Spaces:
Running
on
T4
Running
on
T4
#!/usr/bin/env python | |
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import torch | |
from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer | |
from .base import PipelineTool | |
class TextClassificationTool(PipelineTool): | |
""" | |
Example: | |
```py | |
from transformers.tools import TextClassificationTool | |
classifier = TextClassificationTool() | |
classifier("This is a super nice API!", labels=["positive", "negative"]) | |
``` | |
""" | |
default_checkpoint = "facebook/bart-large-mnli" | |
description = ( | |
"This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " | |
"should be the text to classify, and `labels`, which should be the list of labels to use for classification. " | |
"It returns the most likely label in the list of provided `labels` for the input text." | |
) | |
name = "text_classifier" | |
pre_processor_class = AutoTokenizer | |
model_class = AutoModelForSequenceClassification | |
inputs = ["text", ["text"]] | |
outputs = ["text"] | |
def setup(self): | |
super().setup() | |
config = self.model.config | |
self.entailment_id = -1 | |
for idx, label in config.id2label.items(): | |
if label.lower().startswith("entail"): | |
self.entailment_id = int(idx) | |
if self.entailment_id == -1: | |
raise ValueError("Could not determine the entailment ID from the model config, please pass it at init.") | |
def encode(self, text, labels): | |
self._labels = labels | |
return self.pre_processor( | |
[text] * len(labels), | |
[f"This example is {label}" for label in labels], | |
return_tensors="pt", | |
padding="max_length", | |
) | |
def decode(self, outputs): | |
logits = outputs.logits | |
label_id = torch.argmax(logits[:, 2]).item() | |
return self._labels[label_id] | |