Spaces:
Running
on
T4
Running
on
T4
# coding=utf-8 | |
# Copyright 2018 Google AI, Google Brain and the HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch ALBERT model.""" | |
import math | |
import os | |
from dataclasses import dataclass | |
from typing import Dict, List, Optional, Tuple, Union | |
import torch | |
from torch import nn | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
from ...activations import ACT2FN | |
from ...modeling_outputs import ( | |
BaseModelOutput, | |
BaseModelOutputWithPooling, | |
MaskedLMOutput, | |
MultipleChoiceModelOutput, | |
QuestionAnsweringModelOutput, | |
SequenceClassifierOutput, | |
TokenClassifierOutput, | |
) | |
from ...modeling_utils import PreTrainedModel | |
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer | |
from ...utils import ( | |
ModelOutput, | |
add_code_sample_docstrings, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
logging, | |
replace_return_docstrings, | |
) | |
from .configuration_albert import AlbertConfig | |
logger = logging.get_logger(__name__) | |
_CHECKPOINT_FOR_DOC = "albert-base-v2" | |
_CONFIG_FOR_DOC = "AlbertConfig" | |
ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
"albert-base-v1", | |
"albert-large-v1", | |
"albert-xlarge-v1", | |
"albert-xxlarge-v1", | |
"albert-base-v2", | |
"albert-large-v2", | |
"albert-xlarge-v2", | |
"albert-xxlarge-v2", | |
# See all ALBERT models at https://huggingface.co/models?filter=albert | |
] | |
def load_tf_weights_in_albert(model, config, tf_checkpoint_path): | |
"""Load tf checkpoints in a pytorch model.""" | |
try: | |
import re | |
import numpy as np | |
import tensorflow as tf | |
except ImportError: | |
logger.error( | |
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " | |
"https://www.tensorflow.org/install/ for installation instructions." | |
) | |
raise | |
tf_path = os.path.abspath(tf_checkpoint_path) | |
logger.info(f"Converting TensorFlow checkpoint from {tf_path}") | |
# Load weights from TF model | |
init_vars = tf.train.list_variables(tf_path) | |
names = [] | |
arrays = [] | |
for name, shape in init_vars: | |
logger.info(f"Loading TF weight {name} with shape {shape}") | |
array = tf.train.load_variable(tf_path, name) | |
names.append(name) | |
arrays.append(array) | |
for name, array in zip(names, arrays): | |
print(name) | |
for name, array in zip(names, arrays): | |
original_name = name | |
# If saved from the TF HUB module | |
name = name.replace("module/", "") | |
# Renaming and simplifying | |
name = name.replace("ffn_1", "ffn") | |
name = name.replace("bert/", "albert/") | |
name = name.replace("attention_1", "attention") | |
name = name.replace("transform/", "") | |
name = name.replace("LayerNorm_1", "full_layer_layer_norm") | |
name = name.replace("LayerNorm", "attention/LayerNorm") | |
name = name.replace("transformer/", "") | |
# The feed forward layer had an 'intermediate' step which has been abstracted away | |
name = name.replace("intermediate/dense/", "") | |
name = name.replace("ffn/intermediate/output/dense/", "ffn_output/") | |
# ALBERT attention was split between self and output which have been abstracted away | |
name = name.replace("/output/", "/") | |
name = name.replace("/self/", "/") | |
# The pooler is a linear layer | |
name = name.replace("pooler/dense", "pooler") | |
# The classifier was simplified to predictions from cls/predictions | |
name = name.replace("cls/predictions", "predictions") | |
name = name.replace("predictions/attention", "predictions") | |
# Naming was changed to be more explicit | |
name = name.replace("embeddings/attention", "embeddings") | |
name = name.replace("inner_group_", "albert_layers/") | |
name = name.replace("group_", "albert_layer_groups/") | |
# Classifier | |
if len(name.split("/")) == 1 and ("output_bias" in name or "output_weights" in name): | |
name = "classifier/" + name | |
# No ALBERT model currently handles the next sentence prediction task | |
if "seq_relationship" in name: | |
name = name.replace("seq_relationship/output_", "sop_classifier/classifier/") | |
name = name.replace("weights", "weight") | |
name = name.split("/") | |
# Ignore the gradients applied by the LAMB/ADAM optimizers. | |
if ( | |
"adam_m" in name | |
or "adam_v" in name | |
or "AdamWeightDecayOptimizer" in name | |
or "AdamWeightDecayOptimizer_1" in name | |
or "global_step" in name | |
): | |
logger.info(f"Skipping {'/'.join(name)}") | |
continue | |
pointer = model | |
for m_name in name: | |
if re.fullmatch(r"[A-Za-z]+_\d+", m_name): | |
scope_names = re.split(r"_(\d+)", m_name) | |
else: | |
scope_names = [m_name] | |
if scope_names[0] == "kernel" or scope_names[0] == "gamma": | |
pointer = getattr(pointer, "weight") | |
elif scope_names[0] == "output_bias" or scope_names[0] == "beta": | |
pointer = getattr(pointer, "bias") | |
elif scope_names[0] == "output_weights": | |
pointer = getattr(pointer, "weight") | |
elif scope_names[0] == "squad": | |
pointer = getattr(pointer, "classifier") | |
else: | |
try: | |
pointer = getattr(pointer, scope_names[0]) | |
except AttributeError: | |
logger.info(f"Skipping {'/'.join(name)}") | |
continue | |
if len(scope_names) >= 2: | |
num = int(scope_names[1]) | |
pointer = pointer[num] | |
if m_name[-11:] == "_embeddings": | |
pointer = getattr(pointer, "weight") | |
elif m_name == "kernel": | |
array = np.transpose(array) | |
try: | |
if pointer.shape != array.shape: | |
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched") | |
except ValueError as e: | |
e.args += (pointer.shape, array.shape) | |
raise | |
print(f"Initialize PyTorch weight {name} from {original_name}") | |
pointer.data = torch.from_numpy(array) | |
return model | |
class AlbertEmbeddings(nn.Module): | |
""" | |
Construct the embeddings from word, position and token_type embeddings. | |
""" | |
def __init__(self, config: AlbertConfig): | |
super().__init__() | |
self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id) | |
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.embedding_size) | |
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.embedding_size) | |
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load | |
# any TensorFlow checkpoint file | |
self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
# position_ids (1, len position emb) is contiguous in memory and exported when serialized | |
self.register_buffer( | |
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False | |
) | |
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") | |
self.register_buffer( | |
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False | |
) | |
# Copied from transformers.models.bert.modeling_bert.BertEmbeddings.forward | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
past_key_values_length: int = 0, | |
) -> torch.Tensor: | |
if input_ids is not None: | |
input_shape = input_ids.size() | |
else: | |
input_shape = inputs_embeds.size()[:-1] | |
seq_length = input_shape[1] | |
if position_ids is None: | |
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] | |
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs | |
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves | |
# issue #5664 | |
if token_type_ids is None: | |
if hasattr(self, "token_type_ids"): | |
buffered_token_type_ids = self.token_type_ids[:, :seq_length] | |
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) | |
token_type_ids = buffered_token_type_ids_expanded | |
else: | |
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) | |
if inputs_embeds is None: | |
inputs_embeds = self.word_embeddings(input_ids) | |
token_type_embeddings = self.token_type_embeddings(token_type_ids) | |
embeddings = inputs_embeds + token_type_embeddings | |
if self.position_embedding_type == "absolute": | |
position_embeddings = self.position_embeddings(position_ids) | |
embeddings += position_embeddings | |
embeddings = self.LayerNorm(embeddings) | |
embeddings = self.dropout(embeddings) | |
return embeddings | |
class AlbertAttention(nn.Module): | |
def __init__(self, config: AlbertConfig): | |
super().__init__() | |
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): | |
raise ValueError( | |
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " | |
f"heads ({config.num_attention_heads}" | |
) | |
self.num_attention_heads = config.num_attention_heads | |
self.hidden_size = config.hidden_size | |
self.attention_head_size = config.hidden_size // config.num_attention_heads | |
self.all_head_size = self.num_attention_heads * self.attention_head_size | |
self.query = nn.Linear(config.hidden_size, self.all_head_size) | |
self.key = nn.Linear(config.hidden_size, self.all_head_size) | |
self.value = nn.Linear(config.hidden_size, self.all_head_size) | |
self.attention_dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
self.output_dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.pruned_heads = set() | |
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") | |
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": | |
self.max_position_embeddings = config.max_position_embeddings | |
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) | |
# Copied from transformers.models.bert.modeling_bert.BertSelfAttention.transpose_for_scores | |
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: | |
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) | |
x = x.view(new_x_shape) | |
return x.permute(0, 2, 1, 3) | |
def prune_heads(self, heads: List[int]) -> None: | |
if len(heads) == 0: | |
return | |
heads, index = find_pruneable_heads_and_indices( | |
heads, self.num_attention_heads, self.attention_head_size, self.pruned_heads | |
) | |
# Prune linear layers | |
self.query = prune_linear_layer(self.query, index) | |
self.key = prune_linear_layer(self.key, index) | |
self.value = prune_linear_layer(self.value, index) | |
self.dense = prune_linear_layer(self.dense, index, dim=1) | |
# Update hyper params and store pruned heads | |
self.num_attention_heads = self.num_attention_heads - len(heads) | |
self.all_head_size = self.attention_head_size * self.num_attention_heads | |
self.pruned_heads = self.pruned_heads.union(heads) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
output_attentions: bool = False, | |
) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]: | |
mixed_query_layer = self.query(hidden_states) | |
mixed_key_layer = self.key(hidden_states) | |
mixed_value_layer = self.value(hidden_states) | |
query_layer = self.transpose_for_scores(mixed_query_layer) | |
key_layer = self.transpose_for_scores(mixed_key_layer) | |
value_layer = self.transpose_for_scores(mixed_value_layer) | |
# Take the dot product between "query" and "key" to get the raw attention scores. | |
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) | |
attention_scores = attention_scores / math.sqrt(self.attention_head_size) | |
if attention_mask is not None: | |
# Apply the attention mask is (precomputed for all layers in BertModel forward() function) | |
attention_scores = attention_scores + attention_mask | |
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": | |
seq_length = hidden_states.size()[1] | |
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) | |
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1) | |
distance = position_ids_l - position_ids_r | |
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) | |
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility | |
if self.position_embedding_type == "relative_key": | |
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) | |
attention_scores = attention_scores + relative_position_scores | |
elif self.position_embedding_type == "relative_key_query": | |
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) | |
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) | |
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key | |
# Normalize the attention scores to probabilities. | |
attention_probs = nn.functional.softmax(attention_scores, dim=-1) | |
# This is actually dropping out entire tokens to attend to, which might | |
# seem a bit unusual, but is taken from the original Transformer paper. | |
attention_probs = self.attention_dropout(attention_probs) | |
# Mask heads if we want to | |
if head_mask is not None: | |
attention_probs = attention_probs * head_mask | |
context_layer = torch.matmul(attention_probs, value_layer) | |
context_layer = context_layer.transpose(2, 1).flatten(2) | |
projected_context_layer = self.dense(context_layer) | |
projected_context_layer_dropout = self.output_dropout(projected_context_layer) | |
layernormed_context_layer = self.LayerNorm(hidden_states + projected_context_layer_dropout) | |
return (layernormed_context_layer, attention_probs) if output_attentions else (layernormed_context_layer,) | |
class AlbertLayer(nn.Module): | |
def __init__(self, config: AlbertConfig): | |
super().__init__() | |
self.config = config | |
self.chunk_size_feed_forward = config.chunk_size_feed_forward | |
self.seq_len_dim = 1 | |
self.full_layer_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.attention = AlbertAttention(config) | |
self.ffn = nn.Linear(config.hidden_size, config.intermediate_size) | |
self.ffn_output = nn.Linear(config.intermediate_size, config.hidden_size) | |
self.activation = ACT2FN[config.hidden_act] | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
output_attentions: bool = False, | |
output_hidden_states: bool = False, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
attention_output = self.attention(hidden_states, attention_mask, head_mask, output_attentions) | |
ffn_output = apply_chunking_to_forward( | |
self.ff_chunk, | |
self.chunk_size_feed_forward, | |
self.seq_len_dim, | |
attention_output[0], | |
) | |
hidden_states = self.full_layer_layer_norm(ffn_output + attention_output[0]) | |
return (hidden_states,) + attention_output[1:] # add attentions if we output them | |
def ff_chunk(self, attention_output: torch.Tensor) -> torch.Tensor: | |
ffn_output = self.ffn(attention_output) | |
ffn_output = self.activation(ffn_output) | |
ffn_output = self.ffn_output(ffn_output) | |
return ffn_output | |
class AlbertLayerGroup(nn.Module): | |
def __init__(self, config: AlbertConfig): | |
super().__init__() | |
self.albert_layers = nn.ModuleList([AlbertLayer(config) for _ in range(config.inner_group_num)]) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
output_attentions: bool = False, | |
output_hidden_states: bool = False, | |
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]: | |
layer_hidden_states = () | |
layer_attentions = () | |
for layer_index, albert_layer in enumerate(self.albert_layers): | |
layer_output = albert_layer(hidden_states, attention_mask, head_mask[layer_index], output_attentions) | |
hidden_states = layer_output[0] | |
if output_attentions: | |
layer_attentions = layer_attentions + (layer_output[1],) | |
if output_hidden_states: | |
layer_hidden_states = layer_hidden_states + (hidden_states,) | |
outputs = (hidden_states,) | |
if output_hidden_states: | |
outputs = outputs + (layer_hidden_states,) | |
if output_attentions: | |
outputs = outputs + (layer_attentions,) | |
return outputs # last-layer hidden state, (layer hidden states), (layer attentions) | |
class AlbertTransformer(nn.Module): | |
def __init__(self, config: AlbertConfig): | |
super().__init__() | |
self.config = config | |
self.embedding_hidden_mapping_in = nn.Linear(config.embedding_size, config.hidden_size) | |
self.albert_layer_groups = nn.ModuleList([AlbertLayerGroup(config) for _ in range(config.num_hidden_groups)]) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
output_attentions: bool = False, | |
output_hidden_states: bool = False, | |
return_dict: bool = True, | |
) -> Union[BaseModelOutput, Tuple]: | |
hidden_states = self.embedding_hidden_mapping_in(hidden_states) | |
all_hidden_states = (hidden_states,) if output_hidden_states else None | |
all_attentions = () if output_attentions else None | |
head_mask = [None] * self.config.num_hidden_layers if head_mask is None else head_mask | |
for i in range(self.config.num_hidden_layers): | |
# Number of layers in a hidden group | |
layers_per_group = int(self.config.num_hidden_layers / self.config.num_hidden_groups) | |
# Index of the hidden group | |
group_idx = int(i / (self.config.num_hidden_layers / self.config.num_hidden_groups)) | |
layer_group_output = self.albert_layer_groups[group_idx]( | |
hidden_states, | |
attention_mask, | |
head_mask[group_idx * layers_per_group : (group_idx + 1) * layers_per_group], | |
output_attentions, | |
output_hidden_states, | |
) | |
hidden_states = layer_group_output[0] | |
if output_attentions: | |
all_attentions = all_attentions + layer_group_output[-1] | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) | |
return BaseModelOutput( | |
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions | |
) | |
class AlbertPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = AlbertConfig | |
load_tf_weights = load_tf_weights_in_albert | |
base_model_prefix = "albert" | |
def _init_weights(self, module): | |
"""Initialize the weights.""" | |
if isinstance(module, nn.Linear): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
class AlbertForPreTrainingOutput(ModelOutput): | |
""" | |
Output type of [`AlbertForPreTraining`]. | |
Args: | |
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): | |
Total loss as the sum of the masked language modeling loss and the next sequence prediction | |
(classification) loss. | |
prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): | |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
sop_logits (`torch.FloatTensor` of shape `(batch_size, 2)`): | |
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation | |
before SoftMax). | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of | |
shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
prediction_logits: torch.FloatTensor = None | |
sop_logits: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
ALBERT_START_DOCSTRING = r""" | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Args: | |
config ([`AlbertConfig`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
ALBERT_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `({0})`): | |
Indices of input sequence tokens in the vocabulary. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and | |
[`PreTrainedTokenizer.encode`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): | |
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, | |
1]`: | |
- 0 corresponds to a *sentence A* token, | |
- 1 corresponds to a *sentence B* token. | |
[What are token type IDs?](../glossary#token-type-ids) | |
position_ids (`torch.LongTensor` of shape `({0})`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
config.max_position_embeddings - 1]`. | |
[What are position IDs?](../glossary#position-ids) | |
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class AlbertModel(AlbertPreTrainedModel): | |
config_class = AlbertConfig | |
base_model_prefix = "albert" | |
def __init__(self, config: AlbertConfig, add_pooling_layer: bool = True): | |
super().__init__(config) | |
self.config = config | |
self.embeddings = AlbertEmbeddings(config) | |
self.encoder = AlbertTransformer(config) | |
if add_pooling_layer: | |
self.pooler = nn.Linear(config.hidden_size, config.hidden_size) | |
self.pooler_activation = nn.Tanh() | |
else: | |
self.pooler = None | |
self.pooler_activation = None | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self) -> nn.Embedding: | |
return self.embeddings.word_embeddings | |
def set_input_embeddings(self, value: nn.Embedding) -> None: | |
self.embeddings.word_embeddings = value | |
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None: | |
""" | |
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} ALBERT has | |
a different architecture in that its layers are shared across groups, which then has inner groups. If an ALBERT | |
model has 12 hidden layers and 2 hidden groups, with two inner groups, there is a total of 4 different layers. | |
These layers are flattened: the indices [0,1] correspond to the two inner groups of the first hidden layer, | |
while [2,3] correspond to the two inner groups of the second hidden layer. | |
Any layer with in index other than [0,1,2,3] will result in an error. See base class PreTrainedModel for more | |
information about head pruning | |
""" | |
for layer, heads in heads_to_prune.items(): | |
group_idx = int(layer / self.config.inner_group_num) | |
inner_group_idx = int(layer - group_idx * self.config.inner_group_num) | |
self.encoder.albert_layer_groups[group_idx].albert_layers[inner_group_idx].attention.prune_heads(heads) | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[BaseModelOutputWithPooling, Tuple]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
elif input_ids is not None: | |
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) | |
input_shape = input_ids.size() | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
batch_size, seq_length = input_shape | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
if attention_mask is None: | |
attention_mask = torch.ones(input_shape, device=device) | |
if token_type_ids is None: | |
if hasattr(self.embeddings, "token_type_ids"): | |
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] | |
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) | |
token_type_ids = buffered_token_type_ids_expanded | |
else: | |
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) | |
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) | |
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility | |
extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(self.dtype).min | |
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) | |
embedding_output = self.embeddings( | |
input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds | |
) | |
encoder_outputs = self.encoder( | |
embedding_output, | |
extended_attention_mask, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = encoder_outputs[0] | |
pooled_output = self.pooler_activation(self.pooler(sequence_output[:, 0])) if self.pooler is not None else None | |
if not return_dict: | |
return (sequence_output, pooled_output) + encoder_outputs[1:] | |
return BaseModelOutputWithPooling( | |
last_hidden_state=sequence_output, | |
pooler_output=pooled_output, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
) | |
class AlbertForPreTraining(AlbertPreTrainedModel): | |
_tied_weights_keys = ["predictions.decoder.bias", "predictions.decoder.weight"] | |
def __init__(self, config: AlbertConfig): | |
super().__init__(config) | |
self.albert = AlbertModel(config) | |
self.predictions = AlbertMLMHead(config) | |
self.sop_classifier = AlbertSOPHead(config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_output_embeddings(self) -> nn.Linear: | |
return self.predictions.decoder | |
def set_output_embeddings(self, new_embeddings: nn.Linear) -> None: | |
self.predictions.decoder = new_embeddings | |
def get_input_embeddings(self) -> nn.Embedding: | |
return self.albert.embeddings.word_embeddings | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
sentence_order_label: Optional[torch.LongTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[AlbertForPreTrainingOutput, Tuple]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., | |
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the | |
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` | |
sentence_order_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair | |
(see `input_ids` docstring) Indices should be in `[0, 1]`. `0` indicates original order (sequence A, then | |
sequence B), `1` indicates switched order (sequence B, then sequence A). | |
Returns: | |
Example: | |
```python | |
>>> from transformers import AutoTokenizer, AlbertForPreTraining | |
>>> import torch | |
>>> tokenizer = AutoTokenizer.from_pretrained("albert-base-v2") | |
>>> model = AlbertForPreTraining.from_pretrained("albert-base-v2") | |
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) | |
>>> # Batch size 1 | |
>>> outputs = model(input_ids) | |
>>> prediction_logits = outputs.prediction_logits | |
>>> sop_logits = outputs.sop_logits | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.albert( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output, pooled_output = outputs[:2] | |
prediction_scores = self.predictions(sequence_output) | |
sop_scores = self.sop_classifier(pooled_output) | |
total_loss = None | |
if labels is not None and sentence_order_label is not None: | |
loss_fct = CrossEntropyLoss() | |
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) | |
sentence_order_loss = loss_fct(sop_scores.view(-1, 2), sentence_order_label.view(-1)) | |
total_loss = masked_lm_loss + sentence_order_loss | |
if not return_dict: | |
output = (prediction_scores, sop_scores) + outputs[2:] | |
return ((total_loss,) + output) if total_loss is not None else output | |
return AlbertForPreTrainingOutput( | |
loss=total_loss, | |
prediction_logits=prediction_scores, | |
sop_logits=sop_scores, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class AlbertMLMHead(nn.Module): | |
def __init__(self, config: AlbertConfig): | |
super().__init__() | |
self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps) | |
self.bias = nn.Parameter(torch.zeros(config.vocab_size)) | |
self.dense = nn.Linear(config.hidden_size, config.embedding_size) | |
self.decoder = nn.Linear(config.embedding_size, config.vocab_size) | |
self.activation = ACT2FN[config.hidden_act] | |
self.decoder.bias = self.bias | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.activation(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states) | |
hidden_states = self.decoder(hidden_states) | |
prediction_scores = hidden_states | |
return prediction_scores | |
def _tie_weights(self) -> None: | |
# To tie those two weights if they get disconnected (on TPU or when the bias is resized) | |
self.bias = self.decoder.bias | |
class AlbertSOPHead(nn.Module): | |
def __init__(self, config: AlbertConfig): | |
super().__init__() | |
self.dropout = nn.Dropout(config.classifier_dropout_prob) | |
self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
def forward(self, pooled_output: torch.Tensor) -> torch.Tensor: | |
dropout_pooled_output = self.dropout(pooled_output) | |
logits = self.classifier(dropout_pooled_output) | |
return logits | |
class AlbertForMaskedLM(AlbertPreTrainedModel): | |
_tied_weights_keys = ["predictions.decoder.bias", "predictions.decoder.weight"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.albert = AlbertModel(config, add_pooling_layer=False) | |
self.predictions = AlbertMLMHead(config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_output_embeddings(self) -> nn.Linear: | |
return self.predictions.decoder | |
def set_output_embeddings(self, new_embeddings: nn.Linear) -> None: | |
self.predictions.decoder = new_embeddings | |
def get_input_embeddings(self) -> nn.Embedding: | |
return self.albert.embeddings.word_embeddings | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[MaskedLMOutput, Tuple]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., | |
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the | |
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` | |
Returns: | |
Example: | |
```python | |
>>> import torch | |
>>> from transformers import AutoTokenizer, AlbertForMaskedLM | |
>>> tokenizer = AutoTokenizer.from_pretrained("albert-base-v2") | |
>>> model = AlbertForMaskedLM.from_pretrained("albert-base-v2") | |
>>> # add mask_token | |
>>> inputs = tokenizer("The capital of [MASK] is Paris.", return_tensors="pt") | |
>>> with torch.no_grad(): | |
... logits = model(**inputs).logits | |
>>> # retrieve index of [MASK] | |
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0] | |
>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1) | |
>>> tokenizer.decode(predicted_token_id) | |
'france' | |
``` | |
```python | |
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"] | |
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100) | |
>>> outputs = model(**inputs, labels=labels) | |
>>> round(outputs.loss.item(), 2) | |
0.81 | |
``` | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.albert( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_outputs = outputs[0] | |
prediction_scores = self.predictions(sequence_outputs) | |
masked_lm_loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) | |
if not return_dict: | |
output = (prediction_scores,) + outputs[2:] | |
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output | |
return MaskedLMOutput( | |
loss=masked_lm_loss, | |
logits=prediction_scores, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class AlbertForSequenceClassification(AlbertPreTrainedModel): | |
def __init__(self, config: AlbertConfig): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.config = config | |
self.albert = AlbertModel(config) | |
self.dropout = nn.Dropout(config.classifier_dropout_prob) | |
self.classifier = nn.Linear(config.hidden_size, self.config.num_labels) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[SequenceClassifierOutput, Tuple]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.albert( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
pooled_output = outputs[1] | |
pooled_output = self.dropout(pooled_output) | |
logits = self.classifier(pooled_output) | |
loss = None | |
if labels is not None: | |
if self.config.problem_type is None: | |
if self.num_labels == 1: | |
self.config.problem_type = "regression" | |
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
self.config.problem_type = "single_label_classification" | |
else: | |
self.config.problem_type = "multi_label_classification" | |
if self.config.problem_type == "regression": | |
loss_fct = MSELoss() | |
if self.num_labels == 1: | |
loss = loss_fct(logits.squeeze(), labels.squeeze()) | |
else: | |
loss = loss_fct(logits, labels) | |
elif self.config.problem_type == "single_label_classification": | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
elif self.config.problem_type == "multi_label_classification": | |
loss_fct = BCEWithLogitsLoss() | |
loss = loss_fct(logits, labels) | |
if not return_dict: | |
output = (logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return SequenceClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class AlbertForTokenClassification(AlbertPreTrainedModel): | |
def __init__(self, config: AlbertConfig): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.albert = AlbertModel(config, add_pooling_layer=False) | |
classifier_dropout_prob = ( | |
config.classifier_dropout_prob | |
if config.classifier_dropout_prob is not None | |
else config.hidden_dropout_prob | |
) | |
self.dropout = nn.Dropout(classifier_dropout_prob) | |
self.classifier = nn.Linear(config.hidden_size, self.config.num_labels) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[TokenClassifierOutput, Tuple]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.albert( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
sequence_output = self.dropout(sequence_output) | |
logits = self.classifier(sequence_output) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
if not return_dict: | |
output = (logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return TokenClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class AlbertForQuestionAnswering(AlbertPreTrainedModel): | |
def __init__(self, config: AlbertConfig): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.albert = AlbertModel(config, add_pooling_layer=False) | |
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
start_positions: Optional[torch.LongTensor] = None, | |
end_positions: Optional[torch.LongTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[AlbertForPreTrainingOutput, Tuple]: | |
r""" | |
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for position (index) of the start of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | |
are not taken into account for computing the loss. | |
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for position (index) of the end of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | |
are not taken into account for computing the loss. | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.albert( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
logits: torch.Tensor = self.qa_outputs(sequence_output) | |
start_logits, end_logits = logits.split(1, dim=-1) | |
start_logits = start_logits.squeeze(-1).contiguous() | |
end_logits = end_logits.squeeze(-1).contiguous() | |
total_loss = None | |
if start_positions is not None and end_positions is not None: | |
# If we are on multi-GPU, split add a dimension | |
if len(start_positions.size()) > 1: | |
start_positions = start_positions.squeeze(-1) | |
if len(end_positions.size()) > 1: | |
end_positions = end_positions.squeeze(-1) | |
# sometimes the start/end positions are outside our model inputs, we ignore these terms | |
ignored_index = start_logits.size(1) | |
start_positions = start_positions.clamp(0, ignored_index) | |
end_positions = end_positions.clamp(0, ignored_index) | |
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) | |
start_loss = loss_fct(start_logits, start_positions) | |
end_loss = loss_fct(end_logits, end_positions) | |
total_loss = (start_loss + end_loss) / 2 | |
if not return_dict: | |
output = (start_logits, end_logits) + outputs[2:] | |
return ((total_loss,) + output) if total_loss is not None else output | |
return QuestionAnsweringModelOutput( | |
loss=total_loss, | |
start_logits=start_logits, | |
end_logits=end_logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class AlbertForMultipleChoice(AlbertPreTrainedModel): | |
def __init__(self, config: AlbertConfig): | |
super().__init__(config) | |
self.albert = AlbertModel(config) | |
self.dropout = nn.Dropout(config.classifier_dropout_prob) | |
self.classifier = nn.Linear(config.hidden_size, 1) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[AlbertForPreTrainingOutput, Tuple]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., | |
num_choices-1]` where *num_choices* is the size of the second dimension of the input tensors. (see | |
*input_ids* above) | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] | |
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None | |
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None | |
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None | |
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None | |
inputs_embeds = ( | |
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) | |
if inputs_embeds is not None | |
else None | |
) | |
outputs = self.albert( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
pooled_output = outputs[1] | |
pooled_output = self.dropout(pooled_output) | |
logits: torch.Tensor = self.classifier(pooled_output) | |
reshaped_logits = logits.view(-1, num_choices) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(reshaped_logits, labels) | |
if not return_dict: | |
output = (reshaped_logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return MultipleChoiceModelOutput( | |
loss=loss, | |
logits=reshaped_logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |