt, inpaint_prompt, mask_source_radio, num_relation,
                            image_gallery, kosmos_input, kosmos_output, kosmos_text_output
                            ])

        DESCRIPTION = f'### This demo from [Grounded-Segment-Anything](https://github.com/IDEA-Research/Grounded-Segment-Anything). <br>'
        if lama_cleaner_enable:
            DESCRIPTION += f'Remove(cleaner) from [lama-cleaner](https://github.com/Sanster/lama-cleaner). <br>'
        if kosmos_enable:
            DESCRIPTION += f'Kosmos-2 from [Kosmos-2](https://github.com/microsoft/unilm/tree/master/kosmos-2). <br>'
        if ram_enable:
            DESCRIPTION += f'RAM from [RelateAnything](https://github.com/Luodian/RelateAnything). <br>'
        if inpainting_enable:
            DESCRIPTION += f'Inpainting from [FLUX.1-dev-Inpainting-Model-Beta-GPU](https://huggingface.co/spaces/ameerazam08/FLUX.1-dev-Inpainting-Model-Beta-GPU). <br>'
            # DESCRIPTION += f'Inpainting from [Kolors-Inpainting](https://huggingface.co/spaces/Kwai-Kolors/Kolors-Inpainting). <br>'
        DESCRIPTION += f'Thanks for their excellent work.'
        DESCRIPTION += f'<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. \
                        <a href="https://huggingface.co/spaces/yizhangliu/Grounded-Segment-Anything?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>'
        gr.Markdown(DESCRIPTION)

    logger.info(f'device = {device}')
    logger.info(f'torch.cuda.is_available = {torch.cuda.is_available()}')
    computer_info()
    block.queue(max_size=10, api_open=False)
    logger.info(f"Start a gradio server[{os.getpid()}]: http://0.0.0.0:{args.port}")
    block.launch(server_name='0.0.0.0', server_port=args.port, debug=args.debug, share=args.share, show_api=False)

if __name__ == "__main__":
    parser = argparse.ArgumentParser("Grounded SAM demo", add_help=True)
    parser.add_argument("--debug", action="store_true", help="using debug mode")
    parser.add_argument("--share", action="store_true", help="share the app")
    parser.add_argument("--port", "-p", type=int, default=7860, help="port")
    parser.add_argument("--cuda", "-c", type=str, default='cuda:0', help="cuda")
    args, _ = parser.parse_known_args()
    logger.info(f'args = {args}')

    if os.environ.get('IS_MY_DEBUG') is None:
        os.system("pip list")
    
    set_device(args)
    if device == 'cpu':
        kosmos_enable = False

    if kosmos_enable:
        kosmos_model, kosmos_processor = load_kosmos_model(device)
        
    if groundingdino_enable:
        load_groundingdino_model('cpu')
    
    if sam_enable:
        load_sam_model(device)

    if inpainting_enable:
        load_sd_model(device)

    if lama_cleaner_enable:
        load_lama_cleaner_model(device)

    if ram_enable:
        load_ram_model(device)
    
    if os.environ.get('IS_MY_DEBUG') is None:
        os.system("pip list")

    main_gradio(args)