Spaces:
Running
on
T4
Running
on
T4
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from argparse import ArgumentParser, Namespace | |
from typing import Any, List, Optional | |
from ..pipelines import Pipeline, get_supported_tasks, pipeline | |
from ..utils import logging | |
from . import BaseTransformersCLICommand | |
try: | |
from fastapi import Body, FastAPI, HTTPException | |
from fastapi.routing import APIRoute | |
from pydantic import BaseModel | |
from starlette.responses import JSONResponse | |
from uvicorn import run | |
_serve_dependencies_installed = True | |
except (ImportError, AttributeError): | |
BaseModel = object | |
def Body(*x, **y): | |
pass | |
_serve_dependencies_installed = False | |
logger = logging.get_logger("transformers-cli/serving") | |
def serve_command_factory(args: Namespace): | |
""" | |
Factory function used to instantiate serving server from provided command line arguments. | |
Returns: ServeCommand | |
""" | |
nlp = pipeline( | |
task=args.task, | |
model=args.model if args.model else None, | |
config=args.config, | |
tokenizer=args.tokenizer, | |
device=args.device, | |
) | |
return ServeCommand(nlp, args.host, args.port, args.workers) | |
class ServeModelInfoResult(BaseModel): | |
""" | |
Expose model information | |
""" | |
infos: dict | |
class ServeTokenizeResult(BaseModel): | |
""" | |
Tokenize result model | |
""" | |
tokens: List[str] | |
tokens_ids: Optional[List[int]] | |
class ServeDeTokenizeResult(BaseModel): | |
""" | |
DeTokenize result model | |
""" | |
text: str | |
class ServeForwardResult(BaseModel): | |
""" | |
Forward result model | |
""" | |
output: Any | |
class ServeCommand(BaseTransformersCLICommand): | |
def register_subcommand(parser: ArgumentParser): | |
""" | |
Register this command to argparse so it's available for the transformer-cli | |
Args: | |
parser: Root parser to register command-specific arguments | |
""" | |
serve_parser = parser.add_parser( | |
"serve", help="CLI tool to run inference requests through REST and GraphQL endpoints." | |
) | |
serve_parser.add_argument( | |
"--task", | |
type=str, | |
choices=get_supported_tasks(), | |
help="The task to run the pipeline on", | |
) | |
serve_parser.add_argument("--host", type=str, default="localhost", help="Interface the server will listen on.") | |
serve_parser.add_argument("--port", type=int, default=8888, help="Port the serving will listen to.") | |
serve_parser.add_argument("--workers", type=int, default=1, help="Number of http workers") | |
serve_parser.add_argument("--model", type=str, help="Model's name or path to stored model.") | |
serve_parser.add_argument("--config", type=str, help="Model's config name or path to stored model.") | |
serve_parser.add_argument("--tokenizer", type=str, help="Tokenizer name to use.") | |
serve_parser.add_argument( | |
"--device", | |
type=int, | |
default=-1, | |
help="Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)", | |
) | |
serve_parser.set_defaults(func=serve_command_factory) | |
def __init__(self, pipeline: Pipeline, host: str, port: int, workers: int): | |
self._pipeline = pipeline | |
self.host = host | |
self.port = port | |
self.workers = workers | |
if not _serve_dependencies_installed: | |
raise RuntimeError( | |
"Using serve command requires FastAPI and uvicorn. " | |
'Please install transformers with [serving]: pip install "transformers[serving]".' | |
"Or install FastAPI and uvicorn separately." | |
) | |
else: | |
logger.info(f"Serving model over {host}:{port}") | |
self._app = FastAPI( | |
routes=[ | |
APIRoute( | |
"/", | |
self.model_info, | |
response_model=ServeModelInfoResult, | |
response_class=JSONResponse, | |
methods=["GET"], | |
), | |
APIRoute( | |
"/tokenize", | |
self.tokenize, | |
response_model=ServeTokenizeResult, | |
response_class=JSONResponse, | |
methods=["POST"], | |
), | |
APIRoute( | |
"/detokenize", | |
self.detokenize, | |
response_model=ServeDeTokenizeResult, | |
response_class=JSONResponse, | |
methods=["POST"], | |
), | |
APIRoute( | |
"/forward", | |
self.forward, | |
response_model=ServeForwardResult, | |
response_class=JSONResponse, | |
methods=["POST"], | |
), | |
], | |
timeout=600, | |
) | |
def run(self): | |
run(self._app, host=self.host, port=self.port, workers=self.workers) | |
def model_info(self): | |
return ServeModelInfoResult(infos=vars(self._pipeline.model.config)) | |
def tokenize(self, text_input: str = Body(None, embed=True), return_ids: bool = Body(False, embed=True)): | |
""" | |
Tokenize the provided input and eventually returns corresponding tokens id: - **text_input**: String to | |
tokenize - **return_ids**: Boolean flags indicating if the tokens have to be converted to their integer | |
mapping. | |
""" | |
try: | |
tokens_txt = self._pipeline.tokenizer.tokenize(text_input) | |
if return_ids: | |
tokens_ids = self._pipeline.tokenizer.convert_tokens_to_ids(tokens_txt) | |
return ServeTokenizeResult(tokens=tokens_txt, tokens_ids=tokens_ids) | |
else: | |
return ServeTokenizeResult(tokens=tokens_txt) | |
except Exception as e: | |
raise HTTPException(status_code=500, detail={"model": "", "error": str(e)}) | |
def detokenize( | |
self, | |
tokens_ids: List[int] = Body(None, embed=True), | |
skip_special_tokens: bool = Body(False, embed=True), | |
cleanup_tokenization_spaces: bool = Body(True, embed=True), | |
): | |
""" | |
Detokenize the provided tokens ids to readable text: - **tokens_ids**: List of tokens ids - | |
**skip_special_tokens**: Flag indicating to not try to decode special tokens - **cleanup_tokenization_spaces**: | |
Flag indicating to remove all leading/trailing spaces and intermediate ones. | |
""" | |
try: | |
decoded_str = self._pipeline.tokenizer.decode(tokens_ids, skip_special_tokens, cleanup_tokenization_spaces) | |
return ServeDeTokenizeResult(model="", text=decoded_str) | |
except Exception as e: | |
raise HTTPException(status_code=500, detail={"model": "", "error": str(e)}) | |
async def forward(self, inputs=Body(None, embed=True)): | |
""" | |
**inputs**: **attention_mask**: **tokens_type_ids**: | |
""" | |
# Check we don't have empty string | |
if len(inputs) == 0: | |
return ServeForwardResult(output=[], attention=[]) | |
try: | |
# Forward through the model | |
output = self._pipeline(inputs) | |
return ServeForwardResult(output=output) | |
except Exception as e: | |
raise HTTPException(500, {"error": str(e)}) | |