Spaces:
Running
on
T4
Running
on
T4
import inspect | |
import warnings | |
from typing import Dict | |
import numpy as np | |
from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available | |
from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline | |
if is_tf_available(): | |
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES | |
if is_torch_available(): | |
from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES | |
def sigmoid(_outputs): | |
return 1.0 / (1.0 + np.exp(-_outputs)) | |
def softmax(_outputs): | |
maxes = np.max(_outputs, axis=-1, keepdims=True) | |
shifted_exp = np.exp(_outputs - maxes) | |
return shifted_exp / shifted_exp.sum(axis=-1, keepdims=True) | |
class ClassificationFunction(ExplicitEnum): | |
SIGMOID = "sigmoid" | |
SOFTMAX = "softmax" | |
NONE = "none" | |
class TextClassificationPipeline(Pipeline): | |
""" | |
Text classification pipeline using any `ModelForSequenceClassification`. See the [sequence classification | |
examples](../task_summary#sequence-classification) for more information. | |
Example: | |
```python | |
>>> from transformers import pipeline | |
>>> classifier = pipeline(model="distilbert-base-uncased-finetuned-sst-2-english") | |
>>> classifier("This movie is disgustingly good !") | |
[{'label': 'POSITIVE', 'score': 1.0}] | |
>>> classifier("Director tried too much.") | |
[{'label': 'NEGATIVE', 'score': 0.996}] | |
``` | |
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) | |
This text classification pipeline can currently be loaded from [`pipeline`] using the following task identifier: | |
`"sentiment-analysis"` (for classifying sequences according to positive or negative sentiments). | |
If multiple classification labels are available (`model.config.num_labels >= 2`), the pipeline will run a softmax | |
over the results. If there is a single label, the pipeline will run a sigmoid over the result. | |
The models that this pipeline can use are models that have been fine-tuned on a sequence classification task. See | |
the up-to-date list of available models on | |
[huggingface.co/models](https://huggingface.co/models?filter=text-classification). | |
""" | |
return_all_scores = False | |
function_to_apply = ClassificationFunction.NONE | |
def __init__(self, **kwargs): | |
super().__init__(**kwargs) | |
self.check_model_type( | |
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES | |
if self.framework == "tf" | |
else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES | |
) | |
def _sanitize_parameters(self, return_all_scores=None, function_to_apply=None, top_k="", **tokenizer_kwargs): | |
# Using "" as default argument because we're going to use `top_k=None` in user code to declare | |
# "No top_k" | |
preprocess_params = tokenizer_kwargs | |
postprocess_params = {} | |
if hasattr(self.model.config, "return_all_scores") and return_all_scores is None: | |
return_all_scores = self.model.config.return_all_scores | |
if isinstance(top_k, int) or top_k is None: | |
postprocess_params["top_k"] = top_k | |
postprocess_params["_legacy"] = False | |
elif return_all_scores is not None: | |
warnings.warn( | |
"`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of" | |
" `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.", | |
UserWarning, | |
) | |
if return_all_scores: | |
postprocess_params["top_k"] = None | |
else: | |
postprocess_params["top_k"] = 1 | |
if isinstance(function_to_apply, str): | |
function_to_apply = ClassificationFunction[function_to_apply.upper()] | |
if function_to_apply is not None: | |
postprocess_params["function_to_apply"] = function_to_apply | |
return preprocess_params, {}, postprocess_params | |
def __call__(self, *args, **kwargs): | |
""" | |
Classify the text(s) given as inputs. | |
Args: | |
args (`str` or `List[str]` or `Dict[str]`, or `List[Dict[str]]`): | |
One or several texts to classify. In order to use text pairs for your classification, you can send a | |
dictionary containing `{"text", "text_pair"}` keys, or a list of those. | |
top_k (`int`, *optional*, defaults to `1`): | |
How many results to return. | |
function_to_apply (`str`, *optional*, defaults to `"default"`): | |
The function to apply to the model outputs in order to retrieve the scores. Accepts four different | |
values: | |
If this argument is not specified, then it will apply the following functions according to the number | |
of labels: | |
- If the model has a single label, will apply the sigmoid function on the output. | |
- If the model has several labels, will apply the softmax function on the output. | |
Possible values are: | |
- `"sigmoid"`: Applies the sigmoid function on the output. | |
- `"softmax"`: Applies the softmax function on the output. | |
- `"none"`: Does not apply any function on the output. | |
Return: | |
A list or a list of list of `dict`: Each result comes as list of dictionaries with the following keys: | |
- **label** (`str`) -- The label predicted. | |
- **score** (`float`) -- The corresponding probability. | |
If `top_k` is used, one such dictionary is returned per label. | |
""" | |
result = super().__call__(*args, **kwargs) | |
# TODO try and retrieve it in a nicer way from _sanitize_parameters. | |
_legacy = "top_k" not in kwargs | |
if isinstance(args[0], str) and _legacy: | |
# This pipeline is odd, and return a list when single item is run | |
return [result] | |
else: | |
return result | |
def preprocess(self, inputs, **tokenizer_kwargs) -> Dict[str, GenericTensor]: | |
return_tensors = self.framework | |
if isinstance(inputs, dict): | |
return self.tokenizer(**inputs, return_tensors=return_tensors, **tokenizer_kwargs) | |
elif isinstance(inputs, list) and len(inputs) == 1 and isinstance(inputs[0], list) and len(inputs[0]) == 2: | |
# It used to be valid to use a list of list of list for text pairs, keeping this path for BC | |
return self.tokenizer( | |
text=inputs[0][0], text_pair=inputs[0][1], return_tensors=return_tensors, **tokenizer_kwargs | |
) | |
elif isinstance(inputs, list): | |
# This is likely an invalid usage of the pipeline attempting to pass text pairs. | |
raise ValueError( | |
"The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a" | |
' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.' | |
) | |
return self.tokenizer(inputs, return_tensors=return_tensors, **tokenizer_kwargs) | |
def _forward(self, model_inputs): | |
# `XXXForSequenceClassification` models should not use `use_cache=True` even if it's supported | |
model_forward = self.model.forward if self.framework == "pt" else self.model.call | |
if "use_cache" in inspect.signature(model_forward).parameters.keys(): | |
model_inputs["use_cache"] = False | |
return self.model(**model_inputs) | |
def postprocess(self, model_outputs, function_to_apply=None, top_k=1, _legacy=True): | |
# `_legacy` is used to determine if we're running the naked pipeline and in backward | |
# compatibility mode, or if running the pipeline with `pipeline(..., top_k=1)` we're running | |
# the more natural result containing the list. | |
# Default value before `set_parameters` | |
if function_to_apply is None: | |
if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: | |
function_to_apply = ClassificationFunction.SIGMOID | |
elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: | |
function_to_apply = ClassificationFunction.SOFTMAX | |
elif hasattr(self.model.config, "function_to_apply") and function_to_apply is None: | |
function_to_apply = self.model.config.function_to_apply | |
else: | |
function_to_apply = ClassificationFunction.NONE | |
outputs = model_outputs["logits"][0] | |
outputs = outputs.numpy() | |
if function_to_apply == ClassificationFunction.SIGMOID: | |
scores = sigmoid(outputs) | |
elif function_to_apply == ClassificationFunction.SOFTMAX: | |
scores = softmax(outputs) | |
elif function_to_apply == ClassificationFunction.NONE: | |
scores = outputs | |
else: | |
raise ValueError(f"Unrecognized `function_to_apply` argument: {function_to_apply}") | |
if top_k == 1 and _legacy: | |
return {"label": self.model.config.id2label[scores.argmax().item()], "score": scores.max().item()} | |
dict_scores = [ | |
{"label": self.model.config.id2label[i], "score": score.item()} for i, score in enumerate(scores) | |
] | |
if not _legacy: | |
dict_scores.sort(key=lambda x: x["score"], reverse=True) | |
if top_k is not None: | |
dict_scores = dict_scores[:top_k] | |
return dict_scores | |