Spaces:
Running
on
T4
Running
on
T4
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Processor class for Blip. | |
""" | |
from typing import List, Optional, Union | |
from ...image_utils import ImageInput | |
from ...processing_utils import ProcessorMixin | |
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy | |
from ...utils import TensorType | |
class BlipProcessor(ProcessorMixin): | |
r""" | |
Constructs a BLIP processor which wraps a BERT tokenizer and BLIP image processor into a single processor. | |
[`BlipProcessor`] offers all the functionalities of [`BlipImageProcessor`] and [`BertTokenizerFast`]. See the | |
docstring of [`~BlipProcessor.__call__`] and [`~BlipProcessor.decode`] for more information. | |
Args: | |
image_processor (`BlipImageProcessor`): | |
An instance of [`BlipImageProcessor`]. The image processor is a required input. | |
tokenizer (`BertTokenizerFast`): | |
An instance of ['BertTokenizerFast`]. The tokenizer is a required input. | |
""" | |
attributes = ["image_processor", "tokenizer"] | |
image_processor_class = "BlipImageProcessor" | |
tokenizer_class = ("BertTokenizer", "BertTokenizerFast") | |
def __init__(self, image_processor, tokenizer): | |
tokenizer.return_token_type_ids = False | |
super().__init__(image_processor, tokenizer) | |
self.current_processor = self.image_processor | |
def __call__( | |
self, | |
images: ImageInput = None, | |
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, | |
add_special_tokens: bool = True, | |
padding: Union[bool, str, PaddingStrategy] = False, | |
truncation: Union[bool, str, TruncationStrategy] = None, | |
max_length: Optional[int] = None, | |
stride: int = 0, | |
pad_to_multiple_of: Optional[int] = None, | |
return_attention_mask: Optional[bool] = None, | |
return_overflowing_tokens: bool = False, | |
return_special_tokens_mask: bool = False, | |
return_offsets_mapping: bool = False, | |
return_token_type_ids: bool = False, | |
return_length: bool = False, | |
verbose: bool = True, | |
return_tensors: Optional[Union[str, TensorType]] = None, | |
**kwargs, | |
) -> BatchEncoding: | |
""" | |
This method uses [`BlipImageProcessor.__call__`] method to prepare image(s) for the model, and | |
[`BertTokenizerFast.__call__`] to prepare text for the model. | |
Please refer to the docstring of the above two methods for more information. | |
""" | |
if images is None and text is None: | |
raise ValueError("You have to specify either images or text.") | |
# Get only text | |
if images is None: | |
self.current_processor = self.tokenizer | |
text_encoding = self.tokenizer( | |
text=text, | |
add_special_tokens=add_special_tokens, | |
padding=padding, | |
truncation=truncation, | |
max_length=max_length, | |
stride=stride, | |
pad_to_multiple_of=pad_to_multiple_of, | |
return_attention_mask=return_attention_mask, | |
return_overflowing_tokens=return_overflowing_tokens, | |
return_special_tokens_mask=return_special_tokens_mask, | |
return_offsets_mapping=return_offsets_mapping, | |
return_token_type_ids=return_token_type_ids, | |
return_length=return_length, | |
verbose=verbose, | |
return_tensors=return_tensors, | |
**kwargs, | |
) | |
return text_encoding | |
# add pixel_values | |
encoding_image_processor = self.image_processor(images, return_tensors=return_tensors) | |
if text is not None: | |
text_encoding = self.tokenizer( | |
text=text, | |
add_special_tokens=add_special_tokens, | |
padding=padding, | |
truncation=truncation, | |
max_length=max_length, | |
stride=stride, | |
pad_to_multiple_of=pad_to_multiple_of, | |
return_attention_mask=return_attention_mask, | |
return_overflowing_tokens=return_overflowing_tokens, | |
return_special_tokens_mask=return_special_tokens_mask, | |
return_offsets_mapping=return_offsets_mapping, | |
return_token_type_ids=return_token_type_ids, | |
return_length=return_length, | |
verbose=verbose, | |
return_tensors=return_tensors, | |
**kwargs, | |
) | |
else: | |
text_encoding = None | |
if text_encoding is not None: | |
encoding_image_processor.update(text_encoding) | |
return encoding_image_processor | |
def batch_decode(self, *args, **kwargs): | |
""" | |
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please | |
refer to the docstring of this method for more information. | |
""" | |
return self.tokenizer.batch_decode(*args, **kwargs) | |
def decode(self, *args, **kwargs): | |
""" | |
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to | |
the docstring of this method for more information. | |
""" | |
return self.tokenizer.decode(*args, **kwargs) | |
def model_input_names(self): | |
tokenizer_input_names = self.tokenizer.model_input_names | |
image_processor_input_names = self.image_processor.model_input_names | |
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) | |