Spaces:
Running
on
T4
Running
on
T4
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" CLIPSeg model configuration""" | |
import os | |
from typing import Union | |
from ...configuration_utils import PretrainedConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
"CIDAS/clipseg-rd64": "https://huggingface.co/CIDAS/clipseg-rd64/resolve/main/config.json", | |
} | |
class CLIPSegTextConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`CLIPSegModel`]. It is used to instantiate an | |
CLIPSeg model according to the specified arguments, defining the model architecture. Instantiating a configuration | |
with the defaults will yield a similar configuration to that of the CLIPSeg | |
[CIDAS/clipseg-rd64](https://huggingface.co/CIDAS/clipseg-rd64) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 49408): | |
Vocabulary size of the CLIPSeg text model. Defines the number of different tokens that can be represented | |
by the `inputs_ids` passed when calling [`CLIPSegModel`]. | |
hidden_size (`int`, *optional*, defaults to 512): | |
Dimensionality of the encoder layers and the pooler layer. | |
intermediate_size (`int`, *optional*, defaults to 2048): | |
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
num_hidden_layers (`int`, *optional*, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 8): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
max_position_embeddings (`int`, *optional*, defaults to 77): | |
The maximum sequence length that this model might ever be used with. Typically set this to something large | |
just in case (e.g., 512 or 1024 or 2048). | |
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-5): | |
The epsilon used by the layer normalization layers. | |
attention_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for the attention probabilities. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
initializer_factor (`float``, *optional*, defaults to 1): | |
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization | |
testing). | |
Example: | |
```python | |
>>> from transformers import CLIPSegTextConfig, CLIPSegTextModel | |
>>> # Initializing a CLIPSegTextConfig with CIDAS/clipseg-rd64 style configuration | |
>>> configuration = CLIPSegTextConfig() | |
>>> # Initializing a CLIPSegTextModel (with random weights) from the CIDAS/clipseg-rd64 style configuration | |
>>> model = CLIPSegTextModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "clipseg_text_model" | |
def __init__( | |
self, | |
vocab_size=49408, | |
hidden_size=512, | |
intermediate_size=2048, | |
num_hidden_layers=12, | |
num_attention_heads=8, | |
max_position_embeddings=77, | |
hidden_act="quick_gelu", | |
layer_norm_eps=1e-5, | |
attention_dropout=0.0, | |
initializer_range=0.02, | |
initializer_factor=1.0, | |
pad_token_id=1, | |
bos_token_id=49406, | |
eos_token_id=49407, | |
**kwargs, | |
): | |
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.intermediate_size = intermediate_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.max_position_embeddings = max_position_embeddings | |
self.layer_norm_eps = layer_norm_eps | |
self.hidden_act = hidden_act | |
self.initializer_range = initializer_range | |
self.initializer_factor = initializer_factor | |
self.attention_dropout = attention_dropout | |
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": | |
cls._set_token_in_kwargs(kwargs) | |
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) | |
# get the text config dict if we are loading from CLIPSegConfig | |
if config_dict.get("model_type") == "clipseg": | |
config_dict = config_dict["text_config"] | |
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: | |
logger.warning( | |
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
) | |
return cls.from_dict(config_dict, **kwargs) | |
class CLIPSegVisionConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`CLIPSegModel`]. It is used to instantiate an | |
CLIPSeg model according to the specified arguments, defining the model architecture. Instantiating a configuration | |
with the defaults will yield a similar configuration to that of the CLIPSeg | |
[CIDAS/clipseg-rd64](https://huggingface.co/CIDAS/clipseg-rd64) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
hidden_size (`int`, *optional*, defaults to 768): | |
Dimensionality of the encoder layers and the pooler layer. | |
intermediate_size (`int`, *optional*, defaults to 3072): | |
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
num_hidden_layers (`int`, *optional*, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
image_size (`int`, *optional*, defaults to 224): | |
The size (resolution) of each image. | |
patch_size (`int`, *optional*, defaults to 32): | |
The size (resolution) of each patch. | |
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-5): | |
The epsilon used by the layer normalization layers. | |
attention_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for the attention probabilities. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
initializer_factor (`float``, *optional*, defaults to 1): | |
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization | |
testing). | |
Example: | |
```python | |
>>> from transformers import CLIPSegVisionConfig, CLIPSegVisionModel | |
>>> # Initializing a CLIPSegVisionConfig with CIDAS/clipseg-rd64 style configuration | |
>>> configuration = CLIPSegVisionConfig() | |
>>> # Initializing a CLIPSegVisionModel (with random weights) from the CIDAS/clipseg-rd64 style configuration | |
>>> model = CLIPSegVisionModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "clipseg_vision_model" | |
def __init__( | |
self, | |
hidden_size=768, | |
intermediate_size=3072, | |
num_hidden_layers=12, | |
num_attention_heads=12, | |
num_channels=3, | |
image_size=224, | |
patch_size=32, | |
hidden_act="quick_gelu", | |
layer_norm_eps=1e-5, | |
attention_dropout=0.0, | |
initializer_range=0.02, | |
initializer_factor=1.0, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.hidden_size = hidden_size | |
self.intermediate_size = intermediate_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.num_channels = num_channels | |
self.patch_size = patch_size | |
self.image_size = image_size | |
self.initializer_range = initializer_range | |
self.initializer_factor = initializer_factor | |
self.attention_dropout = attention_dropout | |
self.layer_norm_eps = layer_norm_eps | |
self.hidden_act = hidden_act | |
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": | |
cls._set_token_in_kwargs(kwargs) | |
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) | |
# get the vision config dict if we are loading from CLIPSegConfig | |
if config_dict.get("model_type") == "clipseg": | |
config_dict = config_dict["vision_config"] | |
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: | |
logger.warning( | |
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
) | |
return cls.from_dict(config_dict, **kwargs) | |
class CLIPSegConfig(PretrainedConfig): | |
r""" | |
[`CLIPSegConfig`] is the configuration class to store the configuration of a [`CLIPSegModel`]. It is used to | |
instantiate a CLIPSeg model according to the specified arguments, defining the text model and vision model configs. | |
Instantiating a configuration with the defaults will yield a similar configuration to that of the CLIPSeg | |
[CIDAS/clipseg-rd64](https://huggingface.co/CIDAS/clipseg-rd64) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
text_config (`dict`, *optional*): | |
Dictionary of configuration options used to initialize [`CLIPSegTextConfig`]. | |
vision_config (`dict`, *optional*): | |
Dictionary of configuration options used to initialize [`CLIPSegVisionConfig`]. | |
projection_dim (`int`, *optional*, defaults to 512): | |
Dimensionality of text and vision projection layers. | |
logit_scale_init_value (`float`, *optional*, defaults to 2.6592): | |
The inital value of the *logit_scale* paramter. Default is used as per the original CLIPSeg implementation. | |
extract_layers (`List[int]`, *optional*, defaults to `[3, 6, 9]`): | |
Layers to extract when forwarding the query image through the frozen visual backbone of CLIP. | |
reduce_dim (`int`, *optional*, defaults to 64): | |
Dimensionality to reduce the CLIP vision embedding. | |
decoder_num_attention_heads (`int`, *optional*, defaults to 4): | |
Number of attention heads in the decoder of CLIPSeg. | |
decoder_attention_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for the attention probabilities. | |
decoder_hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. | |
decoder_intermediate_size (`int`, *optional*, defaults to 2048): | |
Dimensionality of the "intermediate" (i.e., feed-forward) layers in the Transformer decoder. | |
conditional_layer (`int`, *optional*, defaults to 0): | |
The layer to use of the Transformer encoder whose activations will be combined with the condition | |
embeddings using FiLM (Feature-wise Linear Modulation). If 0, the last layer is used. | |
use_complex_transposed_convolution (`bool`, *optional*, defaults to `False`): | |
Whether to use a more complex transposed convolution in the decoder, enabling more fine-grained | |
segmentation. | |
kwargs (*optional*): | |
Dictionary of keyword arguments. | |
Example: | |
```python | |
>>> from transformers import CLIPSegConfig, CLIPSegModel | |
>>> # Initializing a CLIPSegConfig with CIDAS/clipseg-rd64 style configuration | |
>>> configuration = CLIPSegConfig() | |
>>> # Initializing a CLIPSegModel (with random weights) from the CIDAS/clipseg-rd64 style configuration | |
>>> model = CLIPSegModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
>>> # We can also initialize a CLIPSegConfig from a CLIPSegTextConfig and a CLIPSegVisionConfig | |
>>> # Initializing a CLIPSegText and CLIPSegVision configuration | |
>>> config_text = CLIPSegTextConfig() | |
>>> config_vision = CLIPSegVisionConfig() | |
>>> config = CLIPSegConfig.from_text_vision_configs(config_text, config_vision) | |
```""" | |
model_type = "clipseg" | |
def __init__( | |
self, | |
text_config=None, | |
vision_config=None, | |
projection_dim=512, | |
logit_scale_init_value=2.6592, | |
extract_layers=[3, 6, 9], | |
reduce_dim=64, | |
decoder_num_attention_heads=4, | |
decoder_attention_dropout=0.0, | |
decoder_hidden_act="quick_gelu", | |
decoder_intermediate_size=2048, | |
conditional_layer=0, | |
use_complex_transposed_convolution=False, | |
**kwargs, | |
): | |
# If `_config_dict` exist, we use them for the backward compatibility. | |
# We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot | |
# of confusion!). | |
text_config_dict = kwargs.pop("text_config_dict", None) | |
vision_config_dict = kwargs.pop("vision_config_dict", None) | |
super().__init__(**kwargs) | |
# Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in | |
# `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most | |
# cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. | |
if text_config_dict is not None: | |
if text_config is None: | |
text_config = {} | |
# This is the complete result when using `text_config_dict`. | |
_text_config_dict = CLIPSegTextConfig(**text_config_dict).to_dict() | |
# Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. | |
for key, value in _text_config_dict.items(): | |
if key in text_config and value != text_config[key] and key not in ["transformers_version"]: | |
# If specified in `text_config_dict` | |
if key in text_config_dict: | |
message = ( | |
f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. " | |
f'The value `text_config_dict["{key}"]` will be used instead.' | |
) | |
# If inferred from default argument values (just to be super careful) | |
else: | |
message = ( | |
f"`text_config_dict` is provided which will be used to initialize `CLIPSegTextConfig`. The " | |
f'value `text_config["{key}"]` will be overriden.' | |
) | |
logger.warning(message) | |
# Update all values in `text_config` with the ones in `_text_config_dict`. | |
text_config.update(_text_config_dict) | |
if vision_config_dict is not None: | |
if vision_config is None: | |
vision_config = {} | |
# This is the complete result when using `vision_config_dict`. | |
_vision_config_dict = CLIPSegVisionConfig(**vision_config_dict).to_dict() | |
# convert keys to string instead of integer | |
if "id2label" in _vision_config_dict: | |
_vision_config_dict["id2label"] = { | |
str(key): value for key, value in _vision_config_dict["id2label"].items() | |
} | |
# Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. | |
for key, value in _vision_config_dict.items(): | |
if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: | |
# If specified in `vision_config_dict` | |
if key in vision_config_dict: | |
message = ( | |
f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different " | |
f'values. The value `vision_config_dict["{key}"]` will be used instead.' | |
) | |
# If inferred from default argument values (just to be super careful) | |
else: | |
message = ( | |
f"`vision_config_dict` is provided which will be used to initialize `CLIPSegVisionConfig`. " | |
f'The value `vision_config["{key}"]` will be overriden.' | |
) | |
logger.warning(message) | |
# Update all values in `vision_config` with the ones in `_vision_config_dict`. | |
vision_config.update(_vision_config_dict) | |
if text_config is None: | |
text_config = {} | |
logger.info("`text_config` is `None`. Initializing the `CLIPSegTextConfig` with default values.") | |
if vision_config is None: | |
vision_config = {} | |
logger.info("`vision_config` is `None`. initializing the `CLIPSegVisionConfig` with default values.") | |
self.text_config = CLIPSegTextConfig(**text_config) | |
self.vision_config = CLIPSegVisionConfig(**vision_config) | |
self.projection_dim = projection_dim | |
self.logit_scale_init_value = logit_scale_init_value | |
self.extract_layers = extract_layers | |
self.reduce_dim = reduce_dim | |
self.decoder_num_attention_heads = decoder_num_attention_heads | |
self.decoder_attention_dropout = decoder_attention_dropout | |
self.decoder_hidden_act = decoder_hidden_act | |
self.decoder_intermediate_size = decoder_intermediate_size | |
self.conditional_layer = conditional_layer | |
self.initializer_factor = 1.0 | |
self.use_complex_transposed_convolution = use_complex_transposed_convolution | |
def from_text_vision_configs(cls, text_config: CLIPSegTextConfig, vision_config: CLIPSegVisionConfig, **kwargs): | |
r""" | |
Instantiate a [`CLIPSegConfig`] (or a derived class) from clipseg text model configuration and clipseg vision | |
model configuration. | |
Returns: | |
[`CLIPSegConfig`]: An instance of a configuration object | |
""" | |
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs) | |