Spaces:
Running
on
T4
Running
on
T4
#include "cuda_kernel.h" | |
////////////////////////////////////////////////////////////////////////////////////////////////// | |
////////////////////////////////////////////////////////////////////////////////////////////////// | |
__global__ void index_max_cuda_kernel( | |
float *index_vals, // [batch_size, 32, num_block] | |
int *indices, // [batch_size, num_block] | |
float *max_vals, // [batch_size, A_num_block * 32] | |
float *max_vals_scatter, // [batch_size, 32, num_block] | |
long batch_size, | |
long A_num_block, | |
long B_num_block, | |
long num_block | |
) { | |
long batch_idx = blockIdx.x; | |
long thread_idx = threadIdx.x; | |
long num_thread = blockDim.x; | |
extern __shared__ float buffer[]; | |
int *max_buffer = (int*)buffer; | |
for (int i = 0; i < A_num_block * 32; i = i + num_thread) { | |
int idx = i + thread_idx; | |
if (idx < A_num_block * 32) { | |
max_buffer[idx] = -1e8; | |
} | |
} | |
__syncthreads(); | |
int *indices_pt = &indices[batch_idx * num_block]; | |
float *index_vals_pt = &index_vals[batch_idx * num_block * 32]; | |
for (int idx_start = 0; idx_start < 32 * num_block; idx_start = idx_start + num_thread) { | |
int idx = idx_start + thread_idx; | |
int A_block_idx = indices_pt[idx % num_block] / B_num_block; | |
atomicMax(&max_buffer[A_block_idx * 32 + idx / num_block], (int)(index_vals_pt[idx] * 1000)); | |
} | |
__syncthreads(); | |
float *max_vals_pt = &max_vals[batch_idx * A_num_block * 32]; | |
for (int i = 0; i < A_num_block * 32; i = i + num_thread) { | |
int idx = i + thread_idx; | |
if (idx < A_num_block * 32) { | |
max_vals_pt[idx] = (float)max_buffer[idx] / 1000.; | |
} | |
} | |
float *max_vals_scatter_pt = &max_vals_scatter[batch_idx * num_block * 32]; | |
for (int idx_start = 0; idx_start < 32 * num_block; idx_start = idx_start + num_thread) { | |
int idx = idx_start + thread_idx; | |
int A_block_idx = indices_pt[idx % num_block] / B_num_block; | |
max_vals_scatter_pt[idx] = (float)max_buffer[A_block_idx * 32 + idx / num_block] / 1000.; | |
} | |
} | |
__global__ void mm_to_sparse_cuda_kernel( | |
float *dense_A, // [batch_size, A_num_block, dim, 32] | |
float *dense_B, // [batch_size, B_num_block, dim, 32] | |
int *indices, // [batch_size, num_block] | |
float *sparse_C, // [batch_size, num_block, 32, 32] | |
long batch_size, | |
long A_num_block, | |
long B_num_block, | |
long dim, | |
long num_block | |
) { | |
long batch_idx = blockIdx.y; | |
long block_idx = blockIdx.x * blockDim.y + threadIdx.y; | |
long thread_idx = threadIdx.x; | |
__shared__ float buffer[4096]; | |
float *A_buffer = &buffer[threadIdx.y * 1024]; // [2, 8, 32] | |
float *B_buffer = &buffer[threadIdx.y * 1024 + 512]; // [2, 8, 32] | |
long batch_idx__block_idx = batch_idx * num_block + block_idx; | |
long AB_block_idx = indices[batch_idx__block_idx]; | |
float *dense_A_pt = &dense_A[(batch_idx * A_num_block + AB_block_idx / B_num_block) * dim * 32]; | |
float *dense_B_pt = &dense_B[(batch_idx * B_num_block + AB_block_idx % B_num_block) * dim * 32]; | |
int reg_1_idx = thread_idx / 8; // [0000000011111111222222223333333344444444555555556666666677777777] | |
int reg_2_idx = thread_idx % 8; // [0123456701234567012345670123456701234567012345670123456701234567] | |
float reg_1[8]; | |
float reg_2[8]; | |
float reg_array[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; | |
#pragma unroll | |
for (int i = 0; i < 4; i++) { | |
A_buffer[i * 64 + thread_idx] = dense_A_pt[i * 64 + thread_idx]; | |
B_buffer[i * 64 + thread_idx] = dense_B_pt[i * 64 + thread_idx]; | |
} | |
__syncthreads(); | |
#pragma unroll | |
for (int i = 0; i < 4; i++) { | |
reg_1[i] = A_buffer[reg_1_idx * 4 + i]; | |
reg_2[i] = B_buffer[reg_2_idx * 4 + i]; | |
} | |
for (int dim_stride = 1; dim_stride < (dim / 8); dim_stride++) { | |
#pragma unroll | |
for (int i = 0; i < 4; i++) { | |
A_buffer[(dim_stride % 2) * 256 + i * 64 + thread_idx] = dense_A_pt[dim_stride * 256 + i * 64 + thread_idx]; | |
B_buffer[(dim_stride % 2) * 256 + i * 64 + thread_idx] = dense_B_pt[dim_stride * 256 + i * 64 + thread_idx]; | |
} | |
#pragma unroll | |
for (int mini_dim_idx = 1; mini_dim_idx < 8; mini_dim_idx++) { | |
#pragma unroll | |
for (int i = 0; i < 4; i++) { | |
reg_1[(mini_dim_idx % 2) * 4 + i] = A_buffer[((dim_stride - 1) % 2) * 256 + mini_dim_idx * 32 + reg_1_idx * 4 + i]; | |
reg_2[(mini_dim_idx % 2) * 4 + i] = B_buffer[((dim_stride - 1) % 2) * 256 + mini_dim_idx * 32 + reg_2_idx * 4 + i]; | |
} | |
#pragma unroll | |
for (int i = 0; i < 4; i++) { | |
#pragma unroll | |
for (int j = 0; j < 4; j++) { | |
reg_array[i * 4 + j] += reg_1[((mini_dim_idx - 1) % 2) * 4 + i] * reg_2[((mini_dim_idx - 1) % 2) * 4 + j]; | |
} | |
} | |
} | |
__syncthreads(); | |
#pragma unroll | |
for (int i = 0; i < 4; i++) { | |
reg_1[i] = A_buffer[(dim_stride % 2) * 256 + reg_1_idx * 4 + i]; | |
reg_2[i] = B_buffer[(dim_stride % 2) * 256 + reg_2_idx * 4 + i]; | |
} | |
#pragma unroll | |
for (int i = 0; i < 4; i++) { | |
#pragma unroll | |
for (int j = 0; j < 4; j++) { | |
reg_array[i * 4 + j] += reg_1[4 + i] * reg_2[4 + j]; | |
} | |
} | |
} | |
#pragma unroll | |
for (int mini_dim_idx = 1; mini_dim_idx < 8; mini_dim_idx++) { | |
#pragma unroll | |
for (int i = 0; i < 4; i++) { | |
reg_1[(mini_dim_idx % 2) * 4 + i] = A_buffer[256 + mini_dim_idx * 32 + reg_1_idx * 4 + i]; | |
reg_2[(mini_dim_idx % 2) * 4 + i] = B_buffer[256 + mini_dim_idx * 32 + reg_2_idx * 4 + i]; | |
} | |
#pragma unroll | |
for (int i = 0; i < 4; i++) { | |
#pragma unroll | |
for (int j = 0; j < 4; j++) { | |
reg_array[i * 4 + j] += reg_1[((mini_dim_idx - 1) % 2) * 4 + i] * reg_2[((mini_dim_idx - 1) % 2) * 4 + j]; | |
} | |
} | |
} | |
#pragma unroll | |
for (int i = 0; i < 4; i++) { | |
#pragma unroll | |
for (int j = 0; j < 4; j++) { | |
reg_array[i * 4 + j] += reg_1[4 + i] * reg_2[4 + j]; | |
} | |
} | |
__syncthreads(); | |
float *C_buffer = &buffer[threadIdx.y * 1024]; // [32, 32] | |
#pragma unroll | |
for (int i = 0; i < 4; i++) { | |
#pragma unroll | |
for (int j = 0; j < 4; j++) { | |
C_buffer[(reg_2_idx * 4 + j) * 32 + reg_1_idx * 4 + i] = reg_array[i * 4 + j]; | |
} | |
} | |
__syncthreads(); | |
float *sparse_C_pt = &sparse_C[batch_idx__block_idx * 1024]; | |
#pragma unroll | |
for (int i = 0; i < 16; i++) { | |
sparse_C_pt[i * 64 + thread_idx] = C_buffer[i * 64 + thread_idx]; | |
} | |
} | |
__global__ void sparse_dense_mm_cuda_kernel( | |
float *sparse_A, // [batch_size, num_block, 32, 32] | |
int *indices, // [batch_size, num_block] | |
float *dense_B, // [batch_size, B_num_block, dim, 32] | |
float *dense_C, // [batch_size, A_num_block, dim, 32] | |
long batch_size, | |
long A_num_block, | |
long B_num_block, | |
long dim, | |
long num_block | |
) { | |
long batch_idx = blockIdx.y; | |
long block_idx = blockIdx.x * blockDim.y + threadIdx.y; | |
long thread_idx = threadIdx.x; | |
__shared__ float buffer[6144]; | |
float *A_buffer = &buffer[threadIdx.y * 3072]; // [32, 32] | |
float *B_buffer = &buffer[threadIdx.y * 3072 + 1024]; // [32, 64] | |
long batch_idx__block_idx = batch_idx * num_block + block_idx; | |
float *sparse_A_pt = &sparse_A[batch_idx__block_idx * 1024]; | |
#pragma unroll | |
for (int i = 0; i < 8; i++) { | |
A_buffer[i * 128 + thread_idx] = sparse_A_pt[i * 128 + thread_idx]; | |
} | |
long AB_block_idx = indices[batch_idx__block_idx]; | |
float *dense_B_pt = &dense_B[(batch_idx * B_num_block + AB_block_idx % B_num_block) * 32 * dim]; | |
float *dense_C_pt = &dense_C[(batch_idx * A_num_block + AB_block_idx / B_num_block) * 32 * dim]; | |
// [0000000011111111222222223333333344444444555555556666666677777777] | |
// [0123456701234567012345670123456701234567012345670123456701234567] | |
int reg_1_idx = thread_idx / 8; | |
int reg_2_idx = thread_idx % 8; | |
float reg_1[8]; | |
float reg_2[8]; | |
float reg_array[16]; | |
for (int dim_stride = 0; dim_stride < dim; dim_stride = dim_stride + 64) { | |
#pragma unroll | |
for (int i = 0; i < 16; i++) { | |
B_buffer[i * 128 + thread_idx] = dense_B_pt[dim_stride * 32 + i * 128 + thread_idx]; | |
} | |
#pragma unroll | |
for (int i = 0; i < 16; i++) { | |
reg_array[i] = 0; | |
} | |
__syncthreads(); | |
#pragma unroll | |
for (int i = 0; i < 4; i++) { | |
reg_1[i] = B_buffer[(reg_1_idx * 4 + i) * 32]; | |
reg_2[i] = A_buffer[reg_2_idx * 4 + i]; | |
} | |
#pragma unroll | |
for (int mini_dim_idx = 1; mini_dim_idx < 32; mini_dim_idx++) { | |
#pragma unroll | |
for (int i = 0; i < 4; i++) { | |
reg_1[(mini_dim_idx % 2) * 4 + i] = B_buffer[(reg_1_idx * 4 + i) * 32 + mini_dim_idx]; | |
reg_2[(mini_dim_idx % 2) * 4 + i] = A_buffer[mini_dim_idx * 32 + reg_2_idx * 4 + i]; | |
} | |
#pragma unroll | |
for (int i = 0; i < 4; i++) { | |
#pragma unroll | |
for (int j = 0; j < 4; j++) { | |
reg_array[i * 4 + j] += reg_1[((mini_dim_idx - 1) % 2) * 4 + i] * reg_2[((mini_dim_idx - 1) % 2) * 4 + j]; | |
} | |
} | |
} | |
#pragma unroll | |
for (int i = 0; i < 4; i++) { | |
#pragma unroll | |
for (int j = 0; j < 4; j++) { | |
reg_array[i * 4 + j] += reg_1[4 + i] * reg_2[4 + j]; | |
} | |
} | |
__syncthreads(); | |
float *C_buffer = &buffer[threadIdx.y * 3072 + 1024]; // [64, 32] | |
#pragma unroll | |
for (int i = 0; i < 4; i++) { | |
#pragma unroll | |
for (int j = 0; j < 4; j++) { | |
C_buffer[(reg_1_idx * 4 + i) * 32 + reg_2_idx * 4 + j] = reg_array[i * 4 + j]; | |
} | |
} | |
__syncthreads(); | |
#pragma unroll | |
for (int i = 0; i < 16; i++) { | |
atomicAdd(&dense_C_pt[dim_stride * 32 + i * 128 + thread_idx], C_buffer[i * 128 + thread_idx]); | |
} | |
__syncthreads(); | |
} | |
} | |
__global__ void reduce_sum_cuda_kernel( | |
float *sparse_A, // [batch_size, num_block, 32, 32] | |
int *indices, // [batch_size, num_block] | |
float *dense_C, // [batch_size, A_num_block, 32] | |
long batch_size, | |
long A_num_block, | |
long B_num_block, | |
long num_block | |
) { | |
long batch_idx = blockIdx.y; | |
long block_idx = blockIdx.x * blockDim.y + threadIdx.y; | |
long thread_idx = threadIdx.x; | |
long batch_idx__block_idx = batch_idx * num_block + block_idx; | |
long AB_block_idx = indices[batch_idx__block_idx]; | |
float *sparse_A_pt = &sparse_A[batch_idx__block_idx * 1024]; | |
float reg_array[16]; | |
float value = 0; | |
#pragma unroll | |
for (int i = 0; i < 8; i++) { | |
reg_array[i] = sparse_A_pt[i * 32 + thread_idx]; | |
} | |
#pragma unroll | |
for (int stride = 8; stride < 32; stride = stride + 8) { | |
#pragma unroll | |
for (int i = 0; i < 8; i++) { | |
reg_array[(stride + i) % 16] = sparse_A_pt[(stride + i) * 32 + thread_idx]; | |
} | |
#pragma unroll | |
for (int i = 0; i < 8; i++) { | |
value = value + reg_array[(stride - 8 + i) % 16]; | |
} | |
} | |
#pragma unroll | |
for (int i = 0; i < 8; i++) { | |
value = value + reg_array[8 + i]; | |
} | |
float *dense_C_pt = &dense_C[(batch_idx * A_num_block + AB_block_idx / B_num_block) * 32]; | |
atomicAdd(&dense_C_pt[thread_idx], value); | |
} | |
__global__ void scatter_cuda_kernel( | |
float *dense_A, // [batch_size, A_num_block, 32] | |
int *indices, // [batch_size, num_block] | |
float *sparse_C, // [batch_size, num_block, 32, 32] | |
long batch_size, | |
long A_num_block, | |
long B_num_block, | |
long num_block | |
) { | |
long batch_idx = blockIdx.y; | |
long block_idx = blockIdx.x * blockDim.y + threadIdx.y; | |
long thread_idx = threadIdx.x; | |
long batch_idx__block_idx = batch_idx * num_block + block_idx; | |
long AB_block_idx = indices[batch_idx__block_idx]; | |
float *dense_A_pt = &dense_A[(batch_idx * A_num_block + AB_block_idx / B_num_block) * 32]; | |
float *sparse_C_pt = &sparse_C[(batch_idx * num_block + block_idx) * 1024]; | |
float value = dense_A_pt[thread_idx]; | |
#pragma unroll | |
for (int i = 0; i < 32; i++) { | |
sparse_C_pt[i * 32 + thread_idx] = value; | |
} | |
} | |