Spaces:
Running
on
T4
Running
on
T4
# coding=utf-8 | |
# Copyright Microsoft Research and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" BEiT model configuration""" | |
from collections import OrderedDict | |
from typing import Mapping | |
from packaging import version | |
from ...configuration_utils import PretrainedConfig | |
from ...onnx import OnnxConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
"microsoft/beit-base-patch16-224-pt22k": ( | |
"https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json" | |
), | |
# See all BEiT models at https://huggingface.co/models?filter=beit | |
} | |
class BeitConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`BeitModel`]. It is used to instantiate an BEiT | |
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the | |
defaults will yield a similar configuration to that of the BEiT | |
[microsoft/beit-base-patch16-224-pt22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k) architecture. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 8192): | |
Vocabulary size of the BEiT model. Defines the number of different image tokens that can be used during | |
pre-training. | |
hidden_size (`int`, *optional*, defaults to 768): | |
Dimensionality of the encoder layers and the pooler layer. | |
num_hidden_layers (`int`, *optional*, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
intermediate_size (`int`, *optional*, defaults to 3072): | |
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"selu"` and `"gelu_new"` are supported. | |
hidden_dropout_prob (`float`, *optional*, defaults to 0.0): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for the attention probabilities. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-12): | |
The epsilon used by the layer normalization layers. | |
image_size (`int`, *optional*, defaults to 224): | |
The size (resolution) of each image. | |
patch_size (`int`, *optional*, defaults to 16): | |
The size (resolution) of each patch. | |
num_channels (`int`, *optional*, defaults to 3): | |
The number of input channels. | |
use_mask_token (`bool`, *optional*, defaults to `False`): | |
Whether to use a mask token for masked image modeling. | |
use_absolute_position_embeddings (`bool`, *optional*, defaults to `False`): | |
Whether to use BERT-style absolute position embeddings. | |
use_relative_position_bias (`bool`, *optional*, defaults to `False`): | |
Whether to use T5-style relative position embeddings in the self-attention layers. | |
use_shared_relative_position_bias (`bool`, *optional*, defaults to `False`): | |
Whether to use the same relative position embeddings across all self-attention layers of the Transformer. | |
layer_scale_init_value (`float`, *optional*, defaults to 0.1): | |
Scale to use in the self-attention layers. 0.1 for base, 1e-5 for large. Set 0 to disable layer scale. | |
drop_path_rate (`float`, *optional*, defaults to 0.1): | |
Stochastic depth rate per sample (when applied in the main path of residual layers). | |
use_mean_pooling (`bool`, *optional*, defaults to `True`): | |
Whether to mean pool the final hidden states of the patches instead of using the final hidden state of the | |
CLS token, before applying the classification head. | |
out_indices (`List[int]`, *optional*, defaults to `[3, 5, 7, 11]`): | |
Indices of the feature maps to use for semantic segmentation. | |
pool_scales (`Tuple[int]`, *optional*, defaults to `[1, 2, 3, 6]`): | |
Pooling scales used in Pooling Pyramid Module applied on the last feature map. | |
use_auxiliary_head (`bool`, *optional*, defaults to `True`): | |
Whether to use an auxiliary head during training. | |
auxiliary_loss_weight (`float`, *optional*, defaults to 0.4): | |
Weight of the cross-entropy loss of the auxiliary head. | |
auxiliary_channels (`int`, *optional*, defaults to 256): | |
Number of channels to use in the auxiliary head. | |
auxiliary_num_convs (`int`, *optional*, defaults to 1): | |
Number of convolutional layers to use in the auxiliary head. | |
auxiliary_concat_input (`bool`, *optional*, defaults to `False`): | |
Whether to concatenate the output of the auxiliary head with the input before the classification layer. | |
semantic_loss_ignore_index (`int`, *optional*, defaults to 255): | |
The index that is ignored by the loss function of the semantic segmentation model. | |
Example: | |
```python | |
>>> from transformers import BeitConfig, BeitModel | |
>>> # Initializing a BEiT beit-base-patch16-224-pt22k style configuration | |
>>> configuration = BeitConfig() | |
>>> # Initializing a model (with random weights) from the beit-base-patch16-224-pt22k style configuration | |
>>> model = BeitModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "beit" | |
def __init__( | |
self, | |
vocab_size=8192, | |
hidden_size=768, | |
num_hidden_layers=12, | |
num_attention_heads=12, | |
intermediate_size=3072, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.0, | |
attention_probs_dropout_prob=0.0, | |
initializer_range=0.02, | |
layer_norm_eps=1e-12, | |
image_size=224, | |
patch_size=16, | |
num_channels=3, | |
use_mask_token=False, | |
use_absolute_position_embeddings=False, | |
use_relative_position_bias=False, | |
use_shared_relative_position_bias=False, | |
layer_scale_init_value=0.1, | |
drop_path_rate=0.1, | |
use_mean_pooling=True, | |
out_indices=[3, 5, 7, 11], | |
pool_scales=[1, 2, 3, 6], | |
use_auxiliary_head=True, | |
auxiliary_loss_weight=0.4, | |
auxiliary_channels=256, | |
auxiliary_num_convs=1, | |
auxiliary_concat_input=False, | |
semantic_loss_ignore_index=255, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.initializer_range = initializer_range | |
self.layer_norm_eps = layer_norm_eps | |
self.image_size = image_size | |
self.patch_size = patch_size | |
self.num_channels = num_channels | |
self.use_mask_token = use_mask_token | |
self.use_absolute_position_embeddings = use_absolute_position_embeddings | |
self.use_relative_position_bias = use_relative_position_bias | |
self.use_shared_relative_position_bias = use_shared_relative_position_bias | |
self.layer_scale_init_value = layer_scale_init_value | |
self.drop_path_rate = drop_path_rate | |
self.use_mean_pooling = use_mean_pooling | |
# decode head attributes (semantic segmentation) | |
self.out_indices = out_indices | |
self.pool_scales = pool_scales | |
# auxiliary head attributes (semantic segmentation) | |
self.use_auxiliary_head = use_auxiliary_head | |
self.auxiliary_loss_weight = auxiliary_loss_weight | |
self.auxiliary_channels = auxiliary_channels | |
self.auxiliary_num_convs = auxiliary_num_convs | |
self.auxiliary_concat_input = auxiliary_concat_input | |
self.semantic_loss_ignore_index = semantic_loss_ignore_index | |
# Copied from transformers.models.vit.configuration_vit.ViTOnnxConfig | |
class BeitOnnxConfig(OnnxConfig): | |
torch_onnx_minimum_version = version.parse("1.11") | |
def inputs(self) -> Mapping[str, Mapping[int, str]]: | |
return OrderedDict( | |
[ | |
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), | |
] | |
) | |
def atol_for_validation(self) -> float: | |
return 1e-4 | |