Spaces:
Running
on
T4
Running
on
T4
# coding=utf-8 | |
# Copyright 2018 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Auto Tokenizer class.""" | |
import importlib | |
import json | |
import os | |
import warnings | |
from collections import OrderedDict | |
from typing import TYPE_CHECKING, Dict, Optional, Tuple, Union | |
from ...configuration_utils import PretrainedConfig | |
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code | |
from ...tokenization_utils import PreTrainedTokenizer | |
from ...tokenization_utils_base import TOKENIZER_CONFIG_FILE | |
from ...utils import cached_file, extract_commit_hash, is_sentencepiece_available, is_tokenizers_available, logging | |
from ..encoder_decoder import EncoderDecoderConfig | |
from .auto_factory import _LazyAutoMapping | |
from .configuration_auto import ( | |
CONFIG_MAPPING_NAMES, | |
AutoConfig, | |
config_class_to_model_type, | |
model_type_to_module_name, | |
replace_list_option_in_docstrings, | |
) | |
if is_tokenizers_available(): | |
from ...tokenization_utils_fast import PreTrainedTokenizerFast | |
else: | |
PreTrainedTokenizerFast = None | |
logger = logging.get_logger(__name__) | |
if TYPE_CHECKING: | |
# This significantly improves completion suggestion performance when | |
# the transformers package is used with Microsoft's Pylance language server. | |
TOKENIZER_MAPPING_NAMES: OrderedDict[str, Tuple[Optional[str], Optional[str]]] = OrderedDict() | |
else: | |
TOKENIZER_MAPPING_NAMES = OrderedDict( | |
[ | |
( | |
"albert", | |
( | |
"AlbertTokenizer" if is_sentencepiece_available() else None, | |
"AlbertTokenizerFast" if is_tokenizers_available() else None, | |
), | |
), | |
("align", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), | |
("bark", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), | |
("bart", ("BartTokenizer", "BartTokenizerFast")), | |
( | |
"barthez", | |
( | |
"BarthezTokenizer" if is_sentencepiece_available() else None, | |
"BarthezTokenizerFast" if is_tokenizers_available() else None, | |
), | |
), | |
("bartpho", ("BartphoTokenizer", None)), | |
("bert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), | |
("bert-generation", ("BertGenerationTokenizer" if is_sentencepiece_available() else None, None)), | |
("bert-japanese", ("BertJapaneseTokenizer", None)), | |
("bertweet", ("BertweetTokenizer", None)), | |
( | |
"big_bird", | |
( | |
"BigBirdTokenizer" if is_sentencepiece_available() else None, | |
"BigBirdTokenizerFast" if is_tokenizers_available() else None, | |
), | |
), | |
("bigbird_pegasus", ("PegasusTokenizer", "PegasusTokenizerFast" if is_tokenizers_available() else None)), | |
("biogpt", ("BioGptTokenizer", None)), | |
("blenderbot", ("BlenderbotTokenizer", "BlenderbotTokenizerFast")), | |
("blenderbot-small", ("BlenderbotSmallTokenizer", None)), | |
("blip", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), | |
("blip-2", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)), | |
("bloom", (None, "BloomTokenizerFast" if is_tokenizers_available() else None)), | |
("bridgetower", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)), | |
("bros", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), | |
("byt5", ("ByT5Tokenizer", None)), | |
( | |
"camembert", | |
( | |
"CamembertTokenizer" if is_sentencepiece_available() else None, | |
"CamembertTokenizerFast" if is_tokenizers_available() else None, | |
), | |
), | |
("canine", ("CanineTokenizer", None)), | |
("chinese_clip", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), | |
( | |
"clap", | |
( | |
"RobertaTokenizer", | |
"RobertaTokenizerFast" if is_tokenizers_available() else None, | |
), | |
), | |
( | |
"clip", | |
( | |
"CLIPTokenizer", | |
"CLIPTokenizerFast" if is_tokenizers_available() else None, | |
), | |
), | |
( | |
"clipseg", | |
( | |
"CLIPTokenizer", | |
"CLIPTokenizerFast" if is_tokenizers_available() else None, | |
), | |
), | |
( | |
"code_llama", | |
( | |
"CodeLlamaTokenizer" if is_sentencepiece_available() else None, | |
"CodeLlamaTokenizerFast" if is_tokenizers_available() else None, | |
), | |
), | |
("codegen", ("CodeGenTokenizer", "CodeGenTokenizerFast" if is_tokenizers_available() else None)), | |
("convbert", ("ConvBertTokenizer", "ConvBertTokenizerFast" if is_tokenizers_available() else None)), | |
( | |
"cpm", | |
( | |
"CpmTokenizer" if is_sentencepiece_available() else None, | |
"CpmTokenizerFast" if is_tokenizers_available() else None, | |
), | |
), | |
("cpmant", ("CpmAntTokenizer", None)), | |
("ctrl", ("CTRLTokenizer", None)), | |
("data2vec-audio", ("Wav2Vec2CTCTokenizer", None)), | |
("data2vec-text", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)), | |
("deberta", ("DebertaTokenizer", "DebertaTokenizerFast" if is_tokenizers_available() else None)), | |
( | |
"deberta-v2", | |
( | |
"DebertaV2Tokenizer" if is_sentencepiece_available() else None, | |
"DebertaV2TokenizerFast" if is_tokenizers_available() else None, | |
), | |
), | |
("distilbert", ("DistilBertTokenizer", "DistilBertTokenizerFast" if is_tokenizers_available() else None)), | |
( | |
"dpr", | |
( | |
"DPRQuestionEncoderTokenizer", | |
"DPRQuestionEncoderTokenizerFast" if is_tokenizers_available() else None, | |
), | |
), | |
("electra", ("ElectraTokenizer", "ElectraTokenizerFast" if is_tokenizers_available() else None)), | |
("ernie", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), | |
("ernie_m", ("ErnieMTokenizer" if is_sentencepiece_available() else None, None)), | |
("esm", ("EsmTokenizer", None)), | |
("flaubert", ("FlaubertTokenizer", None)), | |
("fnet", ("FNetTokenizer", "FNetTokenizerFast" if is_tokenizers_available() else None)), | |
("fsmt", ("FSMTTokenizer", None)), | |
("funnel", ("FunnelTokenizer", "FunnelTokenizerFast" if is_tokenizers_available() else None)), | |
("git", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), | |
("gpt-sw3", ("GPTSw3Tokenizer" if is_sentencepiece_available() else None, None)), | |
("gpt2", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)), | |
("gpt_bigcode", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)), | |
("gpt_neo", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)), | |
("gpt_neox", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)), | |
("gpt_neox_japanese", ("GPTNeoXJapaneseTokenizer", None)), | |
("gptj", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)), | |
("gptsan-japanese", ("GPTSanJapaneseTokenizer", None)), | |
("groupvit", ("CLIPTokenizer", "CLIPTokenizerFast" if is_tokenizers_available() else None)), | |
("herbert", ("HerbertTokenizer", "HerbertTokenizerFast" if is_tokenizers_available() else None)), | |
("hubert", ("Wav2Vec2CTCTokenizer", None)), | |
("ibert", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)), | |
("idefics", (None, "LlamaTokenizerFast" if is_tokenizers_available() else None)), | |
("instructblip", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)), | |
("jukebox", ("JukeboxTokenizer", None)), | |
("layoutlm", ("LayoutLMTokenizer", "LayoutLMTokenizerFast" if is_tokenizers_available() else None)), | |
("layoutlmv2", ("LayoutLMv2Tokenizer", "LayoutLMv2TokenizerFast" if is_tokenizers_available() else None)), | |
("layoutlmv3", ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast" if is_tokenizers_available() else None)), | |
("layoutxlm", ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast" if is_tokenizers_available() else None)), | |
("led", ("LEDTokenizer", "LEDTokenizerFast" if is_tokenizers_available() else None)), | |
("lilt", ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast" if is_tokenizers_available() else None)), | |
( | |
"llama", | |
( | |
"LlamaTokenizer" if is_sentencepiece_available() else None, | |
"LlamaTokenizerFast" if is_tokenizers_available() else None, | |
), | |
), | |
("longformer", ("LongformerTokenizer", "LongformerTokenizerFast" if is_tokenizers_available() else None)), | |
( | |
"longt5", | |
( | |
"T5Tokenizer" if is_sentencepiece_available() else None, | |
"T5TokenizerFast" if is_tokenizers_available() else None, | |
), | |
), | |
("luke", ("LukeTokenizer", None)), | |
("lxmert", ("LxmertTokenizer", "LxmertTokenizerFast" if is_tokenizers_available() else None)), | |
("m2m_100", ("M2M100Tokenizer" if is_sentencepiece_available() else None, None)), | |
("marian", ("MarianTokenizer" if is_sentencepiece_available() else None, None)), | |
( | |
"mbart", | |
( | |
"MBartTokenizer" if is_sentencepiece_available() else None, | |
"MBartTokenizerFast" if is_tokenizers_available() else None, | |
), | |
), | |
( | |
"mbart50", | |
( | |
"MBart50Tokenizer" if is_sentencepiece_available() else None, | |
"MBart50TokenizerFast" if is_tokenizers_available() else None, | |
), | |
), | |
("mega", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)), | |
("megatron-bert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), | |
("mgp-str", ("MgpstrTokenizer", None)), | |
( | |
"mistral", | |
( | |
"LlamaTokenizer" if is_sentencepiece_available() else None, | |
"LlamaTokenizerFast" if is_tokenizers_available() else None, | |
), | |
), | |
("mluke", ("MLukeTokenizer" if is_sentencepiece_available() else None, None)), | |
("mobilebert", ("MobileBertTokenizer", "MobileBertTokenizerFast" if is_tokenizers_available() else None)), | |
("mpnet", ("MPNetTokenizer", "MPNetTokenizerFast" if is_tokenizers_available() else None)), | |
("mpt", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)), | |
("mra", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)), | |
( | |
"mt5", | |
( | |
"MT5Tokenizer" if is_sentencepiece_available() else None, | |
"MT5TokenizerFast" if is_tokenizers_available() else None, | |
), | |
), | |
("musicgen", ("T5Tokenizer", "T5TokenizerFast" if is_tokenizers_available() else None)), | |
("mvp", ("MvpTokenizer", "MvpTokenizerFast" if is_tokenizers_available() else None)), | |
("nezha", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), | |
( | |
"nllb", | |
( | |
"NllbTokenizer" if is_sentencepiece_available() else None, | |
"NllbTokenizerFast" if is_tokenizers_available() else None, | |
), | |
), | |
( | |
"nllb-moe", | |
( | |
"NllbTokenizer" if is_sentencepiece_available() else None, | |
"NllbTokenizerFast" if is_tokenizers_available() else None, | |
), | |
), | |
( | |
"nystromformer", | |
( | |
"AlbertTokenizer" if is_sentencepiece_available() else None, | |
"AlbertTokenizerFast" if is_tokenizers_available() else None, | |
), | |
), | |
("oneformer", ("CLIPTokenizer", "CLIPTokenizerFast" if is_tokenizers_available() else None)), | |
("openai-gpt", ("OpenAIGPTTokenizer", "OpenAIGPTTokenizerFast" if is_tokenizers_available() else None)), | |
("opt", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)), | |
("owlvit", ("CLIPTokenizer", "CLIPTokenizerFast" if is_tokenizers_available() else None)), | |
( | |
"pegasus", | |
( | |
"PegasusTokenizer" if is_sentencepiece_available() else None, | |
"PegasusTokenizerFast" if is_tokenizers_available() else None, | |
), | |
), | |
( | |
"pegasus_x", | |
( | |
"PegasusTokenizer" if is_sentencepiece_available() else None, | |
"PegasusTokenizerFast" if is_tokenizers_available() else None, | |
), | |
), | |
( | |
"perceiver", | |
( | |
"PerceiverTokenizer", | |
None, | |
), | |
), | |
( | |
"persimmon", | |
( | |
"LlamaTokenizer" if is_sentencepiece_available() else None, | |
"LlamaTokenizerFast" if is_tokenizers_available() else None, | |
), | |
), | |
("phobert", ("PhobertTokenizer", None)), | |
("pix2struct", ("T5Tokenizer", "T5TokenizerFast" if is_tokenizers_available() else None)), | |
("plbart", ("PLBartTokenizer" if is_sentencepiece_available() else None, None)), | |
("prophetnet", ("ProphetNetTokenizer", None)), | |
("qdqbert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), | |
("rag", ("RagTokenizer", None)), | |
("realm", ("RealmTokenizer", "RealmTokenizerFast" if is_tokenizers_available() else None)), | |
( | |
"reformer", | |
( | |
"ReformerTokenizer" if is_sentencepiece_available() else None, | |
"ReformerTokenizerFast" if is_tokenizers_available() else None, | |
), | |
), | |
( | |
"rembert", | |
( | |
"RemBertTokenizer" if is_sentencepiece_available() else None, | |
"RemBertTokenizerFast" if is_tokenizers_available() else None, | |
), | |
), | |
("retribert", ("RetriBertTokenizer", "RetriBertTokenizerFast" if is_tokenizers_available() else None)), | |
("roberta", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)), | |
( | |
"roberta-prelayernorm", | |
("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None), | |
), | |
("roc_bert", ("RoCBertTokenizer", None)), | |
("roformer", ("RoFormerTokenizer", "RoFormerTokenizerFast" if is_tokenizers_available() else None)), | |
("rwkv", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)), | |
("speech_to_text", ("Speech2TextTokenizer" if is_sentencepiece_available() else None, None)), | |
("speech_to_text_2", ("Speech2Text2Tokenizer", None)), | |
("speecht5", ("SpeechT5Tokenizer" if is_sentencepiece_available() else None, None)), | |
("splinter", ("SplinterTokenizer", "SplinterTokenizerFast")), | |
( | |
"squeezebert", | |
("SqueezeBertTokenizer", "SqueezeBertTokenizerFast" if is_tokenizers_available() else None), | |
), | |
( | |
"switch_transformers", | |
( | |
"T5Tokenizer" if is_sentencepiece_available() else None, | |
"T5TokenizerFast" if is_tokenizers_available() else None, | |
), | |
), | |
( | |
"t5", | |
( | |
"T5Tokenizer" if is_sentencepiece_available() else None, | |
"T5TokenizerFast" if is_tokenizers_available() else None, | |
), | |
), | |
("tapas", ("TapasTokenizer", None)), | |
("tapex", ("TapexTokenizer", None)), | |
("transfo-xl", ("TransfoXLTokenizer", None)), | |
( | |
"umt5", | |
( | |
"T5Tokenizer" if is_sentencepiece_available() else None, | |
"T5TokenizerFast" if is_tokenizers_available() else None, | |
), | |
), | |
("vilt", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), | |
("visual_bert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), | |
("vits", ("VitsTokenizer", None)), | |
("wav2vec2", ("Wav2Vec2CTCTokenizer", None)), | |
("wav2vec2-conformer", ("Wav2Vec2CTCTokenizer", None)), | |
("wav2vec2_phoneme", ("Wav2Vec2PhonemeCTCTokenizer", None)), | |
("whisper", ("WhisperTokenizer", "WhisperTokenizerFast" if is_tokenizers_available() else None)), | |
("xclip", ("CLIPTokenizer", "CLIPTokenizerFast" if is_tokenizers_available() else None)), | |
( | |
"xglm", | |
( | |
"XGLMTokenizer" if is_sentencepiece_available() else None, | |
"XGLMTokenizerFast" if is_tokenizers_available() else None, | |
), | |
), | |
("xlm", ("XLMTokenizer", None)), | |
("xlm-prophetnet", ("XLMProphetNetTokenizer" if is_sentencepiece_available() else None, None)), | |
( | |
"xlm-roberta", | |
( | |
"XLMRobertaTokenizer" if is_sentencepiece_available() else None, | |
"XLMRobertaTokenizerFast" if is_tokenizers_available() else None, | |
), | |
), | |
( | |
"xlm-roberta-xl", | |
( | |
"XLMRobertaTokenizer" if is_sentencepiece_available() else None, | |
"XLMRobertaTokenizerFast" if is_tokenizers_available() else None, | |
), | |
), | |
( | |
"xlnet", | |
( | |
"XLNetTokenizer" if is_sentencepiece_available() else None, | |
"XLNetTokenizerFast" if is_tokenizers_available() else None, | |
), | |
), | |
( | |
"xmod", | |
( | |
"XLMRobertaTokenizer" if is_sentencepiece_available() else None, | |
"XLMRobertaTokenizerFast" if is_tokenizers_available() else None, | |
), | |
), | |
( | |
"yoso", | |
( | |
"AlbertTokenizer" if is_sentencepiece_available() else None, | |
"AlbertTokenizerFast" if is_tokenizers_available() else None, | |
), | |
), | |
] | |
) | |
TOKENIZER_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, TOKENIZER_MAPPING_NAMES) | |
CONFIG_TO_TYPE = {v: k for k, v in CONFIG_MAPPING_NAMES.items()} | |
def tokenizer_class_from_name(class_name: str): | |
if class_name == "PreTrainedTokenizerFast": | |
return PreTrainedTokenizerFast | |
for module_name, tokenizers in TOKENIZER_MAPPING_NAMES.items(): | |
if class_name in tokenizers: | |
module_name = model_type_to_module_name(module_name) | |
module = importlib.import_module(f".{module_name}", "transformers.models") | |
try: | |
return getattr(module, class_name) | |
except AttributeError: | |
continue | |
for config, tokenizers in TOKENIZER_MAPPING._extra_content.items(): | |
for tokenizer in tokenizers: | |
if getattr(tokenizer, "__name__", None) == class_name: | |
return tokenizer | |
# We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main | |
# init and we return the proper dummy to get an appropriate error message. | |
main_module = importlib.import_module("transformers") | |
if hasattr(main_module, class_name): | |
return getattr(main_module, class_name) | |
return None | |
def get_tokenizer_config( | |
pretrained_model_name_or_path: Union[str, os.PathLike], | |
cache_dir: Optional[Union[str, os.PathLike]] = None, | |
force_download: bool = False, | |
resume_download: bool = False, | |
proxies: Optional[Dict[str, str]] = None, | |
token: Optional[Union[bool, str]] = None, | |
revision: Optional[str] = None, | |
local_files_only: bool = False, | |
subfolder: str = "", | |
**kwargs, | |
): | |
""" | |
Loads the tokenizer configuration from a pretrained model tokenizer configuration. | |
Args: | |
pretrained_model_name_or_path (`str` or `os.PathLike`): | |
This can be either: | |
- a string, the *model id* of a pretrained model configuration hosted inside a model repo on | |
huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced | |
under a user or organization name, like `dbmdz/bert-base-german-cased`. | |
- a path to a *directory* containing a configuration file saved using the | |
[`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`. | |
cache_dir (`str` or `os.PathLike`, *optional*): | |
Path to a directory in which a downloaded pretrained model configuration should be cached if the standard | |
cache should not be used. | |
force_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to force to (re-)download the configuration files and override the cached versions if they | |
exist. | |
resume_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists. | |
proxies (`Dict[str, str]`, *optional*): | |
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', | |
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. | |
token (`str` or *bool*, *optional*): | |
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated | |
when running `huggingface-cli login` (stored in `~/.huggingface`). | |
revision (`str`, *optional*, defaults to `"main"`): | |
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a | |
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any | |
identifier allowed by git. | |
local_files_only (`bool`, *optional*, defaults to `False`): | |
If `True`, will only try to load the tokenizer configuration from local files. | |
subfolder (`str`, *optional*, defaults to `""`): | |
In case the tokenizer config is located inside a subfolder of the model repo on huggingface.co, you can | |
specify the folder name here. | |
<Tip> | |
Passing `token=True` is required when you want to use a private model. | |
</Tip> | |
Returns: | |
`Dict`: The configuration of the tokenizer. | |
Examples: | |
```python | |
# Download configuration from huggingface.co and cache. | |
tokenizer_config = get_tokenizer_config("bert-base-uncased") | |
# This model does not have a tokenizer config so the result will be an empty dict. | |
tokenizer_config = get_tokenizer_config("xlm-roberta-base") | |
# Save a pretrained tokenizer locally and you can reload its config | |
from transformers import AutoTokenizer | |
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") | |
tokenizer.save_pretrained("tokenizer-test") | |
tokenizer_config = get_tokenizer_config("tokenizer-test") | |
```""" | |
use_auth_token = kwargs.pop("use_auth_token", None) | |
if use_auth_token is not None: | |
warnings.warn( | |
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning | |
) | |
if token is not None: | |
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") | |
token = use_auth_token | |
commit_hash = kwargs.get("_commit_hash", None) | |
resolved_config_file = cached_file( | |
pretrained_model_name_or_path, | |
TOKENIZER_CONFIG_FILE, | |
cache_dir=cache_dir, | |
force_download=force_download, | |
resume_download=resume_download, | |
proxies=proxies, | |
token=token, | |
revision=revision, | |
local_files_only=local_files_only, | |
subfolder=subfolder, | |
_raise_exceptions_for_missing_entries=False, | |
_raise_exceptions_for_connection_errors=False, | |
_commit_hash=commit_hash, | |
) | |
if resolved_config_file is None: | |
logger.info("Could not locate the tokenizer configuration file, will try to use the model config instead.") | |
return {} | |
commit_hash = extract_commit_hash(resolved_config_file, commit_hash) | |
with open(resolved_config_file, encoding="utf-8") as reader: | |
result = json.load(reader) | |
result["_commit_hash"] = commit_hash | |
return result | |
class AutoTokenizer: | |
r""" | |
This is a generic tokenizer class that will be instantiated as one of the tokenizer classes of the library when | |
created with the [`AutoTokenizer.from_pretrained`] class method. | |
This class cannot be instantiated directly using `__init__()` (throws an error). | |
""" | |
def __init__(self): | |
raise EnvironmentError( | |
"AutoTokenizer is designed to be instantiated " | |
"using the `AutoTokenizer.from_pretrained(pretrained_model_name_or_path)` method." | |
) | |
def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs): | |
r""" | |
Instantiate one of the tokenizer classes of the library from a pretrained model vocabulary. | |
The tokenizer class to instantiate is selected based on the `model_type` property of the config object (either | |
passed as an argument or loaded from `pretrained_model_name_or_path` if possible), or when it's missing, by | |
falling back to using pattern matching on `pretrained_model_name_or_path`: | |
List options | |
Params: | |
pretrained_model_name_or_path (`str` or `os.PathLike`): | |
Can be either: | |
- A string, the *model id* of a predefined tokenizer hosted inside a model repo on huggingface.co. | |
Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a | |
user or organization name, like `dbmdz/bert-base-german-cased`. | |
- A path to a *directory* containing vocabulary files required by the tokenizer, for instance saved | |
using the [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`. | |
- A path or url to a single saved vocabulary file if and only if the tokenizer only requires a | |
single vocabulary file (like Bert or XLNet), e.g.: `./my_model_directory/vocab.txt`. (Not | |
applicable to all derived classes) | |
inputs (additional positional arguments, *optional*): | |
Will be passed along to the Tokenizer `__init__()` method. | |
config ([`PretrainedConfig`], *optional*) | |
The configuration object used to determine the tokenizer class to instantiate. | |
cache_dir (`str` or `os.PathLike`, *optional*): | |
Path to a directory in which a downloaded pretrained model configuration should be cached if the | |
standard cache should not be used. | |
force_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to force the (re-)download the model weights and configuration files and override the | |
cached versions if they exist. | |
resume_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to delete incompletely received files. Will attempt to resume the download if such a | |
file exists. | |
proxies (`Dict[str, str]`, *optional*): | |
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', | |
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
revision (`str`, *optional*, defaults to `"main"`): | |
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a | |
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any | |
identifier allowed by git. | |
subfolder (`str`, *optional*): | |
In case the relevant files are located inside a subfolder of the model repo on huggingface.co (e.g. for | |
facebook/rag-token-base), specify it here. | |
use_fast (`bool`, *optional*, defaults to `True`): | |
Use a [fast Rust-based tokenizer](https://huggingface.co/docs/tokenizers/index) if it is supported for | |
a given model. If a fast tokenizer is not available for a given model, a normal Python-based tokenizer | |
is returned instead. | |
tokenizer_type (`str`, *optional*): | |
Tokenizer type to be loaded. | |
trust_remote_code (`bool`, *optional*, defaults to `False`): | |
Whether or not to allow for custom models defined on the Hub in their own modeling files. This option | |
should only be set to `True` for repositories you trust and in which you have read the code, as it will | |
execute code present on the Hub on your local machine. | |
kwargs (additional keyword arguments, *optional*): | |
Will be passed to the Tokenizer `__init__()` method. Can be used to set special tokens like | |
`bos_token`, `eos_token`, `unk_token`, `sep_token`, `pad_token`, `cls_token`, `mask_token`, | |
`additional_special_tokens`. See parameters in the `__init__()` for more details. | |
Examples: | |
```python | |
>>> from transformers import AutoTokenizer | |
>>> # Download vocabulary from huggingface.co and cache. | |
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") | |
>>> # Download vocabulary from huggingface.co (user-uploaded) and cache. | |
>>> tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-german-cased") | |
>>> # If vocabulary files are in a directory (e.g. tokenizer was saved using *save_pretrained('./test/saved_model/')*) | |
>>> # tokenizer = AutoTokenizer.from_pretrained("./test/bert_saved_model/") | |
>>> # Download vocabulary from huggingface.co and define model-specific arguments | |
>>> tokenizer = AutoTokenizer.from_pretrained("roberta-base", add_prefix_space=True) | |
```""" | |
use_auth_token = kwargs.pop("use_auth_token", None) | |
if use_auth_token is not None: | |
warnings.warn( | |
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning | |
) | |
if kwargs.get("token", None) is not None: | |
raise ValueError( | |
"`token` and `use_auth_token` are both specified. Please set only the argument `token`." | |
) | |
kwargs["token"] = use_auth_token | |
config = kwargs.pop("config", None) | |
kwargs["_from_auto"] = True | |
use_fast = kwargs.pop("use_fast", True) | |
tokenizer_type = kwargs.pop("tokenizer_type", None) | |
trust_remote_code = kwargs.pop("trust_remote_code", None) | |
# First, let's see whether the tokenizer_type is passed so that we can leverage it | |
if tokenizer_type is not None: | |
tokenizer_class = None | |
tokenizer_class_tuple = TOKENIZER_MAPPING_NAMES.get(tokenizer_type, None) | |
if tokenizer_class_tuple is None: | |
raise ValueError( | |
f"Passed `tokenizer_type` {tokenizer_type} does not exist. `tokenizer_type` should be one of " | |
f"{', '.join(c for c in TOKENIZER_MAPPING_NAMES.keys())}." | |
) | |
tokenizer_class_name, tokenizer_fast_class_name = tokenizer_class_tuple | |
if use_fast: | |
if tokenizer_fast_class_name is not None: | |
tokenizer_class = tokenizer_class_from_name(tokenizer_fast_class_name) | |
else: | |
logger.warning( | |
"`use_fast` is set to `True` but the tokenizer class does not have a fast version. " | |
" Falling back to the slow version." | |
) | |
if tokenizer_class is None: | |
tokenizer_class = tokenizer_class_from_name(tokenizer_class_name) | |
if tokenizer_class is None: | |
raise ValueError(f"Tokenizer class {tokenizer_class_name} is not currently imported.") | |
return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) | |
# Next, let's try to use the tokenizer_config file to get the tokenizer class. | |
tokenizer_config = get_tokenizer_config(pretrained_model_name_or_path, **kwargs) | |
if "_commit_hash" in tokenizer_config: | |
kwargs["_commit_hash"] = tokenizer_config["_commit_hash"] | |
config_tokenizer_class = tokenizer_config.get("tokenizer_class") | |
tokenizer_auto_map = None | |
if "auto_map" in tokenizer_config: | |
if isinstance(tokenizer_config["auto_map"], (tuple, list)): | |
# Legacy format for dynamic tokenizers | |
tokenizer_auto_map = tokenizer_config["auto_map"] | |
else: | |
tokenizer_auto_map = tokenizer_config["auto_map"].get("AutoTokenizer", None) | |
# If that did not work, let's try to use the config. | |
if config_tokenizer_class is None: | |
if not isinstance(config, PretrainedConfig): | |
config = AutoConfig.from_pretrained( | |
pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs | |
) | |
config_tokenizer_class = config.tokenizer_class | |
if hasattr(config, "auto_map") and "AutoTokenizer" in config.auto_map: | |
tokenizer_auto_map = config.auto_map["AutoTokenizer"] | |
has_remote_code = tokenizer_auto_map is not None | |
has_local_code = config_tokenizer_class is not None or type(config) in TOKENIZER_MAPPING | |
trust_remote_code = resolve_trust_remote_code( | |
trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code | |
) | |
if has_remote_code and trust_remote_code: | |
if use_fast and tokenizer_auto_map[1] is not None: | |
class_ref = tokenizer_auto_map[1] | |
else: | |
class_ref = tokenizer_auto_map[0] | |
tokenizer_class = get_class_from_dynamic_module(class_ref, pretrained_model_name_or_path, **kwargs) | |
_ = kwargs.pop("code_revision", None) | |
if os.path.isdir(pretrained_model_name_or_path): | |
tokenizer_class.register_for_auto_class() | |
return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) | |
elif config_tokenizer_class is not None: | |
tokenizer_class = None | |
if use_fast and not config_tokenizer_class.endswith("Fast"): | |
tokenizer_class_candidate = f"{config_tokenizer_class}Fast" | |
tokenizer_class = tokenizer_class_from_name(tokenizer_class_candidate) | |
if tokenizer_class is None: | |
tokenizer_class_candidate = config_tokenizer_class | |
tokenizer_class = tokenizer_class_from_name(tokenizer_class_candidate) | |
if tokenizer_class is None: | |
raise ValueError( | |
f"Tokenizer class {tokenizer_class_candidate} does not exist or is not currently imported." | |
) | |
return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) | |
# Otherwise we have to be creative. | |
# if model is an encoder decoder, the encoder tokenizer class is used by default | |
if isinstance(config, EncoderDecoderConfig): | |
if type(config.decoder) is not type(config.encoder): # noqa: E721 | |
logger.warning( | |
f"The encoder model config class: {config.encoder.__class__} is different from the decoder model " | |
f"config class: {config.decoder.__class__}. It is not recommended to use the " | |
"`AutoTokenizer.from_pretrained()` method in this case. Please use the encoder and decoder " | |
"specific tokenizer classes." | |
) | |
config = config.encoder | |
model_type = config_class_to_model_type(type(config).__name__) | |
if model_type is not None: | |
tokenizer_class_py, tokenizer_class_fast = TOKENIZER_MAPPING[type(config)] | |
if tokenizer_class_fast and (use_fast or tokenizer_class_py is None): | |
return tokenizer_class_fast.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) | |
else: | |
if tokenizer_class_py is not None: | |
return tokenizer_class_py.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) | |
else: | |
raise ValueError( | |
"This tokenizer cannot be instantiated. Please make sure you have `sentencepiece` installed " | |
"in order to use this tokenizer." | |
) | |
raise ValueError( | |
f"Unrecognized configuration class {config.__class__} to build an AutoTokenizer.\n" | |
f"Model type should be one of {', '.join(c.__name__ for c in TOKENIZER_MAPPING.keys())}." | |
) | |
def register(config_class, slow_tokenizer_class=None, fast_tokenizer_class=None, exist_ok=False): | |
""" | |
Register a new tokenizer in this mapping. | |
Args: | |
config_class ([`PretrainedConfig`]): | |
The configuration corresponding to the model to register. | |
slow_tokenizer_class ([`PretrainedTokenizer`], *optional*): | |
The slow tokenizer to register. | |
fast_tokenizer_class ([`PretrainedTokenizerFast`], *optional*): | |
The fast tokenizer to register. | |
""" | |
if slow_tokenizer_class is None and fast_tokenizer_class is None: | |
raise ValueError("You need to pass either a `slow_tokenizer_class` or a `fast_tokenizer_class") | |
if slow_tokenizer_class is not None and issubclass(slow_tokenizer_class, PreTrainedTokenizerFast): | |
raise ValueError("You passed a fast tokenizer in the `slow_tokenizer_class`.") | |
if fast_tokenizer_class is not None and issubclass(fast_tokenizer_class, PreTrainedTokenizer): | |
raise ValueError("You passed a slow tokenizer in the `fast_tokenizer_class`.") | |
if ( | |
slow_tokenizer_class is not None | |
and fast_tokenizer_class is not None | |
and issubclass(fast_tokenizer_class, PreTrainedTokenizerFast) | |
and fast_tokenizer_class.slow_tokenizer_class != slow_tokenizer_class | |
): | |
raise ValueError( | |
"The fast tokenizer class you are passing has a `slow_tokenizer_class` attribute that is not " | |
"consistent with the slow tokenizer class you passed (fast tokenizer has " | |
f"{fast_tokenizer_class.slow_tokenizer_class} and you passed {slow_tokenizer_class}. Fix one of those " | |
"so they match!" | |
) | |
# Avoid resetting a set slow/fast tokenizer if we are passing just the other ones. | |
if config_class in TOKENIZER_MAPPING._extra_content: | |
existing_slow, existing_fast = TOKENIZER_MAPPING[config_class] | |
if slow_tokenizer_class is None: | |
slow_tokenizer_class = existing_slow | |
if fast_tokenizer_class is None: | |
fast_tokenizer_class = existing_fast | |
TOKENIZER_MAPPING.register(config_class, (slow_tokenizer_class, fast_tokenizer_class), exist_ok=exist_ok) | |