Spaces:
Running
on
T4
Running
on
T4
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Team and Microsoft Research AI4Science All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" BioGPT model configuration""" | |
from ...configuration_utils import PretrainedConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
"microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json", | |
# See all BioGPT models at https://huggingface.co/models?filter=biogpt | |
} | |
class BioGptConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`BioGptModel`]. It is used to instantiate an | |
BioGPT model according to the specified arguments, defining the model architecture. Instantiating a configuration | |
with the defaults will yield a similar configuration to that of the BioGPT | |
[microsoft/biogpt](https://huggingface.co/microsoft/biogpt) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 42384): | |
Vocabulary size of the BioGPT model. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed when calling [`BioGptModel`]. | |
hidden_size (`int`, *optional*, defaults to 1024): | |
Dimension of the encoder layers and the pooler layer. | |
num_hidden_layers (`int`, *optional*, defaults to 24): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 16): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
intermediate_size (`int`, *optional*, defaults to 4096): | |
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"selu"` and `"gelu_new"` are supported. | |
hidden_dropout_prob (`float`, *optional*, defaults to 0.1): | |
The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. | |
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): | |
The dropout ratio for the attention probabilities. | |
max_position_embeddings (`int`, *optional*, defaults to 1024): | |
The maximum sequence length that this model might ever be used with. Typically set this to something large | |
just in case (e.g., 512 or 1024 or 2048). | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-12): | |
The epsilon used by the layer normalization layers. | |
scale_embedding (`bool`, *optional*, defaults to `True`): | |
Scale embeddings by diving by sqrt(d_model). | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should return the last key/values attentions (not used by all models). Only | |
relevant if `config.is_decoder=True`. | |
layerdrop (`float`, *optional*, defaults to 0.0): | |
Please refer to the paper about LayerDrop: https://arxiv.org/abs/1909.11556 for further details | |
activation_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for activations inside the fully connected layer. | |
pad_token_id (`int`, *optional*, defaults to 1): | |
Padding token id. | |
bos_token_id (`int`, *optional*, defaults to 0): | |
Beginning of stream token id. | |
eos_token_id (`int`, *optional*, defaults to 2): | |
End of stream token id. | |
Example: | |
```python | |
>>> from transformers import BioGptModel, BioGptConfig | |
>>> # Initializing a BioGPT microsoft/biogpt style configuration | |
>>> configuration = BioGptConfig() | |
>>> # Initializing a model from the microsoft/biogpt style configuration | |
>>> model = BioGptModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "biogpt" | |
def __init__( | |
self, | |
vocab_size=42384, | |
hidden_size=1024, | |
num_hidden_layers=24, | |
num_attention_heads=16, | |
intermediate_size=4096, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=1024, | |
initializer_range=0.02, | |
layer_norm_eps=1e-12, | |
scale_embedding=True, | |
use_cache=True, | |
layerdrop=0.0, | |
activation_dropout=0.0, | |
pad_token_id=1, | |
bos_token_id=0, | |
eos_token_id=2, | |
**kwargs, | |
): | |
self.vocab_size = vocab_size | |
self.max_position_embeddings = max_position_embeddings | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.initializer_range = initializer_range | |
self.layer_norm_eps = layer_norm_eps | |
self.scale_embedding = scale_embedding | |
self.use_cache = use_cache | |
self.layerdrop = layerdrop | |
self.activation_dropout = activation_dropout | |
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) | |