Spaces:
Running
on
T4
Running
on
T4
# coding=utf-8 | |
# Copyright 2023 The Suno AI Authors and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" BARK model configuration""" | |
import os | |
from typing import Dict, Optional, Union | |
from ...configuration_utils import PretrainedConfig | |
from ...utils import add_start_docstrings, logging | |
from ..auto import CONFIG_MAPPING | |
logger = logging.get_logger(__name__) | |
BARK_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
"suno/bark-small": "https://huggingface.co/suno/bark-small/resolve/main/config.json", | |
"suno/bark": "https://huggingface.co/suno/bark/resolve/main/config.json", | |
} | |
BARK_SUBMODELCONFIG_START_DOCSTRING = """ | |
This is the configuration class to store the configuration of a [`{model}`]. It is used to instantiate the model | |
according to the specified arguments, defining the model architecture. Instantiating a configuration with the | |
defaults will yield a similar configuration to that of the Bark [suno/bark](https://huggingface.co/suno/bark) | |
architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
block_size (`int`, *optional*, defaults to 1024): | |
The maximum sequence length that this model might ever be used with. Typically set this to something large | |
just in case (e.g., 512 or 1024 or 2048). | |
input_vocab_size (`int`, *optional*, defaults to 10_048): | |
Vocabulary size of a Bark sub-model. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed when calling [`{model}`]. Defaults to 10_048 but should be carefully thought with | |
regards to the chosen sub-model. | |
output_vocab_size (`int`, *optional*, defaults to 10_048): | |
Output vocabulary size of a Bark sub-model. Defines the number of different tokens that can be represented | |
by the: `output_ids` when passing forward a [`{model}`]. Defaults to 10_048 but should be carefully thought | |
with regards to the chosen sub-model. | |
num_layers (`int`, *optional*, defaults to 12): | |
Number of hidden layers in the given sub-model. | |
num_heads (`int`, *optional*, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer architecture. | |
hidden_size (`int`, *optional*, defaults to 768): | |
Dimensionality of the "intermediate" (often named feed-forward) layer in the architecture. | |
dropout (`float`, *optional*, defaults to 0.0): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
bias (`bool`, *optional*, defaults to `True`): | |
Whether or not to use bias in the linear layers and layer norm layers. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should return the last key/values attentions (not used by all models). | |
""" | |
class BarkSubModelConfig(PretrainedConfig): | |
model_type = "bark_module" | |
keys_to_ignore_at_inference = ["past_key_values"] | |
attribute_map = { | |
"num_attention_heads": "num_heads", | |
"num_hidden_layers": "num_layers", | |
"vocab_size": "input_vocab_size", | |
"window_size": "block_size", | |
} | |
def __init__( | |
self, | |
block_size=1024, | |
input_vocab_size=10_048, | |
output_vocab_size=10_048, | |
num_layers=12, | |
num_heads=12, | |
hidden_size=768, | |
dropout=0.0, | |
bias=True, # True: bias in Linears and LayerNorms, like GPT-2. False: a bit better and faster | |
initializer_range=0.02, | |
use_cache=True, | |
**kwargs, | |
): | |
self.block_size = block_size | |
self.input_vocab_size = input_vocab_size | |
self.output_vocab_size = output_vocab_size | |
self.num_layers = num_layers | |
self.num_heads = num_heads | |
self.hidden_size = hidden_size | |
self.dropout = dropout | |
self.bias = bias | |
self.use_cache = use_cache | |
self.initializer_range = initializer_range | |
super().__init__(**kwargs) | |
def from_pretrained( | |
cls, | |
pretrained_model_name_or_path: Union[str, os.PathLike], | |
cache_dir: Optional[Union[str, os.PathLike]] = None, | |
force_download: bool = False, | |
local_files_only: bool = False, | |
token: Optional[Union[str, bool]] = None, | |
revision: str = "main", | |
**kwargs, | |
) -> "PretrainedConfig": | |
kwargs["cache_dir"] = cache_dir | |
kwargs["force_download"] = force_download | |
kwargs["local_files_only"] = local_files_only | |
kwargs["revision"] = revision | |
cls._set_token_in_kwargs(kwargs, token) | |
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) | |
# get the config dict if we are loading from Bark | |
if config_dict.get("model_type") == "bark": | |
config_dict = config_dict[f"{cls.model_type}_config"] | |
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: | |
logger.warning( | |
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
) | |
return cls.from_dict(config_dict, **kwargs) | |
class BarkSemanticConfig(BarkSubModelConfig): | |
model_type = "semantic" | |
class BarkCoarseConfig(BarkSubModelConfig): | |
model_type = "coarse_acoustics" | |
class BarkFineConfig(BarkSubModelConfig): | |
model_type = "fine_acoustics" | |
def __init__(self, tie_word_embeddings=True, n_codes_total=8, n_codes_given=1, **kwargs): | |
self.n_codes_total = n_codes_total | |
self.n_codes_given = n_codes_given | |
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs) | |
class BarkConfig(PretrainedConfig): | |
""" | |
This is the configuration class to store the configuration of a [`BarkModel`]. It is used to instantiate a Bark | |
model according to the specified sub-models configurations, defining the model architecture. | |
Instantiating a configuration with the defaults will yield a similar configuration to that of the Bark | |
[suno/bark](https://huggingface.co/suno/bark) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
semantic_config ([`BarkSemanticConfig`], *optional*): | |
Configuration of the underlying semantic sub-model. | |
coarse_acoustics_config ([`BarkCoarseConfig`], *optional*): | |
Configuration of the underlying coarse acoustics sub-model. | |
fine_acoustics_config ([`BarkFineConfig`], *optional*): | |
Configuration of the underlying fine acoustics sub-model. | |
codec_config ([`AutoConfig`], *optional*): | |
Configuration of the underlying codec sub-model. | |
Example: | |
```python | |
>>> from transformers import ( | |
... BarkSemanticConfig, | |
... BarkCoarseConfig, | |
... BarkFineConfig, | |
... BarkModel, | |
... BarkConfig, | |
... AutoConfig, | |
... ) | |
>>> # Initializing Bark sub-modules configurations. | |
>>> semantic_config = BarkSemanticConfig() | |
>>> coarse_acoustics_config = BarkCoarseConfig() | |
>>> fine_acoustics_config = BarkFineConfig() | |
>>> codec_config = AutoConfig.from_pretrained("facebook/encodec_24khz") | |
>>> # Initializing a Bark module style configuration | |
>>> configuration = BarkConfig.from_sub_model_configs( | |
... semantic_config, coarse_acoustics_config, fine_acoustics_config, codec_config | |
... ) | |
>>> # Initializing a model (with random weights) | |
>>> model = BarkModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
``` | |
""" | |
model_type = "bark" | |
def __init__( | |
self, | |
semantic_config: Dict = None, | |
coarse_acoustics_config: Dict = None, | |
fine_acoustics_config: Dict = None, | |
codec_config: Dict = None, | |
initializer_range=0.02, | |
**kwargs, | |
): | |
if semantic_config is None: | |
semantic_config = {} | |
logger.info("semantic_config is None. initializing the semantic model with default values.") | |
if coarse_acoustics_config is None: | |
coarse_acoustics_config = {} | |
logger.info("coarse_acoustics_config is None. initializing the coarse model with default values.") | |
if fine_acoustics_config is None: | |
fine_acoustics_config = {} | |
logger.info("fine_acoustics_config is None. initializing the fine model with default values.") | |
if codec_config is None: | |
codec_config = {} | |
logger.info("codec_config is None. initializing the codec model with default values.") | |
self.semantic_config = BarkSemanticConfig(**semantic_config) | |
self.coarse_acoustics_config = BarkCoarseConfig(**coarse_acoustics_config) | |
self.fine_acoustics_config = BarkFineConfig(**fine_acoustics_config) | |
codec_model_type = codec_config["model_type"] if "model_type" in codec_config else "encodec" | |
self.codec_config = CONFIG_MAPPING[codec_model_type](**codec_config) | |
self.initializer_range = initializer_range | |
super().__init__(**kwargs) | |
def from_sub_model_configs( | |
cls, | |
semantic_config: BarkSemanticConfig, | |
coarse_acoustics_config: BarkCoarseConfig, | |
fine_acoustics_config: BarkFineConfig, | |
codec_config: PretrainedConfig, | |
**kwargs, | |
): | |
r""" | |
Instantiate a [`BarkConfig`] (or a derived class) from bark sub-models configuration. | |
Returns: | |
[`BarkConfig`]: An instance of a configuration object | |
""" | |
return cls( | |
semantic_config=semantic_config.to_dict(), | |
coarse_acoustics_config=coarse_acoustics_config.to_dict(), | |
fine_acoustics_config=fine_acoustics_config.to_dict(), | |
codec_config=codec_config.to_dict(), | |
**kwargs, | |
) | |