Spaces:
Running
on
T4
Running
on
T4
# coding=utf-8 | |
# Copyright (c) 2020, VinAI Research and the HuggingFace Inc. team. | |
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Tokenization classes for BERTweet""" | |
import html | |
import os | |
import re | |
from shutil import copyfile | |
from typing import List, Optional, Tuple | |
import regex | |
from ...tokenization_utils import PreTrainedTokenizer | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
VOCAB_FILES_NAMES = { | |
"vocab_file": "vocab.txt", | |
"merges_file": "bpe.codes", | |
} | |
PRETRAINED_VOCAB_FILES_MAP = { | |
"vocab_file": { | |
"vinai/bertweet-base": "https://huggingface.co/vinai/bertweet-base/resolve/main/vocab.txt", | |
}, | |
"merges_file": { | |
"vinai/bertweet-base": "https://huggingface.co/vinai/bertweet-base/resolve/main/bpe.codes", | |
}, | |
} | |
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { | |
"vinai/bertweet-base": 128, | |
} | |
def get_pairs(word): | |
""" | |
Return set of symbol pairs in a word. | |
Word is represented as tuple of symbols (symbols being variable-length strings). | |
""" | |
pairs = set() | |
prev_char = word[0] | |
for char in word[1:]: | |
pairs.add((prev_char, char)) | |
prev_char = char | |
pairs = set(pairs) | |
return pairs | |
class BertweetTokenizer(PreTrainedTokenizer): | |
""" | |
Constructs a BERTweet tokenizer, using Byte-Pair-Encoding. | |
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to | |
this superclass for more information regarding those methods. | |
Args: | |
vocab_file (`str`): | |
Path to the vocabulary file. | |
merges_file (`str`): | |
Path to the merges file. | |
normalization (`bool`, *optional*, defaults to `False`): | |
Whether or not to apply a normalization preprocess. | |
bos_token (`str`, *optional*, defaults to `"<s>"`): | |
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. | |
<Tip> | |
When building a sequence using special tokens, this is not the token that is used for the beginning of | |
sequence. The token used is the `cls_token`. | |
</Tip> | |
eos_token (`str`, *optional*, defaults to `"</s>"`): | |
The end of sequence token. | |
<Tip> | |
When building a sequence using special tokens, this is not the token that is used for the end of sequence. | |
The token used is the `sep_token`. | |
</Tip> | |
sep_token (`str`, *optional*, defaults to `"</s>"`): | |
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for | |
sequence classification or for a text and a question for question answering. It is also used as the last | |
token of a sequence built with special tokens. | |
cls_token (`str`, *optional*, defaults to `"<s>"`): | |
The classifier token which is used when doing sequence classification (classification of the whole sequence | |
instead of per-token classification). It is the first token of the sequence when built with special tokens. | |
unk_token (`str`, *optional*, defaults to `"<unk>"`): | |
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this | |
token instead. | |
pad_token (`str`, *optional*, defaults to `"<pad>"`): | |
The token used for padding, for example when batching sequences of different lengths. | |
mask_token (`str`, *optional*, defaults to `"<mask>"`): | |
The token used for masking values. This is the token used when training this model with masked language | |
modeling. This is the token which the model will try to predict. | |
""" | |
vocab_files_names = VOCAB_FILES_NAMES | |
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP | |
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES | |
def __init__( | |
self, | |
vocab_file, | |
merges_file, | |
normalization=False, | |
bos_token="<s>", | |
eos_token="</s>", | |
sep_token="</s>", | |
cls_token="<s>", | |
unk_token="<unk>", | |
pad_token="<pad>", | |
mask_token="<mask>", | |
**kwargs, | |
): | |
try: | |
from emoji import demojize | |
self.demojizer = demojize | |
except ImportError: | |
logger.warning( | |
"emoji is not installed, thus not converting emoticons or emojis into text. Install emoji: pip3" | |
" install emoji==0.6.0" | |
) | |
self.demojizer = None | |
self.vocab_file = vocab_file | |
self.merges_file = merges_file | |
self.encoder = {} | |
self.encoder[bos_token] = 0 | |
self.encoder[pad_token] = 1 | |
self.encoder[eos_token] = 2 | |
self.encoder[unk_token] = 3 | |
self.add_from_file(vocab_file) | |
self.decoder = {v: k for k, v in self.encoder.items()} | |
with open(merges_file, encoding="utf-8") as merges_handle: | |
merges = merges_handle.read().split("\n")[:-1] | |
merges = [tuple(merge.split()[:-1]) for merge in merges] | |
self.bpe_ranks = dict(zip(merges, range(len(merges)))) | |
self.cache = {} | |
self.normalization = normalization | |
self.tweetPreprocessor = TweetTokenizer() | |
self.special_puncts = {"’": "'", "…": "..."} | |
super().__init__( | |
normalization=normalization, | |
bos_token=bos_token, | |
eos_token=eos_token, | |
sep_token=sep_token, | |
cls_token=cls_token, | |
unk_token=unk_token, | |
pad_token=pad_token, | |
mask_token=mask_token, | |
**kwargs, | |
) | |
def build_inputs_with_special_tokens( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | |
) -> List[int]: | |
""" | |
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and | |
adding special tokens. A BERTweet sequence has the following format: | |
- single sequence: `<s> X </s>` | |
- pair of sequences: `<s> A </s></s> B </s>` | |
Args: | |
token_ids_0 (`List[int]`): | |
List of IDs to which the special tokens will be added. | |
token_ids_1 (`List[int]`, *optional*): | |
Optional second list of IDs for sequence pairs. | |
Returns: | |
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. | |
""" | |
if token_ids_1 is None: | |
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] | |
cls = [self.cls_token_id] | |
sep = [self.sep_token_id] | |
return cls + token_ids_0 + sep + sep + token_ids_1 + sep | |
def get_special_tokens_mask( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False | |
) -> List[int]: | |
""" | |
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding | |
special tokens using the tokenizer `prepare_for_model` method. | |
Args: | |
token_ids_0 (`List[int]`): | |
List of IDs. | |
token_ids_1 (`List[int]`, *optional*): | |
Optional second list of IDs for sequence pairs. | |
already_has_special_tokens (`bool`, *optional*, defaults to `False`): | |
Whether or not the token list is already formatted with special tokens for the model. | |
Returns: | |
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. | |
""" | |
if already_has_special_tokens: | |
return super().get_special_tokens_mask( | |
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True | |
) | |
if token_ids_1 is None: | |
return [1] + ([0] * len(token_ids_0)) + [1] | |
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] | |
def create_token_type_ids_from_sequences( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | |
) -> List[int]: | |
""" | |
Create a mask from the two sequences passed to be used in a sequence-pair classification task. BERTweet does | |
not make use of token type ids, therefore a list of zeros is returned. | |
Args: | |
token_ids_0 (`List[int]`): | |
List of IDs. | |
token_ids_1 (`List[int]`, *optional*): | |
Optional second list of IDs for sequence pairs. | |
Returns: | |
`List[int]`: List of zeros. | |
""" | |
sep = [self.sep_token_id] | |
cls = [self.cls_token_id] | |
if token_ids_1 is None: | |
return len(cls + token_ids_0 + sep) * [0] | |
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] | |
def vocab_size(self): | |
return len(self.encoder) | |
def get_vocab(self): | |
return dict(self.encoder, **self.added_tokens_encoder) | |
def bpe(self, token): | |
if token in self.cache: | |
return self.cache[token] | |
word = tuple(token) | |
word = tuple(list(word[:-1]) + [word[-1] + "</w>"]) | |
pairs = get_pairs(word) | |
if not pairs: | |
return token | |
while True: | |
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) | |
if bigram not in self.bpe_ranks: | |
break | |
first, second = bigram | |
new_word = [] | |
i = 0 | |
while i < len(word): | |
try: | |
j = word.index(first, i) | |
except ValueError: | |
new_word.extend(word[i:]) | |
break | |
else: | |
new_word.extend(word[i:j]) | |
i = j | |
if word[i] == first and i < len(word) - 1 and word[i + 1] == second: | |
new_word.append(first + second) | |
i += 2 | |
else: | |
new_word.append(word[i]) | |
i += 1 | |
new_word = tuple(new_word) | |
word = new_word | |
if len(word) == 1: | |
break | |
else: | |
pairs = get_pairs(word) | |
word = "@@ ".join(word) | |
word = word[:-4] | |
self.cache[token] = word | |
return word | |
def _tokenize(self, text): | |
"""Tokenize a string.""" | |
if self.normalization: # Perform Tweet normalization before performing BPE | |
text = self.normalizeTweet(text) | |
split_tokens = [] | |
words = re.findall(r"\S+\n?", text) | |
for token in words: | |
split_tokens.extend(list(self.bpe(token).split(" "))) | |
return split_tokens | |
def normalizeTweet(self, tweet): | |
""" | |
Normalize a raw Tweet | |
""" | |
for punct in self.special_puncts: | |
tweet = tweet.replace(punct, self.special_puncts[punct]) | |
tokens = self.tweetPreprocessor.tokenize(tweet) | |
normTweet = " ".join([self.normalizeToken(token) for token in tokens]) | |
normTweet = ( | |
normTweet.replace("cannot ", "can not ") | |
.replace("n't ", " n't ") | |
.replace("n 't ", " n't ") | |
.replace("ca n't", "can't") | |
.replace("ai n't", "ain't") | |
) | |
normTweet = ( | |
normTweet.replace("'m ", " 'm ") | |
.replace("'re ", " 're ") | |
.replace("'s ", " 's ") | |
.replace("'ll ", " 'll ") | |
.replace("'d ", " 'd ") | |
.replace("'ve ", " 've ") | |
) | |
normTweet = ( | |
normTweet.replace(" p . m .", " p.m.") | |
.replace(" p . m ", " p.m ") | |
.replace(" a . m .", " a.m.") | |
.replace(" a . m ", " a.m ") | |
) | |
return " ".join(normTweet.split()) | |
def normalizeToken(self, token): | |
""" | |
Normalize tokens in a Tweet | |
""" | |
lowercased_token = token.lower() | |
if token.startswith("@"): | |
return "@USER" | |
elif lowercased_token.startswith("http") or lowercased_token.startswith("www"): | |
return "HTTPURL" | |
elif len(token) == 1: | |
if token in self.special_puncts: | |
return self.special_puncts[token] | |
if self.demojizer is not None: | |
return self.demojizer(token) | |
else: | |
return token | |
else: | |
return token | |
def _convert_token_to_id(self, token): | |
"""Converts a token (str) in an id using the vocab.""" | |
return self.encoder.get(token, self.encoder.get(self.unk_token)) | |
def _convert_id_to_token(self, index): | |
"""Converts an index (integer) in a token (str) using the vocab.""" | |
return self.decoder.get(index, self.unk_token) | |
def convert_tokens_to_string(self, tokens): | |
"""Converts a sequence of tokens (string) in a single string.""" | |
out_string = " ".join(tokens).replace("@@ ", "").strip() | |
return out_string | |
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: | |
if not os.path.isdir(save_directory): | |
logger.error(f"Vocabulary path ({save_directory}) should be a directory") | |
return | |
out_vocab_file = os.path.join( | |
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] | |
) | |
out_merge_file = os.path.join( | |
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] | |
) | |
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): | |
copyfile(self.vocab_file, out_vocab_file) | |
elif not os.path.isfile(self.vocab_file): | |
with open(out_vocab_file, "wb") as fi: | |
content_spiece_model = self.sp_model.serialized_model_proto() | |
fi.write(content_spiece_model) | |
if os.path.abspath(self.merges_file) != os.path.abspath(out_merge_file): | |
copyfile(self.merges_file, out_merge_file) | |
return out_vocab_file, out_merge_file | |
# def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): | |
# filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) | |
# tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) | |
# tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) | |
# return ''.join(tokens_generated_so_far) | |
def add_from_file(self, f): | |
""" | |
Loads a pre-existing dictionary from a text file and adds its symbols to this instance. | |
""" | |
if isinstance(f, str): | |
try: | |
with open(f, "r", encoding="utf-8") as fd: | |
self.add_from_file(fd) | |
except FileNotFoundError as fnfe: | |
raise fnfe | |
except UnicodeError: | |
raise Exception(f"Incorrect encoding detected in {f}, please rebuild the dataset") | |
return | |
lines = f.readlines() | |
for lineTmp in lines: | |
line = lineTmp.strip() | |
idx = line.rfind(" ") | |
if idx == -1: | |
raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'") | |
word = line[:idx] | |
self.encoder[word] = len(self.encoder) | |
# Natural Language Toolkit: Twitter Tokenizer | |
# | |
# Copyright (C) 2001-2020 NLTK Project | |
# Author: Christopher Potts <[email protected]> | |
# Ewan Klein <[email protected]> (modifications) | |
# Pierpaolo Pantone <> (modifications) | |
# URL: http://nltk.org/ | |
# For license information, see LICENSE.TXT | |
# | |
""" | |
Twitter-aware tokenizer, designed to be flexible and easy to adapt to new domains and tasks. The basic logic is this: | |
1. The tuple regex_strings defines a list of regular expression strings. | |
2. The regex_strings strings are put, in order, into a compiled regular expression object called word_re. | |
3. The tokenization is done by word_re.findall(s), where s is the user-supplied string, inside the tokenize() method of | |
the class Tokenizer. | |
4. When instantiating Tokenizer objects, there is a single option: preserve_case. By default, it is set to True. If it | |
is set to False, then the tokenizer will lowercase everything except for emoticons. | |
""" | |
###################################################################### | |
# | |
# import regex # https://github.com/nltk/nltk/issues/2409 | |
# import html | |
# | |
###################################################################### | |
# The following strings are components in the regular expression | |
# that is used for tokenizing. It's important that phone_number | |
# appears first in the final regex (since it can contain whitespace). | |
# It also could matter that tags comes after emoticons, due to the | |
# possibility of having text like | |
# | |
# <:| and some text >:) | |
# | |
# Most importantly, the final element should always be last, since it | |
# does a last ditch whitespace-based tokenization of whatever is left. | |
# ToDo: Update with http://en.wikipedia.org/wiki/List_of_emoticons ? | |
# This particular element is used in a couple ways, so we define it | |
# with a name: | |
# docstyle-ignore | |
EMOTICONS = r""" | |
(?: | |
[<>]? | |
[:;=8] # eyes | |
[\-o\*\']? # optional nose | |
[\)\]\(\[dDpP/\:\}\{@\|\\] # mouth | |
| | |
[\)\]\(\[dDpP/\:\}\{@\|\\] # mouth | |
[\-o\*\']? # optional nose | |
[:;=8] # eyes | |
[<>]? | |
| | |
<3 # heart | |
)""" | |
# URL pattern due to John Gruber, modified by Tom Winzig. See | |
# https://gist.github.com/winzig/8894715 | |
# docstyle-ignore | |
URLS = r""" # Capture 1: entire matched URL | |
(?: | |
https?: # URL protocol and colon | |
(?: | |
/{1,3} # 1-3 slashes | |
| # or | |
[a-z0-9%] # Single letter or digit or '%' | |
# (Trying not to match e.g. "URI::Escape") | |
) | |
| # or | |
# looks like domain name followed by a slash: | |
[a-z0-9.\-]+[.] | |
(?:[a-z]{2,13}) | |
/ | |
) | |
(?: # One or more: | |
[^\s()<>{}\[\]]+ # Run of non-space, non-()<>{}[] | |
| # or | |
\([^\s()]*?\([^\s()]+\)[^\s()]*?\) # balanced parens, one level deep: (...(...)...) | |
| | |
\([^\s]+?\) # balanced parens, non-recursive: (...) | |
)+ | |
(?: # End with: | |
\([^\s()]*?\([^\s()]+\)[^\s()]*?\) # balanced parens, one level deep: (...(...)...) | |
| | |
\([^\s]+?\) # balanced parens, non-recursive: (...) | |
| # or | |
[^\s`!()\[\]{};:'".,<>?«»“”‘’] # not a space or one of these punct chars | |
) | |
| # OR, the following to match naked domains: | |
(?: | |
(?<!@) # not preceded by a @, avoid matching foo@_gmail.com_ | |
[a-z0-9]+ | |
(?:[.\-][a-z0-9]+)* | |
[.] | |
(?:[a-z]{2,13}) | |
\b | |
/? | |
(?!@) # not succeeded by a @, | |
# avoid matching "foo.na" in "[email protected]" | |
) | |
""" | |
# docstyle-ignore | |
# The components of the tokenizer: | |
REGEXPS = ( | |
URLS, | |
# Phone numbers: | |
r""" | |
(?: | |
(?: # (international) | |
\+?[01] | |
[ *\-.\)]* | |
)? | |
(?: # (area code) | |
[\(]? | |
\d{3} | |
[ *\-.\)]* | |
)? | |
\d{3} # exchange | |
[ *\-.\)]* | |
\d{4} # base | |
)""", | |
# ASCII Emoticons | |
EMOTICONS, | |
# HTML tags: | |
r"""<[^>\s]+>""", | |
# ASCII Arrows | |
r"""[\-]+>|<[\-]+""", | |
# Twitter username: | |
r"""(?:@[\w_]+)""", | |
# Twitter hashtags: | |
r"""(?:\#+[\w_]+[\w\'_\-]*[\w_]+)""", | |
# email addresses | |
r"""[\w.+-]+@[\w-]+\.(?:[\w-]\.?)+[\w-]""", | |
# docstyle-ignore | |
# Remaining word types: | |
r""" | |
(?:[^\W\d_](?:[^\W\d_]|['\-_])+[^\W\d_]) # Words with apostrophes or dashes. | |
| | |
(?:[+\-]?\d+[,/.:-]\d+[+\-]?) # Numbers, including fractions, decimals. | |
| | |
(?:[\w_]+) # Words without apostrophes or dashes. | |
| | |
(?:\.(?:\s*\.){1,}) # Ellipsis dots. | |
| | |
(?:\S) # Everything else that isn't whitespace. | |
""", | |
) | |
###################################################################### | |
# This is the core tokenizing regex: | |
WORD_RE = regex.compile(r"""(%s)""" % "|".join(REGEXPS), regex.VERBOSE | regex.I | regex.UNICODE) | |
# WORD_RE performs poorly on these patterns: | |
HANG_RE = regex.compile(r"([^a-zA-Z0-9])\1{3,}") | |
# The emoticon string gets its own regex so that we can preserve case for | |
# them as needed: | |
EMOTICON_RE = regex.compile(EMOTICONS, regex.VERBOSE | regex.I | regex.UNICODE) | |
# These are for regularizing HTML entities to Unicode: | |
ENT_RE = regex.compile(r"&(#?(x?))([^&;\s]+);") | |
###################################################################### | |
# Functions for converting html entities | |
###################################################################### | |
def _str_to_unicode(text, encoding=None, errors="strict"): | |
if encoding is None: | |
encoding = "utf-8" | |
if isinstance(text, bytes): | |
return text.decode(encoding, errors) | |
return text | |
def _replace_html_entities(text, keep=(), remove_illegal=True, encoding="utf-8"): | |
""" | |
Remove entities from text by converting them to their corresponding unicode character. | |
Args: | |
text: | |
A unicode string or a byte string encoded in the given *encoding* (which defaults to 'utf-8'). | |
keep (list): | |
List of entity names which should not be replaced. This supports both numeric entities (`&#nnnn;` and | |
`&#hhhh;`) and named entities (such as ` ` or `>`). | |
remove_illegal (bool): | |
If `True`, entities that can't be converted are removed. Otherwise, entities that can't be converted are | |
kept "as is". | |
Returns: A unicode string with the entities removed. | |
See https://github.com/scrapy/w3lib/blob/master/w3lib/html.py | |
Examples: | |
```python | |
>>> from nltk.tokenize.casual import _replace_html_entities | |
>>> _replace_html_entities(b"Price: £100") | |
'Price: \\xa3100' | |
>>> print(_replace_html_entities(b"Price: £100")) | |
Price: £100 | |
```""" | |
def _convert_entity(match): | |
entity_body = match.group(3) | |
if match.group(1): | |
try: | |
if match.group(2): | |
number = int(entity_body, 16) | |
else: | |
number = int(entity_body, 10) | |
# Numeric character references in the 80-9F range are typically | |
# interpreted by browsers as representing the characters mapped | |
# to bytes 80-9F in the Windows-1252 encoding. For more info | |
# see: https://en.wikipedia.org/wiki/ISO/IEC_8859-1#Similar_character_sets | |
if 0x80 <= number <= 0x9F: | |
return bytes((number,)).decode("cp1252") | |
except ValueError: | |
number = None | |
else: | |
if entity_body in keep: | |
return match.group(0) | |
else: | |
number = html.entities.name2codepoint.get(entity_body) | |
if number is not None: | |
try: | |
return chr(number) | |
except (ValueError, OverflowError): | |
pass | |
return "" if remove_illegal else match.group(0) | |
return ENT_RE.sub(_convert_entity, _str_to_unicode(text, encoding)) | |
###################################################################### | |
class TweetTokenizer: | |
r""" | |
Examples: | |
```python | |
>>> # Tokenizer for tweets. | |
>>> from nltk.tokenize import TweetTokenizer | |
>>> tknzr = TweetTokenizer() | |
>>> s0 = "This is a cooool #dummysmiley: :-) :-P <3 and some arrows < > -> <--" | |
>>> tknzr.tokenize(s0) | |
['This', 'is', 'a', 'cooool', '#dummysmiley', ':', ':-)', ':-P', '<3', 'and', 'some', 'arrows', '<', '>', '->', '<--'] | |
>>> # Examples using *strip_handles* and *reduce_len parameters*: | |
>>> tknzr = TweetTokenizer(strip_handles=True, reduce_len=True) | |
>>> s1 = "@remy: This is waaaaayyyy too much for you!!!!!!" | |
>>> tknzr.tokenize(s1) | |
[':', 'This', 'is', 'waaayyy', 'too', 'much', 'for', 'you', '!', '!', '!'] | |
```""" | |
def __init__(self, preserve_case=True, reduce_len=False, strip_handles=False): | |
self.preserve_case = preserve_case | |
self.reduce_len = reduce_len | |
self.strip_handles = strip_handles | |
def tokenize(self, text): | |
""" | |
Args: | |
text: str | |
Returns: list(str) A tokenized list of strings; concatenating this list returns the original string if | |
`preserve_case=False` | |
""" | |
# Fix HTML character entities: | |
text = _replace_html_entities(text) | |
# Remove username handles | |
if self.strip_handles: | |
text = remove_handles(text) | |
# Normalize word lengthening | |
if self.reduce_len: | |
text = reduce_lengthening(text) | |
# Shorten problematic sequences of characters | |
safe_text = HANG_RE.sub(r"\1\1\1", text) | |
# Tokenize: | |
words = WORD_RE.findall(safe_text) | |
# Possibly alter the case, but avoid changing emoticons like :D into :d: | |
if not self.preserve_case: | |
words = [x if EMOTICON_RE.search(x) else x.lower() for x in words] | |
return words | |
###################################################################### | |
# Normalization Functions | |
###################################################################### | |
def reduce_lengthening(text): | |
""" | |
Replace repeated character sequences of length 3 or greater with sequences of length 3. | |
""" | |
pattern = regex.compile(r"(.)\1{2,}") | |
return pattern.sub(r"\1\1\1", text) | |
def remove_handles(text): | |
""" | |
Remove Twitter username handles from text. | |
""" | |
pattern = regex.compile( | |
r"(?<![A-Za-z0-9_!@#\$%&*])@(([A-Za-z0-9_]){20}(?!@))|(?<![A-Za-z0-9_!@#\$%&*])@(([A-Za-z0-9_]){1,19})(?![A-Za-z0-9_]*@)" | |
) | |
# Substitute handles with ' ' to ensure that text on either side of removed handles are tokenized correctly | |
return pattern.sub(" ", text) | |
###################################################################### | |
# Tokenization Function | |
###################################################################### | |
def casual_tokenize(text, preserve_case=True, reduce_len=False, strip_handles=False): | |
""" | |
Convenience function for wrapping the tokenizer. | |
""" | |
return TweetTokenizer(preserve_case=preserve_case, reduce_len=reduce_len, strip_handles=strip_handles).tokenize( | |
text | |
) | |
############################################################################### | |