Spaces:
Running
on
T4
Running
on
T4
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Blip model configuration""" | |
import os | |
from typing import Union | |
from ...configuration_utils import PretrainedConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
"Salesforce/blip-vqa-base": "https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json", | |
"Salesforce/blip-vqa-capfit-large": ( | |
"https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json" | |
), | |
"Salesforce/blip-image-captioning-base": ( | |
"https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json" | |
), | |
"Salesforce/blip-image-captioning-large": ( | |
"https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json" | |
), | |
"Salesforce/blip-itm-base-coco": "https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json", | |
"Salesforce/blip-itm-large-coco": "https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json", | |
"Salesforce/blip-itm-base-flikr": "https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json", | |
"Salesforce/blip-itm-large-flikr": ( | |
"https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json" | |
), | |
} | |
class BlipTextConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`BlipTextModel`]. It is used to instantiate a BLIP | |
text model according to the specified arguments, defining the model architecture. Instantiating a configuration | |
with the defaults will yield a similar configuration to that of the `BlipText` used by the [base | |
architectures](https://huggingface.co/Salesforce/blip-vqa-base). | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 30522): | |
Vocabulary size of the `Blip` text model. Defines the number of different tokens that can be represented by | |
the `inputs_ids` passed when calling [`BlipModel`]. | |
hidden_size (`int`, *optional*, defaults to 768): | |
Dimensionality of the encoder layers and the pooler layer. | |
encoder_hidden_size (`int`, *optional*, defaults to 768): | |
Dimensionality of the encoder layers from the vision model. | |
intermediate_size (`int`, *optional*, defaults to 3072): | |
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
num_hidden_layers (`int`, *optional*, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 8): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
max_position_embeddings (`int`, *optional*, defaults to 77): | |
The maximum sequence length that this model might ever be used with. Typically set this to something large | |
just in case (e.g., 512 or 1024 or 2048). | |
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-12): | |
The epsilon used by the layer normalization layers. | |
hidden_dropout_prob (`float`, *optional*, defaults to 0.0): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
attention_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for the attention probabilities. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
bos_token_id (`int`, *optional*, defaults to 30522): | |
The id of the `beginning-of-sequence` token. | |
eos_token_id (`int`, *optional*, defaults to 2): | |
The id of the `end-of-sequence` token. | |
pad_token_id (`int`, *optional*, defaults to 0): | |
The id of the `padding` token. | |
sep_token_id (`int`, *optional*, defaults to 102): | |
The id of the `separator` token. | |
is_decoder (`bool`, *optional*, defaults to `False`): | |
Whether the model is used as a decoder. | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should return the last key/values attentions (not used by all models). | |
Example: | |
```python | |
>>> from transformers import BlipTextConfig, BlipTextModel | |
>>> # Initializing a BlipTextConfig with Salesforce/blip-vqa-base style configuration | |
>>> configuration = BlipTextConfig() | |
>>> # Initializing a BlipTextModel (with random weights) from the Salesforce/blip-vqa-base style configuration | |
>>> model = BlipTextModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "blip_text_model" | |
def __init__( | |
self, | |
vocab_size=30524, | |
hidden_size=768, | |
encoder_hidden_size=768, | |
intermediate_size=3072, | |
projection_dim=768, | |
num_hidden_layers=12, | |
num_attention_heads=8, | |
max_position_embeddings=512, | |
hidden_act="gelu", | |
layer_norm_eps=1e-12, | |
hidden_dropout_prob=0.0, | |
attention_probs_dropout_prob=0.0, | |
initializer_range=0.02, | |
bos_token_id=30522, | |
eos_token_id=2, | |
pad_token_id=0, | |
sep_token_id=102, | |
is_decoder=True, | |
use_cache=True, | |
**kwargs, | |
): | |
super().__init__( | |
pad_token_id=pad_token_id, | |
bos_token_id=bos_token_id, | |
eos_token_id=eos_token_id, | |
sep_token_id=sep_token_id, | |
**kwargs, | |
) | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.encoder_hidden_size = encoder_hidden_size | |
self.intermediate_size = intermediate_size | |
self.projection_dim = projection_dim | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.max_position_embeddings = max_position_embeddings | |
self.layer_norm_eps = layer_norm_eps | |
self.hidden_act = hidden_act | |
self.initializer_range = initializer_range | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.is_decoder = is_decoder | |
self.use_cache = use_cache | |
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": | |
cls._set_token_in_kwargs(kwargs) | |
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) | |
# get the text config dict if we are loading from BlipConfig | |
if config_dict.get("model_type") == "blip": | |
config_dict = config_dict["text_config"] | |
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: | |
logger.warning( | |
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
) | |
return cls.from_dict(config_dict, **kwargs) | |
class BlipVisionConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`BlipVisionModel`]. It is used to instantiate a | |
BLIP vision model according to the specified arguments, defining the model architecture. Instantiating a | |
configuration defaults will yield a similar configuration to that of the Blip-base | |
[Salesforce/blip-vqa-base](https://huggingface.co/Salesforce/blip-vqa-base) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
hidden_size (`int`, *optional*, defaults to 768): | |
Dimensionality of the encoder layers and the pooler layer. | |
intermediate_size (`int`, *optional*, defaults to 3072): | |
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
num_hidden_layers (`int`, *optional*, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
image_size (`int`, *optional*, defaults to 224): | |
The size (resolution) of each image. | |
patch_size (`int`, *optional*, defaults to 32): | |
The size (resolution) of each patch. | |
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-5): | |
The epsilon used by the layer normalization layers. | |
attention_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for the attention probabilities. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
Example: | |
```python | |
>>> from transformers import BlipVisionConfig, BlipVisionModel | |
>>> # Initializing a BlipVisionConfig with Salesforce/blip-vqa-base style configuration | |
>>> configuration = BlipVisionConfig() | |
>>> # Initializing a BlipVisionModel (with random weights) from the Salesforce/blip-vqa-base style configuration | |
>>> model = BlipVisionModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "blip_vision_model" | |
def __init__( | |
self, | |
hidden_size=768, | |
intermediate_size=3072, | |
projection_dim=512, | |
num_hidden_layers=12, | |
num_attention_heads=12, | |
image_size=384, | |
patch_size=16, | |
hidden_act="gelu", | |
layer_norm_eps=1e-5, | |
attention_dropout=0.0, | |
initializer_range=1e-10, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.hidden_size = hidden_size | |
self.intermediate_size = intermediate_size | |
self.projection_dim = projection_dim | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.patch_size = patch_size | |
self.image_size = image_size | |
self.initializer_range = initializer_range | |
self.attention_dropout = attention_dropout | |
self.layer_norm_eps = layer_norm_eps | |
self.hidden_act = hidden_act | |
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": | |
cls._set_token_in_kwargs(kwargs) | |
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) | |
# get the vision config dict if we are loading from BlipConfig | |
if config_dict.get("model_type") == "blip": | |
config_dict = config_dict["vision_config"] | |
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: | |
logger.warning( | |
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
) | |
return cls.from_dict(config_dict, **kwargs) | |
class BlipConfig(PretrainedConfig): | |
r""" | |
[`BlipConfig`] is the configuration class to store the configuration of a [`BlipModel`]. It is used to instantiate | |
a BLIP model according to the specified arguments, defining the text model and vision model configs. Instantiating | |
a configuration with the defaults will yield a similar configuration to that of the BLIP-base | |
[Salesforce/blip-vqa-base](https://huggingface.co/Salesforce/blip-vqa-base) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
text_config (`dict`, *optional*): | |
Dictionary of configuration options used to initialize [`BlipTextConfig`]. | |
vision_config (`dict`, *optional*): | |
Dictionary of configuration options used to initialize [`BlipVisionConfig`]. | |
projection_dim (`int`, *optional*, defaults to 512): | |
Dimentionality of text and vision projection layers. | |
logit_scale_init_value (`float`, *optional*, defaults to 2.6592): | |
The inital value of the *logit_scale* paramter. Default is used as per the original BLIP implementation. | |
image_text_hidden_size (`int`, *optional*, defaults to 256): | |
Dimentionality of the hidden state of the image-text fusion layer. | |
kwargs (*optional*): | |
Dictionary of keyword arguments. | |
Example: | |
```python | |
>>> from transformers import BlipConfig, BlipModel | |
>>> # Initializing a BlipConfig with Salesforce/blip-vqa-base style configuration | |
>>> configuration = BlipConfig() | |
>>> # Initializing a BlipPModel (with random weights) from the Salesforce/blip-vqa-base style configuration | |
>>> model = BlipModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
>>> # We can also initialize a BlipConfig from a BlipTextConfig and a BlipVisionConfig | |
>>> # Initializing a BLIPText and BLIPVision configuration | |
>>> config_text = BlipTextConfig() | |
>>> config_vision = BlipVisionConfig() | |
>>> config = BlipConfig.from_text_vision_configs(config_text, config_vision) | |
```""" | |
model_type = "blip" | |
def __init__( | |
self, | |
text_config=None, | |
vision_config=None, | |
projection_dim=512, | |
logit_scale_init_value=2.6592, | |
image_text_hidden_size=256, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
if text_config is None: | |
text_config = {} | |
logger.info("`text_config` is `None`. Initializing the `BlipTextConfig` with default values.") | |
if vision_config is None: | |
vision_config = {} | |
logger.info("`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.") | |
self.text_config = BlipTextConfig(**text_config) | |
self.vision_config = BlipVisionConfig(**vision_config) | |
self.text_config.encoder_hidden_size = self.vision_config.hidden_size | |
self.projection_dim = projection_dim | |
self.logit_scale_init_value = logit_scale_init_value | |
self.initializer_factor = 1.0 | |
self.initializer_range = 0.02 | |
self.image_text_hidden_size = image_text_hidden_size | |
def from_text_vision_configs(cls, text_config: BlipTextConfig, vision_config: BlipVisionConfig, **kwargs): | |
r""" | |
Instantiate a [`BlipConfig`] (or a derived class) from blip text model configuration and blip vision model | |
configuration. | |
Returns: | |
[`BlipConfig`]: An instance of a configuration object | |
""" | |
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs) | |